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Long non-coding RNAs (lncRNAs) are non-coding transcripts that have emerged as one
of the largest and diverse RNA families that regulate gene expression. Accumulating
evidence has suggested a number of lncRNAs are involved in diabetes mellitus (DM)
pathogenesis. However, results about lncRNA expressions in DM patients are still
inconclusive. Thus, we performed a systematic review of the literature on the subject
followed by bioinformatics analyses to better understand which lncRNAs are dysregulated
in DM and in which pathways they act. Pubmed, Embase, and Gene Expression Omnibus
(GEO) repositories were searched to identify studies that investigated lncRNA expression
in cases with DM and non-diabetic controls. LncRNAs consistently dysregulated in DM
patients were submitted to bioinformatics analysis to retrieve their target genes and
identify potentially affected signaling pathways under their regulation. Fifty-three eligible
articles were included in this review after the application of the inclusion and exclusion
criteria. Six hundred and thirty-eight lncRNAs were differentially expressed between cases
and controls in at least one study. Among them, six lncRNAs were consistently
dysregulated in patients with DM (Anril, Hotair, Malat1, Miat, Kcnq1ot1, and Meg3)
compared to controls. Moreover, these six lncRNAs participate in several metabolism-
related pathways, evidencing their importance in DM. This systematic review suggests six
lncRNAs are dysregulated in DM, constituting potential biomarkers of this disease.

Keywords: lncRNAs (long non-coding RNAs), type 1 diabetes mellitus (DM1), type 2 diabetes mellitus (T2DM),
systematic review, target prediction
INTRODUCTION

Diabetes mellitus (DM) is a group of metabolic disorders that have in common the chronic
hyperglycemia, which results from defects in insulin secretion, insulin action, or both (1).
Accordingly to the International Diabetes Federation Atlas 2019, an estimated 463 million adults
are currently living with DM (9.3% of the world population), and this number is projected to reach
700 million by 2045 (2). Thus, DM has achieved epidemic proportions worldwide, being associated
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with increased morbidity and mortality rates due to its specific
micro- and macrovascular complications (1, 2).

Type 1 DM (T1DM) accounts for 5–10% of all DM cases and
usually appears in people younger than 30 years (1, 2). T1DM is
an autoimmune disease caused by the progressive destruction of
pancreatic beta-cells by macrophages and T lymphocytes,
making patients insulin-dependent for life (1, 3). Type 2 DM
(T2DM) comprises 90–95% of worldwide diabetic cases and
generally arises in subjects older than 40 years and with obesity.
Hyperglycemia in T2DM patients is caused by insulin resistance
associated with different degrees of a relative beta-cell failure (1,
2). It is well known that susceptibility for both T1DM and T2DM
is triggered by a multifaceted interaction among several
environmental, genetic, and epigenetic factors (4–8).

Epigenetic factors regulate the complex crosstalk between
genes and environmental factors without altering the DNA
sequence and inc lude DNA methy la t ion , h i s tone
posttranslational modifications, and non-coding RNAs
(ncRNAs) (7, 8). NcRNAs are regulatory RNAs that typically
lack protein-coding capacity and play key roles in both
physiological and pathological processes (9, 10). According to
their length and functions, ncRNAs can be classified into
different subtypes, including the long ncRNAs (lncRNAs),
which are those ncRNAs with >200 nucleotides in length
(10, 11).

LncRNAs can be located in the nucleus or cytoplasm and
exhibit more specific expression profiles than mRNAs, being
expressed in cell/tissue-, developmental stage-, or disease state-
specific manners (10, 12, 13). A number of studies have
suggested lncRNAs participate in several molecular processes
involved in gene regulation, including epigenetic, transcriptional,
and post-transcriptional regulation, through interaction with
chromatin-remodeling complexes, binding to transcription
factors or regulation of mRNA-binding proteins and
microRNAs (another class of ncRNAs) (10, 14–16).

