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Polycystic ovary syndrome (PCOS) is a complex disorder that affects around 5% to 10%
of women of childbearing age worldwide, making it the most common source of
anovulatory infertility. PCOS is defined by increased levels of androgens, abnormal
ovulation, irregular menstrual cycles, and polycystic ovarian morphology in one or both
ovaries. Women suffering from this condition have also been shown to frequently
associate certain cardiovascular comorbidities, including obesity, hypertension,
atherosclerosis, and vascular disease. These factors gradually lead to endothelial
dysfunction and coronary artery calcification, thus posing an increased risk for adverse
cardiac events. Traditional markers such as C-reactive protein (CRP) and homocysteine,
along with more novel ones, specifically microRNAs (miRNAs), can accurately signal the
risk of cardiovascular disease (CVD) in PCOS women. Furthermore, studies have also
reported that increased oxidative stress (OS) coupled with poor antioxidant status
significantly add to the increased cardiovascular risk among these patients. OS
additionally contributes to the modified ovarian steroidogenesis, consequently leading
to hyperandrogenism and infertility. The present review is therefore aimed not only at
bringing together the most significant information regarding the role of oxidative stress in
promoting CVD among PCOS patients, but also at highlighting the need for determining
the efficiency of antioxidant therapy in these patients.
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INTRODUCTION

Assessment of the clinical interaction between cardiovascular
diseases and other interrelated pathophysiological conditions,
such as polycystic ovary syndrome (PCOS), in terms of
molecular and cellular changes, common biochemical and
immunological pathways leading to the development of these
diseases, have been intensively studied in the latest decades. To
this extent, it has been shown that a variety of cardiovascular
diseases (CVD) have heterogenous pathophysiologic mechanisms,
where oxidative stress (OS) has been considered as one of the
potential etiologies.

Under normal conditions, when the body is not subjected to a
high level of oxidative stress, there is a fine balance at the
physiological intracellular level of reactive oxygen species (ROS),
which is maintained at low levels by various antioxidant systems.
A basal concentration of ROS is essential for performing pivotal
cellular functions such as gene expression or complex processes
involved in signal transduction pathways (1, 2). Dysregulation of
the fine balance between ROS and antioxidants at cellular level
leads to the occurrence of oxidative stress that has been
demonstrated to be involved in a series of pathological
conditions, including cardiovascular diseases and inflammatory
processes, known to be associated with a high ROS levels.
Excessive ROS concentrations act on cell macromolecules by
promoting cell necrosis and apoptosis, thus affecting the normal
course of multiple cellular functions (1, 3–6).

With regard to the female reproductive tract, although ROS
indeed play certain physiological roles, including the modulation
of several functions such as ovarian steroidogenesis, corpus luteal
function and luteal regression, fertilization, and the development
of the early embryo, numerous studies have demonstrated the
pathological effects of these molecules, involved in a multitude of
diseases (7). Further on, in relation to the mechanisms by which
oxidative stress affects the cardiac function at cellular level, it has
been shown that the occurrence of hypertension may be due to
the process of vasoconstriction that takes place as a result of a
decreased availability of nitric oxide due to increased ROS levels,
concentrations which further impact the cardiac function by
negatively influencing calcium signals, thus leading to
arrhythmia. Additionally, it has been speculated that the
increase in ROS levels could also influence cardiac remodeling
and atherosclerotic plaque formation (1, 8). Although several
studies have evaluated the correlation between cardiovascular
diseases and PCOS, the association of this syndrome with
subclinical and/or clinical forms of cardiovascular disease,
independent of the risk factors common to the two diseases,
the exact interrelationship between these conditions has not been
clearly elucidated.

PCOS is a disease that presents heterogeneous clinical
variants, in which the pathogenesis involves the existence of
several cardiometabolic abnormalities such as metabolic
syndrome, glucose intolerance, dyslipidemia, hypertension,
diabetes, all of which are also risk factors for CVD diseases (9,
10). Furthermore, PCOS is characterized by polycystic ovarian
morphology that leads to ovarian dysfunction such oligo- or
anovulation, where the central neuroendocrine systems perform
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an important role, due to excessive luteinizing hormone (LH)
and gonadotropin-releasing hormone (GnRH) levels and relative
follicle-stimulating hormone (FSH) deficiency, that contribute to
the ovarian hyperandrogenemia and altered folliculogenesis,
characteristic features of PCOS (11–13).