In this context, growing evidence has shown lncRNAs play
key roles in regulating beta-cell function, apoptosis, insulin
secretion, glucose metabolism, and insulin resistance (10, 17–
22). Accordingly, a number of studies have reported changes in
lncRNA expressions in patients with DM or in murine models of
T1DM or T2DM (10, 23–29). Thus, lncRNAs are likely to be
novel potential biomarkers for early diagnosis and prognosis of
T1DM or T2DM (10, 29). For example, Carter et al. showed
GAS5 might be a prognostic biomarker for T2DM since this
lncRNA was decreased in serum of patients with DM from a US
military veterans cohort (23). Individuals with lower GAS5
expression were almost 12× more likely to have T2DM (23). Li
et al. reported ENST00000550337.1 upregulation in blood had
high diagnostic value for identifying pre-DM and T2DM in
patients from a Chinese cohort (25).

Therefore, to further investigate which lncRNAs may be
involved in DM pathogenesis and used as potential biomarkers
of this disease, we performed a systematic review of the literature
on the subject. Moreover, bioinformatics analyses were
performed to investigate the regulatory and functional roles of
dysregulated lncRNAs in DM pathogenesis.
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MATERIALS AND METHODS

Search Strategy, Eligibility of Studies,
and Data Extraction
This systematic review was designed and described in accordance
with current guidelines (30, 31), and its protocol was registered at
PROSPERO (http://www.crd.york.ac.uk/PROSPERO), under the
identification: CRD42019124368. PubMed and EMBASE
repositories were searched to retrieve all articles that
investigated lncRNA expressions in T1DM or T2DM patients
compared to non-diabetic controls. The research question was
constructed based on the PICOS strategy (31), as follows: P
(Population): patients with T1DM or T2DM; I (Intervention):
lncRNA expression; C (Comparators): healthy control groups; O
(Outcomes): DM; S (Study designs): case–control study, cross-
sectional or cohort. The following medical subject headings
(MeSH) were used: (“diabetes mellitus” OR “diabetes mellitus,
type 1” OR “diabetes mellitus, type 2”) AND (“RNA, long
noncoding” OR “untranslated RNA”). The search was
restricted to English, Spanish, or Portuguese language papers
and was finished on April 2020. Reference lists from all included
articles were also manually reviewed in order to identify other
relevant citations. Moreover, studies were also searched in the
GEO database (https://www.ncbi.nlm.nih.gov/geo/).

We included original articles that analyzed lncRNA expressions
in patients with T1DM or T2DM (cases) and subjects without DM
(controls). Studies that did not have an appropriate control group
were excluded. Two researchers (CD and NL) independently
reviewed titles and abstracts of all articles to evaluate if they were
eligible for inclusion in this systematic review.

Results were independently collected by two investigators
(CD and NL) using a standardized abstraction form (31).
Discrepancies between investigators were solved by discussion
between them and, when necessary, a third reviewer (DC) was
consulted. The following information was collected from each
study included in this review: 1) characteristics of studies and
samples; 2) information regarding lncRNA expressions,
quantification method, analyzed tissue, and number of
lncRNAs investigated; and 3) lncRNA expression profile in
case and control groups.

Evaluation of lncRNA Putative Target
Genes and Functional Enrichment Analysis
Potential target genes for the consistently dysregulated lncRNAs
in DM were searched using lncRNA2Target v2.0 (32) and
starBase (33). The criteria for selecting the consistently
dysregulated lncRNAs were: 1) lncRNAs with concordant
results in ≥75% of the studies in which they were analyzed;
and 2) lncRNAs analyzed in at least three studies. Statistical
significances were reported after Benjamini–Hochberg (q-value)
corrections for multiple comparisons (34). To better understand
the biological relevance of lncRNA target genes, a network
analysis was executed using PathDIP (accessed 23th April
2020) (35). The nomenclature of mRNAs and lncRNAs were
unified based on HUGO gene nomenclature committee (HGNC)
and LNCipedia v5.2, respectively.
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RESULTS

Literature Search and Characteristics of
Eligible Studies
Figure 1 shows the flowchart illustrating the strategy used to
identify and select articles for inclusion in this systematic review.
Following the search criteria, a total of 3,314 publications were
retrieved from databases; however, after careful full text analysis,
only 53 articles fulfilled the eligibility criteria and were included
in the present review. The main characteristics of these studies
are shown in Table 1 and the Supplementary Table 1.