PCOS is a heterogenous syndrome that manifests through
changes in the metabolic balance in which mitochondrial
dysfunctions have been shown to facilitate the progression and
occurrence of various complications of this disease (13).
Although the etiology and pathophysiology of PCOS are not
yet fully elucidated, it is currently considered that the main
pathophysiological mechanism leading to this syndrome is the
excess of androgen hormones, which results in metabolic,
reproductive, and not least cosmetic changes, consisting of an
increased body mass index due to a predisposition to obesity, as
well as changes in the appearance of the skin due to acne
outbreaks (12–15). Moreover, recent studies have highlighted
the link between the pathogenesis of PCOS and chronic
inflammatory status, with published data showing that
numerous inflammatory markers are elevated in women
suffering from PCOS (13, 16, 17). An additional possible cause
of PCOS has been shown to be oxidative stress that could cause
genetic changes such as point mutations, DNA strand breaks,
aberrant DNA cross-linking, DNA-protein cross-linking, and
DNA methylation, ultimately leading to the silencing of certain
tumor suppressor genes (18–22).

PCOS—Definition
PCOS is a heterogeneous ailment described in women of
childbearing age, characterized by ovulatory dysfunction,
androgen excess, and polycystic ovarian morphologic features
(23, 24). Also known as the Stein-Leventhal syndrome, it is a
common endocrinopathy among women of reproductive age.
PCOS affects 6% to 15% of women at the reproductive age,
depending on diagnostic criteria (25, 26). The Rotterdam criteria
(2013) are the most commonly used criteria to diagnose PCOS,
and include the following: ovulation disorder, hyperandrogenism
diagnosed by biochemical testing and/or clinical aspects, and
ovarian volume over 10 ml or 12 or more ovarian cysts. The
diagnosis can be established when two of the three conditions are
fulfilled (27). Based on these criteria, four PCOS phenotypes can
be detected, namely ovulation disorders, polycystic ovary, and
hyperandrogenism, making up the classic phenotype, normal
ovarian ultrasonography with hyperandrogenism and ovulation
disorder, polycystic ovary ultrasonography image and
hyperandrogenism, with no ovulation abnormalities, and no
evidence of hyperandrogenism, but with polycystic ovary
ultrasonography image and ovulation disorders (28, 29).
Several endocrinopathies can mimic PCOS, such as Cushing’s
syndrome, non-classic adrenal hyperplasia, drug-induced
androgen excess, and androgen-producing tumors (30).
Ovulatory dysfunction can further be found in conditions like
hyperprolactinemia or thyroid dysfunction (31). Therefore, in
order to proper diagnose PCOS, these disorders need to
be excluded.

PCOS is characterized by the overproduction of ovarian
androgen hormones, especially testosterone, as a result of an
February 2021 | Volume 12 | Article 614679
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excessive production of LH in the pituitary gland or due to
hyperinsulinemia, if the ovaries are sensitive to insulin. Common
symptoms noticed in women with PCOS are infertility, signs of
androgen excess such as hirsutism, virilization, acne, alopecia,
and menstrual irregularities, including amenorrhea and
dysfunctional bleeding (32). Women with PCOS also have an
increased prevalence of certain comorbidities, such as
dyslipidemia, excess weight, metabolic syndrome, type 2
diabetes, and hypertension. Along with other features such as
chronic low-grade inflammatory state and endothelial
dysfunction, PCOS poses an elevated risk of developing
cardiovascular disorders (33).
PCOS—Pathophysiology
There are many hypotheses regarding the pathophysiology of
PCOS, including among them ovarian hyperandrogenism, follicles
resistant to rupture due to shell thickness, hypersecretion of
luteinizing hormone, increased anti-Mullerian hormone (AMH),
which is a blocker paracrine factor for follicular development, and
hyperinsulinemia (34). These abnormalities can appear due to
hormonal, metabolic, or even toxic factors occurring during the
embryonic stage and/or in the early development of the female
gonad, or because of certain epigenetic changes (35). The genetic
basis of PCOS is suspected on the grounds of the aggregation of
this syndrome in families, since it has been shown that within first-
degree relatives, about 20 to 40% of women also have the disorder
(23, 34, 36, 37).