The number of lncRNAs differentially expressed between case
and control groups from the different included studies varied
from 1 (23, 39, 41, 43, 46–49, 52, 57, 60, 64, 68, 69, 73–75, 77) to
97,286 (58), and the sample sizes ranged from 4 (66) to 370 (73).
Among the 53 studies included in this systematic review, 74% of
them analyzed T2DM patients, while 26% did not report which
DM type patients had. The tissues most analyzed were serum,
plasma, and peripheral blood mononuclear cells (PBMCs).

Differentially Expressed lncRNAs in DM
As shown in the Supplementary Table 2, 623 lncRNAs were
reported as being dysregulated in patients with DM from one
study (17, 21, 24–28, 41, 42, 44, 47, 54, 55, 57–60, 64, 73, 75),
while only seven were dysregulated in cases in two studies
(ENST00000550337.1, Pluto, LncRNAp3134, n335556, n336109,
n342533, and Pvt1) (17, 19, 21, 25, 28, 63, 66, 67). Eight lncRNAs
were dysregulated in patients from three or more studies, being
chosen for further evaluation (Supplementary Table 2 and
Table 2). Among these eight lncRNAs, those showing
Frontiers in Endocrinology | www.frontiersin.org 3
concordant results in more than 75% of the studies were
considered consistently dysregulated in DM. Thus, as shown in
Table 2, six lncRNAs were consistently dysregulated in patients
with DM (upregulated: Anril, Hotair, Malat1, Miat, and
Kcnq1ot1; downregulated: Meg3) compared to controls. GAS5
and H19 were upregulated in patients from some studies and
downregulated in others, which could be explained by differences
in the tissue types analyzed (serum, pancreatic islets, liver,
plasma, and PBMCs) (Table 2).

Putative Target Genes and Enrichment
Pathway Analysis of the Six Differentially
Expressed lncRNAs in Human Samples
Bioinformatics analyses were carried out to find putative targets
and biological pathways regulated by the six lncRNAs (Anril,
Hotair, Malat1, Miat, Kcnq1ot1, and Meg3) consistently
dysregulated in samples of DM patients. These six lncRNAs
regulate together the expression of 1,860 unique target genes
(Supplementary Table 3). Malat1 has the largest number of
target genes (1,671), followed by Kcnq1ot1 (91), Miat (65), and
Hotair (59), while Meg3 and Anril have the lowest number of
targets (32 and 20, respectively) (Figure 2A and Supplementary
Table 3). Among the 1,860 target genes, 1,307 were protein
coding genes, 287 were pseudogenes, 100 were small nuclear
RNAs (snRNAs), and 225 were other type of ncRNAs, including
microRNAs, rRNA, tRNA, and mitochondrial RNA (mtRNA)
(Supplementary Table 3).

Next, to further explore the functional consequences of the
dysregulation of the six lncRNAs of interest, we performed
functional enrichment analysis of their protein-encoding target
FIGURE 1 | Flowchart illustrating the search strategy used to identify studies that investigated the association between lncRNAs and diabetes mellitus. *Other:
articles excluded due to lack of important information; studies with cell lines; and studies written in other idioms (not English, Spanish or Portuguese).
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TABLE 1 | Characteristics of studies included in the systematic review.

Author, year
[Reference]

Sample size Case/Control Tissue Method Total number of
studied lncRNAs

Statistically significant
lncRNAs

Upregulated Downregulated

Akerman et al. 2017 (17) 10 T2DM patients/50 controls Pancreatic islets RNA-seq
and qPCR

2,373 0 16

Alikhah et al. 2018 (36) 18 T2DM patients/18 controls PBMCs qPCR 1 0 0
Carter et al. 2015 (23) 5 T2DM patients/5 controls

47 T2DM patients/49 controls
(validation)

Serum Microarray
and qPCR

84 0 1

Chen et al. 2019 (37) 25 DM patients/20 controls Serum qPCR 1 0 0
Chen et al. 2018 (38) 27 DM patients/17 controls Serum qPCR 1 0 0
Cheng et al. 2019 (39) 30 DM patients/30 controls Peripheral blood qPCR 1 1 0
Dai et al. 2020 (40) 60 T2DM patients/60 controls Plasma qPCR 1 0 0
Das et al. 2018 (41) 5 T2DM patients/5 controls CD14+ monocytes qPCR 1 1 0
De Gonzalo-Calvo et al. 2016
(42)

48 T2DM patients/12 controls Serum qPCR 12 1 3

Erfanian Omidvar et al. 2019
(24)

100 T2DM patients/100 controls PBMCs qPCR 2 0 2

Esguerra et al. 2020 (43) 9 T2DM patients/10 controls Pancreatic islets qPCR 1 1 0
Fadista et al. 2014 (44) 12 T2DM patients/51 controls Pancreatic islets RNA-seq 493 NA NA
Fawzy et al. 2020 (45) 53 T2DM patients/110 controls Plasma qPCR 2 1 1
Gao et al. 2014 (46) 5 T2DM patients/4 controls Lateral quadriceps

muscle biopsy
qPCR 1 0 1

Jiao et al. 2019 (47) 43 DM patients/48 controls Serum qPCR 1 1 0
Kameswaran et al. 2014 (48) 4 T2DM patients/3 controls Pancreatic islets qPCR 1 0 1
Li et al. 2018 (49) 10 T2DM patients/10 controls Liver biopsy qPCR 1 1 0
Li et al. 2019 (50) 56 T2DM patients/40 controls Serum qPCR 1 0 0
Li et al. 2018 (51) 63 DM patients/56 controls Plasma qPCR 1 0 0
Li et al. 2018 (25) 6 T2DM patients/6 controls

20 T2DM patients/20 controls
(validation)

Peripheral blood Microarray
and qPCR

41,000 14 3

Liu et al. 2019 (52) 90 T2DM patients/30 controls Serum qPCR 1 1 0
Luo et al. 2018 (53) 6 T2DM patients/6 controls

26 T2DM patients/26 controls
(validation)

PBMCs Microarray
and qPCR

NA 316 126

Ma et al. 2020 (54) 5 T2DM patients/5 controls
122 T2DM patients/125 controls
(validation)

PBMCs Array and
qPCR

41,000 44 24

Mansoori et al. 2018 (26) 100 T2DM patients/100 controls PBMCs qPCR 2 0 2
Mohamadi et al. 2019 (55) 100 T2DM patients/100 controls PBMCs qPCR 2 0 0
Móran et al. 2012 (56) 16 T2DM patients/19 controls Pancreatic islets qPCR 13 1 1
Motterle et al. 2017 (57) 10 T2DM patients/10 controls Pancreatic islets qPCR 1 0 1
Pengyu et al. 2020 (58) 4 T2DM patients/4 controls Serum RNAseq and

qPCR
NA 68763 28523

Pradas-Juni et al. 2020 (59) 4 T2DM patients/4 controls Liver RNAseq 13,805 126 384
Reddy et al. 2014 (60) 4 T2DM patients/4 controls Monocytes qPCR 1 1 0
Ren et al. 2019 (61) 178 T2DM patients/44 controls Plasma qPCR 1 0 0
Ruan et al. 2018 (19) 3 T2DM patients/3 controls

30 T2DM patients/30 controls
(validation)

Blood Microarray
and qPCR

40,914 2269

30 T2DM patients/30 controls Exosome serum/
exosome-free serum

qPCR 1 1 0

Saeidi et al. 2018 (27) 100 T2DM patients/100 controls PBMCs qPCR 2 0 2
Sathishkumar et al. 2018 (21) 30 T2DM patients/32 controls PBMCs qPCR 17 13 2
Shaker et al. 2019 (62) 30 T2DM patients/81 controls Blood qPCR 2 2 0
Toraih et al. 2019 (63) 55 T2DM patients/108 controls Plasma qPCR 4 4 0
Wan et al. 2020 (64) 32 T2DM patients/32 controls Serum qPCR 1 1 0
Wang et al. 2018 (65) 296 T2DM patients/56 controls Serum qPCR 1 0 0
Wang et al. 2018 (66)* 2 T2DM patients/2 controls Blood Microarray

and qPCR
NA NA NA

Wang et al. 2017 (28) 6 T2DM patients/6 controls
60 T2DM patients/60 controls
(validation)