Gonadotropins
Gonadotropin-releasing hormone (GnRH) neuropeptides
released from neurons into the portal vein and median
eminence stimulate the adenohypophysis gland to secrete
gonadotropins, which mediate ovarian steroidogenesis and
folliculogenesis. The follicle-stimulating hormone (FSH) binds
to FSH receptor on the granulosa cells and stimulates follicular
maturation and ovulation (38). On the other hand, the
luteinizing hormone (LH) stimulates steroidogenesis, follicular
growth, and corpus luteum formation (39, 40). Anovulation is
determined by inappropriate gonadotropin secretion. Specifically,
modified pulsatility of GnRH consisting of elevations in the
amplitude and frequency of secretion, generates an increased
production of LH compared to that of FSH. It is unknown
whether hypothalamic dysfunction is a determining cause of
PCOS or is caused by an abnormal steroid feedback. In both
cases, the level of LH is reported to be high, while the LH/FSH
ratio is increased to over 2/1 (36).

The impact of peripheral hormones on the brain function in the
pathogenesis of PCOS has been explained through four suggested
hypotheses. The first hypothesis is based on the negative feedback of
steroid hormones which appears after setting up changes of the
critical neuronal circuits determined by hyperandrogenism (40).
The second hypothesis revolves around the hyperinsulinemia that
stimulates the activity of GnRH neurons and the response of the
pituitary gland to GnRH (41). The third hypothesis refers to the low
concentration of progesterone in serum that is followed, in PCOS,
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by anovulation, which eventually eliminates the influence of the
progesterone negative feedback on the release of GnRH (42). The
fourth hypothesis states the function of the pulse generator of
GnRH that reduces the activity of GnRH inhibitors (40, 43). Overall,
the hypothalamic-pituitary-gonadal axis remains one of the
principal regulators of female reproduction, its dysfunction
leading to ovulation disorders.

Hyperandrogenism
A fundamental characteristic of PCOS is the increased production
of androgens in ovaries, due to excessive activity in the theca cells
stimulated by intraovarian or extraovarian factors (44). LH and
insulin stimulate the production of androgens, determining
elevated levels of dehydroepiandrosterone (DHEAS) and
testosterone (36) (Figure 1). High levels of free testosterone
were noticed in about 70% to 80% of patients with PCOS, while
25% to 65% expressed elevated DHEAS levels. This leads to
increased estrone levels by peripheral conversion mechanism,
which converts androgens to estrogens using aromatase.
Furthermore, low levels of sex hormone-binding globulin
(SHBG) were reported in women diagnosed with PCOS (36).
Liver synthesis of SHBG is reduced by insulin as well as progestins,
androgens, corticoids, and growth hormones (45). Reduced SHBG
production leads to lower levels of bound circulating androgens,
thus resulting in more available androgens capable of binding to
organ receptors. Consequently, clinical hyperandrogenism is
determined by high levels of free testosterone, although total
testosterone might be within the normal range (46).

Exposure to androgens throughout fetal development has been
speculated as another reason for hyperandrogenism determining
the phenotypes of PCOS in adulthood (47). In this regard, there are
four hypotheses for the exposure to additional androgens during the
embryo stage. Firstly, the evolution of the hypothalamic-pituitary
axis simultaneously with certain hypothalamic-pituitary axis
disorders in embryonic development are thought to increase the
production of androgen hormones (48). Secondly, in mothers with
PCOS, the placenta is limitedly capable of aromatization and
increasing of SHBG concentration, thus causing the fetus to
receive maternal androgens through the placenta (49). The third
hypothesis suggests a fatal genetic disorder with undifferentiated
ovaries that can be the source of increased androgen production
(35). The fourth hypothesis refers to malformations that increase
the androgen production, such as hyperplasia of the adrenal glands
(50). Either way, in order to diagnose PCOS in women, one must
look at the biochemical androgen profile, which includes free and
total testosterone, SHBG, DHEAS, 17-hydroxy-progesterone and
the free androgen index (FAI), estimated as the total testosterone
level divided by SHBG and multiplied by 100 (51).

The steroidogenic cells of the adrenal cortex and the ovary
stand at the origin of the hyperandrogenemia that characterizes
PCOS, using similar enzymes for steroidogenesis (52). The
Cytochrome P450 Family 19 Subfamily A Member 1 (CYP19A1)
gene encodes the aromatase, enzyme which turns androgens
into estrogens. In the ovarian follicles, reducing the activity of
aromatase leads to hyperandrogenism, and a positive correlation
between the incidence of PCOS and mutations in this gene
February 2021 | Volume 12 | Article 614679
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has been observed (53). Furthermore, an androgen excess has
been indicated to determine hypertension by stimulating the
expression of adipose tissue aromatase (54, 55).

Hyperinsulinemia
Insulin is the hormone primarily responsible for lipogenesis and
glucose homeostasis. Insulin has effects on fat, protein metabolism,
carbohydrates, while also acting as a mitogenic hormone (56). The
ovary and adrenal cortex are steroidogenic tissues in which insulin
promotes steroidogenesis by potentiating the cognate trophic
hormones (57). Insulin resistance associated with compensatory
hyperinsulinemia determines excessive adrenal and/or ovarian
androgen secretion and decreases the synthesis of SHBG in the
liver, thus resulting in an increase of circulating testosterone
concentration. Intrinsic insulin resistance is characteristic of
women with PCOS independent of the magnitude of androgen
levels and extent of obesity, with lean PCOS patients also
experiencing it (28). Insulin resistance leads to reduced glucose-
uptake response in spite of high insulin levels. This is the result of
decreased insulin sensitivity due to abnormal signal transduction
at receptor and post-binding level (36).

Alternate theories emphasize the fact that LH levels negatively
correlate with insulin levels in women, an aspect demonstrated
experimentally in both normal and PCOS women under
euglycemic/hyperinsulinemic clamps (58, 59). Loss of negative
feedback in the hypothalamus elevates LH, which may drive
increased androgen production, but it is androgen that results in
insulin resistance (60, 61). Elevated androgen levels positively
correlate with LH levels, suggesting a failed compensatory
mechanism prompting elevated LH output. Thus, loss of
negative feedback in the hypothalamus can lead to both PCOS
and increased heart disease, which may also be aggravated by
increased obesity (62). The paradox of insulin signaling witnessed
in PCOS is that the adipose tissue, liver, and skeletal muscles
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exhibit insulin resistance, whereas the pituitary and steroid-
producing tissues retain insulin sensitivity. This aspect has been
illustrated by observing the different actions of insulin in granulosa
lutein cells from patients with PCOS and anovulation (28). In
women with PCOS, the prevalence of metabolic syndrome is
approximately threefold higher and is defined as the association
of hyperglycemia, obesity, dyslipidemia, and hypertension (63).
However, the definition of metabolic syndrome is incomplete in
adolescents, being characterized by a combination of low high-
density lipoprotein (HDL) cholesterol levels, high triglyceride
concentrations, increased waist circumference, elevated fasting
blood glucose, and hypertension for age (28, 64, 65).

Ovaries
Ovulation results from coordinated signaling by the hypothalamus-
pituitary axis, ovarian granulosa cells, ovarian theca cells, and the
developing follicle (66). In women with PCOS, this process
malfunctions because of the abnormal development and failure in
selecting a dominant follicle, thus inducing anovulation (67). The
ovulatory dysfunction is characterized by increased activation of the
follicles, followed by arrested growth before the maturation of these
follicles can occur. Furthermore, PCOS follicles also have lower rates
of atresia, which may explain why premature depletion of the
follicular pools seldom occurs in the ovaries of these women (68).
Due to anovulation, progesterone is lacking, thus leading to chronic
estrogen exposure. This has an impact on the endometrium by
constant mitogenic stimulation with endometrial thickening which
leads to unpredictable bleeding or endometrial cancer (69).

In normal folliculogenesis, growth factors such as growth
differentiation factor 9 (GDF-9) and bone morphogenetic
protein 15 (BMP15), also referred to as oocyte-secreted growth
factors (OSFs), aid in the development from primordial to
primary stage follicles, while subsequent stages, up to the
selection of the dominant follicle are regulated by FSH to (70).
FIGURE 1 | The proposed pathophysiology of PCOS is a synergistic relationship between perturbed gonadotrophin releasing hormones (GnRH) pulsatility and
insulin resistance, accompanied by hyperinsulinemia and hyperandrogenism leading to antral follicle development arrest, anovulation, irregulate cycles, subfertility,
and polycystic ovaries.
February 2021 | Volume 12 | Article 614679

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles
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Throughout folliculogenesis, insulin and androgens have a
synergistic aspect with LH, which exerts its effect from the
middle to the late follicular stage (71). The equivalence
between AMH and FSH may play a primary role in the
aromatase activity, both during and after dominant follicle
selection. Moreover, increased estradiol emission by the
dominant follicle suppresses FSH levels, leading to subordinate
follicle dissolution resulting in mono-ovulation (72). Under
excessive androgen exposure, accelerated early follicular growth
in PCOS tends to take place, leading to small-follicle occurrence.
Decreased OSFs levels further lead to intensified early
folliculogenesis (73). Further on, small follicle excess promotes
high AMH levels, which in turn mediate follicle responsiveness
to FSH (74). To this extent, low FSH responsiveness and
premature granulosa cell luteinization denature the dominant
follicle selection, producing follicular arrest (75). High insulin
levels can further induce premature luteinization along with LH
receptor expression (76).