Peripheral blood Microarray
and qPCR

NA 39 16

(Continued)
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genes using pathways maps from the KEGG repository. As a
result, a total of 168 unique pathways were enriched for lncRNA
target genes (Supplementary Table 4). Moreover, as
demonstrated in Figure 2B, only one pathway is shared among
the five lncRNAs (Anril, Hotair, Malat1, Kcnq1ot1, and Meg3):
Kaposi sarcoma-associated herpes virus infection. Many of the
168 pathways are well established to be involved in DM
pathogenesis, such as PI3K/Akt, MAPK, apoptosis, AGE/
Frontiers in Endocrinology | www.frontiersin.org 5
RAGE, and FoxO (Figure 3 and Supplementary Table 4). Of
note, we could not find any significant KEGG pathway for Miat.
DISCUSSION

Currently, several studies have reported the association between
epigenetic mechanisms and DM development [reviewed in
TABLE 1 | Continued

Author, year
[Reference]

Sample size Case/Control Tissue Method Total number of
studied lncRNAs

Statistically significant
lncRNAs

Upregulated Downregulated

Wang et al. 2020 (67) 156 T2DM/100 controls Peripheral blood qPCR 3 3 0
Yang et al. 2018 (68) 8 DM patients/8 controls Serum qPCR 1 1 0
Yang et al. 2018 (69) 6 DM patients/6 controls Serum qPCR 1 1 0
Yang et al. 2018 (70) 36 DM patients/41 controls Serum qPCR 1 0 0
Yang et al. 2019 (71) DM patients/controls Serum Array 30,586 245 680
Yin et al. 2019 (72) 62 DM patients/48 controls Plasma qPCR 1 0 0
Zha et al. 2019 (73) 244 T2DM patients/126 controls Plasma qPCR 1 0 1
Zhang et al. 2018 (74) 28 DM patients/30 controls Serum qPCR 1 0 1
Zhang et al. 2020 (75) 99 T2DM patients/50 controls Serum qPCR 1 0 1
Zhang et al. 2017 (76) 30 DM patients/28 controls Plasma Microarray NA NA NA
Zhang et al. 2019 (77) 24 T2DM patients/26 controls Serum qPCR 1 1 0
Zhang et al. 2019 (78) 244 T2DM patients/102 controls Plasma qPCR 1 0 0
Zhang et al. 2019 (79) 60 DM patients/60 controls Plasma qPCR 1 0 0
March 202
1 | Volume 12
*Abstract from congress. DM, diabetes mellitus; NA, information not available; PBMCs, Peripheral blood mononuclear cells; qPCR, quantitative real time PCR; RNA seq, RNA sequencing;
T2DM, type 2 diabetes mellitus.
TABLE 2 | LncRNAs differentially expressed in at least three studies included in the systematic review.

LncRNA Reference Samples Tissue Change of expression

ANRIL Sathishkumar et al. (21) T2DM patients PBMCs Up
Toraih et al. (63) T2DM patients Plasma Up
Zhang and Wang (77) T2DM patients Serum Up

GAS5 Carter et al. (23) T2DM patients Serum Down
Esguerra et al. (43) T2DM patients Pancreatic islets Up
Sathishkumar et al. (21) T2DM patients PBMCs Up

H19 Cheng et al. (39) T2DM patients Peripheral blood Up
Fawzy et al. (45) T2DM patients Plasma Up
Gao et al. (46) T2DM patients Muscle Down

HOTAIR Li et al. (49) T2DM patients Liver Up
Sathishkumar et al. (21) T2DM patients PBMCs Up
Shaker et al. (62) T2DM patients Blood Up

Kcnq1ot1 Móran et al. (56) T2DM patients Pancreatic islets Up
Yang et al. (68) DM patients Serum Up
Yang et al. (69) DM patients Serum Up