Follicular defects associated with PCOS are defined by early and
accelerated follicular growth as well as distortion in the subsequent
stages in relation to dominant follicle selection, leading to follicular
arrest (77). In this regard, Webber et al. have reported a greater
density of small preantral, especially primary follicles in analyzed
ovarian biopsies belonging to women diagnosed with PCOS in
comparison with control groups (78). Atresia deceleration, later
demonstrated by the same team of researchers, may answer for the
increased recruitment and explain why premature follicle depletion
does not occur in polycystic ovary (79). Arrested follicle
development in women with PCOS can be explained by the
relatively low levels of circulating FSH, which hinder the normal
maturation process (80). Additionally, LH hypersecretion is
detrimental to ovulation and follicular growth, since it determines
decreasing FSH sensitivity, thus contributing to the premature
luteinization of granulosa cells (32).

Anovulation can also be determined by altered GnRH
pulsatility and improper gonadotropin secretion, both leading
to menstrual irregularity (81). Moreover, anovulation can also be
facilitated by insulin resistance, as many anovulatory patients
diagnosed with PCOS express ovulatory cycles after treatment
with insulin sensitizers such as metformin (82, 83). Increased
intraovarian androgens from large antral follicles may also cause
anovulation in patients with PCOS, fact which is supported by
the improvement of menstrual regularity in patients who
underwent laparoscopic ovarian drilling or ovarian wedge
resection (36).

Inflammation
Low-grade systemic inflammation associated with PCOS is
indicated by the high levels of inflammatory markers such as
interleukin-18 (IL-18), C-reactive protein (CRP), white blood
count, and monocyte chemoattractant protein-1 (MCP-1), along
with increased oxidative stress and endothelial dysfunction (84).
These inflammatory markers stimulate the proliferation of theca
cells, while also promoting steroidogenesis, and contributing to
follicular atresia and hyperandrogenemia (13).

Hyperglycemia further plays a role in PCOS-related
inflammation, due to mononuclear cells utilizing glucose as a
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redox substrate, thus leading to high levels of ROS and inducing
oxidative stress (85). ROS production by immune cells as a result
of oxidative stress plays a primordial role in both the development
and progression of endothelial dysfunction, which significantly
contributes to the occurrence of arterial hypertension along with
other cardiovascular diseases. Furthermore, insulin resistance and
chronic inflammation play important roles in the etiopathogenesis
of diabetes mellitus type II and metabolic syndrome, common
comorbidities among PCOS women (33, 86).
CARDIOVASCULAR DISEASE IN PCOS

While significant improvement in the incidence and general
outcome of cardiovascular diseases has been observed in the past
decades, they go on being the leading cause of death among
women worldwide (87, 88). Furthermore, preventive care
including counseling and prophylactic treatment is less likely
to be offered to women than men with similar atherosclerotic
cardiovascular disease risk (87, 89), while medical management
of these patients tends to be less vigorous, thus more rarely
achieving optimal results (90, 91). While most cardiovascular
risk factors in women overlap with those in men, several
circumstances remain characteristic of women (92, 93), as it
can be seen outlined in Figure 2.

Cardio-metabolic disturbances have been found in women
with PCOS regardless of age, posing significant risks for the
occurrence of CVD. These disturbances are represented
primarily by atherogenic dyslipidemia, hypertension, obesity,
along with insulin resistance, impaired glucose tolerance and
type II diabetes (94, 95). The association between PCOS and
CVD has been related to this partial overlapping of risk factors.
While PCOS is influenced by race, BMI and age, with symptoms
becoming less thunderous with increasing age and most of them
disappearing after the onset of menopause, cardio-metabolic
disorders can, however, continue to pose a threat to the
patients’ health (94, 96–99). If earlier studies regarding the
higher risk of CVD in women with PCOS could not establish
its absoluteness (100), more recent data confirm that the
metabolic dysfunction typical of women with PCOS leads to a
definite increase in CVD events (101–103).
Hypertension
The pathophysiology of hypertension in PCOS is multifactorial,
depending on factors such as obesity, hyperandrogenism,
elevated sympathetic nervous system activity, and insulin
resistance (104). Several studies indicated that patients with
PCOS are more likely to develop hypertension as opposed to
the normal population. However, this fact is somewhat unclear,
since PCOS is associated with obesity as well, which also
represents a significant risk factor for hypertension. Therefore,
the interpretation of these studies is rather complicated, since
obesity is a variable not usually considered in many types of
research (105–111). Still, a meta-analysis performed by Amiri
et al. showed that hypertension is more common in women with
PCOS than in the control population. Moreover, they have
February 2021 | Volume 12 | Article 614679
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separately evaluated women during post-menopause and
reproductive-age women with PCOS because, since it is well
known that the prevalence of hypertension is higher with aging
and with menopause onset. The result was that, even after
adjusting diabetes mellitus and BMI variables, PCOS women
during reproductive age were more likely to develop
hypertension (112).

As mentioned previously, a significant risk factor for
hypertension is represented by obesity. In this regard, it has
been shown that the prevalence of obesity and overweight status
among PCOS patients is 80% higher compared with non-PCOS
women, with PCOS women associating BMIs over 30 kg/m2 and
higher waist-hip ratios (113), more commonly in Caucasian than
Asian women (114). Obesity in females suffering from PCOS
may be correlated with insulin resistance, which generates
hyperinsulinemia that triggers ovarian steroidogenesis. This way,
sex hormone-binding globulin production is downregulated and,
as a consequence, the availability of free androgens is elevated,
causing visceral accumulation of fat, thus facilitating central
obesity (113–115). In PCOS patients, it was observed that a
combination of factors like insulin resistance, obesity, and
hyperandrogenism leads to an elevated sympathetic nervous
system activity, each factor being a possible mediator of
hypertension (116–118).

Deficiencies in the hypothalamic-pituitary axis produce an
excessive secretion of LH and a low excretion of FSH, hormonal
imbalance that leads to secretory changes in the inner sheath of
ovarian follicles. In turn, an excess of androgenic hormones is
released, which is responsible for both clinical and paraclinical
signs of hyperandrogenism (119, 120). Numerous women with
PCOS, especially those with hyperandrogenic phenotype, have
various cardio-metabolic disturbances that increase the risk of
developing hypertension (121, 122). One study demonstrated
that, with age, almost half of women with PCOS improve due to
the decrease of serum androgens as a consequence of adrenal and
ovarian aging (123). Testosterone levels drop with age in both
Frontiers in Endocrinology | www.frontiersin.org 6
PCOS and healthy women, the decrease being observed years
before the onset of menopause (124). This fact may lead to a
progressive reduction of CVD risk factors (125). However, the
processes that determine the lowering of hypertension risk
remain slightly vague. An analysis of daytime ambulatory
blood pressure revealed that young and obese women suffering
from PCOS had elevated blood pressure in comparison with
non-PCOS females (107). Other variables that must be taken into
consideration are background aspects of the individual such as
ethnicity and race. To this extent, Lo et al. revealed that, even
after adjusting for diabetes mellitus, age, and BMI, the prevalence
of hypertension and/or high blood pressure was increased in
black women with PCOS when compared to the Caucasian
population, and among the latter, Hispanic and Asian women
were the least affected (126).

Atherosclerosis and Vascular Disease
Dyslipidemia is a cardio-metabolic disturbance distinguished by
high levels of LDL cholesterol and triglycerides and low levels of
HDL cholesterol, found in both obese and lean women with PCOS
(127, 128). This imbalance, together with obesity and insulin
resistance, predisposes these females to a subclinical vascular
disease characterized by intimal-medial thickening in the carotid
arteries, coronary artery calcifications, and endothelial dysfunction
(129–131). These modifications could put PCOS patients at risk
for developing cardiac events, both fatal and nonfatal, as well as
strokes (132).

Carotid intima-media wall thickness (cIMT) is a determination
of the tunica media and tunica intima of the arteries, evaluated
usually by ultrasound performed on large vessels close to the skin,
as is the carotid artery. This measurement is utilized for the
detection of atherosclerosis and for tracking its regression or
progression, and it is correlated with the prevalence of
myocardial infarction or stroke (133–139). cIMT is known to be
associated with visceral adiposity, dyslipidemia, hyperinsulinemia,
and raised systolic blood pressure, risk factors also encountered in
FIGURE 2 | While most cardiovascular risk factors in women overlap with those in men, several circumstances remain characteristic of women.
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PCOS (140–146). Meyer et al. performed a meta-analysis that
showed that cIMT is elevated in females with PCOS compared
with the control group, suggesting an elevated risk for accelerated
atherosclerosis in PCOS patients (147). Talbott et al. further
demonstrated that increased cIMT was noticed in females ≥ 45
years, explaining that CVDs have long incubation periods, with
metabolic disturbances occurring in young age converting into
carotid damage by older age, and it seems that cIMT is more
affected by the combination of age and PCOS than by aging
alone (131).