MALAT1 Liu et al. (52) T2DM patients Serum Up
Luo et al. (53) T2DM patients Blood Up
Sathishkumar et al. (21) T2DM patients PBMCs Up
Shaker et al. (62) T2DM patients Blood Up
Toraih et al. (63) T2DM patients Plasma Up

MEG3 Kameswaran et al. (48) T2DM patients Pancreatic islets Down
Luo et al. (53) T2DM patients Blood Down
Sathishkumar et al. (21) T2DM patients PBMCs Up
Zhang et al. (74) DM patients Serum Down

MIAT De Gonzalo-Calvo et al. (42) T2DM patients Serum Up
Sathishkumar et al. (21) T2DM patients PBMCs Up
Toraih et al. (63) T2DM patients Plasma Up
DM, diabetes mellitus; PBMCs, Peripheral blood mononuclear cells; T2DM, type 2 diabetes mellitus.
| Article 602597
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(6, 7, 80, 81)]. In this context, lncRNAs are a class of ncRNAs
that appear to be involved in DM pathogenesis (10). Thus, here,
we performed a systematic review to further investigate which
lncRNAs are mainly associated with DM. Our results
demonstrated six lncRNAs were consistently dysregulated in
patients with DM. Anril, Hotair, Kncq1ot1, Malat1, and Miat
Frontiers in Endocrinology | www.frontiersin.org 6
were consistently upregulated, whileMeg3 was downregulated in
diabetic cases compared to controls.

Malat1 (metastasis‐associated lung adenocarcinoma
transcript 1, also known as Neat2) is one of the most analyzed
lncRNAs in T2DM samples. Here, our qualitative analysis shows
this lncRNA is upregulated in serum, plasma, and PBMCs of
A

B

FIGURE 2 | Venn diagram showing the shared target genes (A) and pathways (B) of the six lncRNAs consistently dysregulated in DM.
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T2DM patients (21, 52, 53, 62, 63). Moreover, studies performed
in animal models of DM indicate that the expression ofMalat1 is
increased in liver, macrophages, and serum of different murine
models of T2DM compared to controls (20, 27, 52). Malat1 is a
highly conserved nuclear lncRNA initially identified as a
predictor of lung cancer metastasis (82). Several studies have
reported the involvement of this lncRNA in signaling pathways
related to DM pathogenesis, such as PI3K/Akt (83), NF-kB (84),
MAPK/ERK (85, 86), and Wnt/b-catenin (87). Accordingly, our
in silico analysis shows Malat1 is involved in a number of
pathways involved in DM and its complications that, besides
PI3K/Akt, MAPK, andWnt, include apoptosis, insulin, cell cycle,
AMPK, FoxO, ErbB, HIF-1, AGE/RAGE, adipocytokines, and
protein processing in endoplasmic reticulum. In agreement with
Malat1 upregulation in T2DM, its expression was also increased
in human umbilical vein endothelial cells (HUVECs) cultured
with high-glucose (HG) and positively correlated with
inflammatory cytokine (IL6 and TNF) levels (88). Additionally,
this lncRNA was upregulated in mice with diabetic retinopathy
(DR) compared to control animals (89).

Hotair was also consistently upregulated in liver, blood, and
PBMCs of patients with T2DM (21, 38, 62). Accordingly, Li et al.
reported this lncRNA was upregulated in liver of two T2DM
murine models (db/db and C57BL/6J mice) treated with high-fat
diet (49). Hotair is located within the HOMEOBOX C (HOXC)
gene cluster on chromosome 12q13.13 and is involved in cellular
proliferation, inhibition of apoptosis, genomic instability,
angiogenesis, and metastasis (90–92). Moreover, Hotair
upregulation promotes hepatic insulin resistance via the Akt/
GSK pathway (38), which might partially explain its association
with T2DM. Our in silico analysis demonstrates the involved of
Hotair in several DM-related pathways, such apoptosis, PI3K-
Akt, MAPK, HIF-1, TNF, and FoxO. This lncRNA seems also to
Frontiers in Endocrinology | www.frontiersin.org 7
be involved in the pathogenesis of diabetic chronic
complications. Hotair was upregulated in serum of patients
with different degrees of DR compared to healthy controls, and
its expression was able to distinguish patients with non-
proliferative DR from those with proliferative DR (62).
Increased expression of Hotair was also found in kidney of
patients with diabetic kidney disease (DKD) and in kidneys of
db/db and STZ-induced diabetic mice (93). Accordingly, mouse
podocytes cultured under HG conditions also expressed high
levels of Hotair (93).