The severity of coronary atherosclerosis is indicated by the
coronary artery calcium (CAC) score, an independent risk
marker for sudden cardiac death and myocardial infarction in
both symptomatic and asymptomatic patients (148), with several
studies focusing on elevated CAC scores in PCOS patients. For
instance, Christian et al. performed a study that included
premenopausal women at 30 to 45 years old suffering from PCOS
and found a higher prevalence of elevated CAC scores in PCOS
women than in the control group (149). Another study performed
byTalbott et al. reported that elevatedCAChad a higher prevalence
among PCOS females between 40 and 61 years old (46%) than the
control group (31%), even after controlling for BMI and age (150).
Shroff et al. further conducted a research study designed to discover
early-onset increased CAC score as an indicator of subclinical
atherosclerosis in young and obese PCOS females (151).
Compared with weight and age-matched controls, early coronary
atherosclerosiswas detected inyoung females suffering fromPCOS.
Due to the young age, the subjects in the study did not associate
other CVD risk factors, therefore PCOS was speculated to
contribute to the risk of elevated CAC scores (151).

It is broadly accepted that chronic inflammation is correlated
with endothelial dysfunction. Abnormal morphology, disposition,
and function of the adipose tissue in PCOS females are correlated
with the generation of chemokines, cytokines, and low-grade
inflammation, which lead to the activation of hypoxia-induced
pathways, with the consequential reduction of adiponectin
production (152). This pro-inflammatory condition is correlated
with the progression of insulin resistance, thus promoting type II
diabetes development along with increasing cardiovascular risk
(153). Furthermore, it is presumed that androgens are mediators
in the transformation of preadipocytes into mature adipocytes,
while also having an impact on oxidative stress, lipid, and glucose
metabolism (99, 154). Overall, females with PCOS, due to their
underlying pathophysiology, could be at risk for cardiac and
cerebrovascular disease. Contrasting results that were obtained
during several studies prompted more research, especially in the
form of longitudinal studies, focusing on cardiovascular
assessment and follow-up of these women for a better
understanding and management of PCOS complications.
OXIDATIVE STRESS IN PCOS AND CVD

At a biological level, oxidative stress refers to the physiological
disturbances between free radical species such as ROS or reactive
nitrogen species (RNS), and the body’s ability to eliminate them.
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Oxidative stress can also be defined as the discrepancy between
signaling systems and redox control systems (155–157). Living
organisms have developed several mechanisms to respond to
oxidative stress by producing antioxidants. A change in the balance
between oxidizing and antioxidant substances in favor of excess
oxidants leads to oxidative stress. These systems include enzymes
(superoxide dismutase, catalase, and glutathione peroxidase),
antioxidant macromolecules (albumin, ceruloplasmin, and ferritin),
antioxidant micro-molecules (ascorbic acid, a-tocopherol,
b-carotene, ubiquinone, flavonoids and glutathione, methionine,
uric acid) bilirubin (1, 158–161).

ROS are highly reactive molecules with a very short lifespan,
and are classified into two categories, namely non-radical species,
including hydrogen peroxide (H2O2), hypochlorous acid
(HOCl-), ozone (O3-), lipid peroxides (LOOH), along with
hydroperoxides (ROOH), and radical species, consisting of
superoxide anion (O2•−), singlet oxygen (1O2), hydroperoxyl
radical (HOO•), hydroxyl radical (•OH), with •OH being
considered the most important ROS (158). RNS on the other
hand comprise a range of various chemical compounds derived
from nitric oxide (NO) in the reaction of biologically generated
free radicals that tend to form more stable species, a process that
generates multiple biological effects (162). Free radical species are
extremely unstable molecules that tend to gain stability by
acquiring electrons from neighboring molecules such as nucleic
acids, carbohydrates, proteins, and lipids, which leads to a
cascade of chain reactions, that cause cell damage (155, 163–
167). Free radicals fulfilling important roles in physiological and
pathological conditions, come from both endogenous and
exogenous sources. They are the result of cellular processes
such as oxygen reduction through the electron transport chain
in the mitochondria, but could also be generated in the
endoplasmic reticulum, phagocytic cells, peroxisomes, as well
as other cell compartments, as a result of central processes such
as protein phosphorylation and activation of certain factors
specific for transcription, apoptosis, and immunity (168).