In addition to Malat1 and Hotair, the lncRNA Anril was also
increased in PBMCs, plasma, or serum of patients with T2DM
compared to controls (21, 63, 77). This lncRNA has been
associated with several types of cancer, such as gliomas, breast,
lung, liver, colon, and thyroid cancers [reviewed in (94)]. Anril
seems also to be involved in DR pathogenesis, since its
expression was upregulated in human retinal endothelial cells
(HRECs) cultured under HG conditions and in retinal tissue of
STZ-induced diabetic mice (95). Blockade of Anril prevented
HG-induced VEGF upregulation in HRECs, which is a key
angiogenic factor in DR pathogenesis (95, 96). In line with
these findings, Zhang et al. showed Anril overexpression in
diabetic rats complicated with cerebral infarction upregulated
VEGF and improved angiogenesis through activation of the NF-
kB pathway (97). Our in silico analysis indicates that Anril is also
involved in the TGFb, PI3K-Akt, MAPK, cell cycle, FoxO, and
AGE/RAGE pathways, which are known pathways related to DM
and its chronic complications.

Kcnq1ot1 is another lncRNA consistently upregulated in islets
and serum of patients with T2DM (56, 68, 69). Kcnq1ot1 is an
antisense lncRNA that seems to regulate the expression of both
neighboring or distant genes (98), including the CDKN1C, a
known regulator of beta-cell development (99). Interestingly,
FIGURE 3 | Significant KEGG pathways potentially regulated by the consistently dysregulated lncRNAs in DM. The size and the color of the dots represent the gene
number and the range of the pathway’s q-value, respectively. The y-axis represents the KEGG pathways, and the x-axis shows the five lncRNAs that participated in
each selected pathway. MIAT was not significantly enriched in these selected pathways. Q-values: P-values corrected for multiple tests using the Benjamini–
Hochberg method.
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a meta-analysis study, including 51,075 DM cases and 10,6134
controls, demonstrated the association between the rs231362
polymorphism in the Kcnq1ot1 gene and risk for T2DM [OR
1.10 (95% CI 1.06–1.15), P < 10−4] (100). Our in silico analysis
indicates this lncRNA regulates genes from the protein
processing in endoplasmic reticulum stress pathway.

Miat was also consistently upregulated in serum, plasma, or
PBMCs of T2DM patients compared to controls (21, 42, 63).
This lncRNA seems to act as a regulator of several signaling
pathways related to cellular function, such as proliferation and
apoptosis and as a competitive endogenous RNA (101).
Additionally, Miat seems to be involved in diabetic
complications (102). Miat was upregulated in the myocardium
of diabetic rats, while its knockdown inhibited apoptosis in
cardiomyocytes exposed to HG (103). In contrast, in renal
tubuli of diabetic rats, Miat was downregulated compared to
control rats and negatively correlated to serum creatinine levels
(104). Growing evidence has also shown Miat dysregulation in a
number of diseases, such as myocardial infarction, age-related
cataract, different cancers, and ischemic stroke [reviewed in
(101)]. Here, we were not able to find any significant KEGG
pathway forMiat; therefore, how this lncRNA is involved in DM
and other diseases still needs to be clarified.

Our systematic review indicates Meg3 is downregulated in
islets, whole blood, and serum of patients with DM (48, 53, 74).
Accordingly, this lncRNA was downregulated in islets of db/db
mice (105) and in serum of diabetic patients with DR compared
to controls (74). However, it was upregulated in liver or primary
hepatocytes of different T2DM murine models (59, 106). In a
murine beta-cell line (MIN6),Meg3 suppression led to increased
apoptosis due to caspase-3 and Bax upregulation and Bcl2
downregulation (105). In addition, Meg3 seems to regulate
insulin synthesis and secretion since its blockade in murine
beta-cells decreased the expression of key transcription factors
involved in insulin synthesis (Pdx-1 and mafA); thus, decreasing
insulin gene transcription (105). Besides apoptosis, our in silico
analysis suggests this lncRNA is involved in PI3K/Akt, VEGF,
and MAPK pathways.

Of note, our bioinformatics analysis also demonstrated that
Anril,Hotair,Malat1, Kcnq1ot1, andMeg3 regulate genes from the
Kaposi sarcoma-associated herpes virus infection (KSHV)
pathway. KSHV, also known as human herpesvirus 8, is a
human tumor virus associated with the pathogenesis of Kaposi’s
sarcoma, primary effusion lymphoma, and Multicentric
Castleman’s disease. The KSHV pathway contains genes related
to IFN antiviral response, inflammatory cytokines, and cell
proliferation pathways [https://www.genome.jp/kegg/kegg2.
html]. Interestingly, the association between KSHV and DM was
previously reported by observational studies (107, 108). Cui et al.
described that patients with T2DM had an elevated risk of KSHV
(107). Accordingly, Piras et al. showed 58% of T2DM patients
were seropositive for KSHV vs. 27% of the healthy subjects (108).
Even though the mechanisms behind this association are
unknown, this virus causes metabolic changes that might lead to
altered insulin uptake and accumulation of neutral lipids in cells
and also induce an impairment of the immune system [review in
(109)], which are mechanisms related to DM pathogenesis.
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Even though this systematic review indicates a group of
lncRNAs consistently associated with DM and the pathways
possible regulated by them, it has few limitations. First, there is
no official nomenclature for lncRNAs; thus, we cannot exclude
the possibility that we have lost some information. Second, some
studies, especially those using RNAseq and microarrays
technologies, did not inform which were the differentially
expressed lncRNAs or their expression pattern (up- or
downregulation) (19, 25, 44, 53, 54, 58, 66, 71, 76). Third,
studies used different techniques to quantify lncRNA
expressions and usually did not provide the expression values,
only the pattern of expression of the dysregulated lncRNAs;
therefore, making impossible to perform a reliable quantitative
analysis of the data (meta-analysis). Fourth, most of the studies
investigated lncRNAs in patients with T2DM or did not inform
the type of DM, evidencing the lack of studies in T1DM
population. In this context, four of the dysregulated lncRNAs
found in this study were analyzed only in T2DM patients (Anril,
Hotair, Malat1, and Miat). Thus, our results are more
representative of this type of DM. Fifth, although six lncRNAs
were consistently dysregulated in patients with DM compared to
controls, it was not possible to perform a stratified analysis by
tissue type since the number of studies that evaluated the same
lncRNA in a given tissue is very small. Lastly, as commented
above, Anril, Hotair, Kcnq1ot1,Malat,Meg3, and Miat lncRNAs
seem to be dysregulated in patients with DR and DKD. However,
most of the studies included in this systematic review did not
report the percentage of patients with these diabetic chronic
complications. Thus, here, it was impossible to evaluate if
presence of diabetic chronic complications is impacting our
results. Further studies are required to clarify this point.

In conclusion, our systematic review indicates that six
lncRNAs are consistently dysregulated in DM, especially in
patients with T2DM. This study also contributes to enlighten
the pathways regulated by these lncRNAs and involved in the
DM pathogenesis, such as PI3K/Akt, MAPK, apoptosis, AGE/
RAGE, and FoxO. Although this systematic review included 53
studies which analyzed lncRNA expression in DM-related
tissues, further studies are necessary to better understand the
involvement of lncRNAs in the pathogenesis of this complex
disease and its chronic complications. As much as lncRNAs seem
to be good candidates as biomarkers and therapeutic targets for
DM, further investigations on organ-specific distribution of these
regulatory molecules may be useful to clarify their role in DM.
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