When the body’s ability to eliminate excessive ROS and/or
RNS molecules is exceeded, and they remain in the intercellular
space for longer periods of time, oxidation of sensitive
biomolecules takes place, such as lipid peroxidation (LPO),
essential fatty acid oxidation, or oxidation of guanine DNA-
base, causing damage to proper cellular function (169). Among
the cellular components involved in regulating OS levels,
mitochondria play an important role, dysfunctions at this level
having been demonstrated to assist in the pathogenesis of several
diseases, including PCOS, metabolic syndrome and diabetes
mellitus, cardiovascular disease, and cancer (13, 170, 171).
Thus, mitochondrial dysfunction in combination with systemic
inflammation is thought to play an essential role in the occurrence
of complications associated with metabolic disorders in patients
with PCOS, and in the predisposition to cardiovascular disease. In
this regard, as a result of mitochondrial dysfunctions, systemic
increase of OS occurs in patients of reproductive age who develop
symptoms of PCOS, and who have been found to have elevated
serum levels of inflammatory markers such as C-reactive protein,
interleukins, and proinflammatory cytokines, increased cell counts
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of leukocyte series such as lymphocytes and monocytes, change in
tumor necrosis factor (TNF-a), as well as increases in some
metabolites resulting from the processes of carbonylation and
oxidation of proteins and lipids (172–174).

Previous studies have revealed that women with PCOS, due to
their altered lipid profile, may present certain dysregulated markers,
such as increased body mass index, triglycerides, total cholesterol
and LDL levels, along with decreased total HDL and HDL2 levels
(175–177). In this regard, in PCOS women, several specific
metabolites such as nitric oxide (NO) and malondialdehyde
(MDA), resulting after lipid metabolization through the reduction
of mono- and polyunsaturated fatty acids (MUFAs and PUFAs)
and considered oxidative stress markers, have been found at higher
levels when compared to control lots (178). On the other hand,
Sulaiman et al. have demonstrated the decreased levels of
antioxidant molecules glutathione (GSH) and total antioxidant
capacity (TAC), capable of cancelling out the destructive
impact of free radicals (179). Furthermore, it has been
postulated that, especially among women with PCOS, dietary
factors may accomplish an important role in promoting the
metabolic imbalance (177). For instance, Kazemi et al. have
evaluated the relationship between four dietary patterns and
the overall ovarian function, and found that the latter was
affected by diets that influence obesity, metabolic status and
hyperandrogenism regulation (176). The Dietary Approaches
to Stop Hypertension (DASH) eating plan has also been
previously analyzed by Asemi and colleagues, who highlighted
the effect of the DASH diet not only on lipid profiles, but also on
oxidative stress markers in PCOS women. They found that women
with PCOS undergoing the DASH diet could register significant
reduction in insulin, triglyceride and very low-density lipoprotein
cholesterol (VLDL-C) values, along with an increased capacity of
prooxidant status by elevated levels of total antioxidant capacity
(TAC) and GSH (175).

The etiology and circumstances that define the severity of
PCOS and the occurrence of risk factors in the development of
cardiovascular disease involve the endothelial dysfunction caused
by an imbalance between the production and bioavailability of
vasoactive molecules that either contract or relax the vessel.
Molecules such as endothelium-dependent relaxing factors,
endothelium-dependent hyperpolarization factors, endothelium-
dependent constricting factors, vasodilator prostaglandins, nitric
oxide (NO), fulfill an important role in maintaining a balance for
tissue oxygen needs, while also being involved in central processes
such as the remodeling of vascular structures by adjusting the
vascular tone and diameter to adapt to the metabolic demand in
every particular situation (1, 8, 180, 181).
CVD MARKERS IN PCOS

In light of the absence of conventional CVD risk factors in PCOS
women, various studies have focused on the relevance of
subclinical CVD markers among these patients. In this regard,
CRP and homocysteine have consistently been shown to be
increased in the plasma of patients with PCOS. At the same
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time, emerging microRNA (miRNA) analysis methods have
enabled the identification of various dysregulated miRNAs, as
a response to metabolic changes characteristic of this condition.

C-Reactive Protein (CRP)
CRP is a very common circulating marker, that is usually used as
an inflammatory index for individuals. Recent studies have
demonstrated the inducing function of CRP in inflammation,
as the protein promotes the activation of the complement
pathway, induces apoptosis, phagocytosis, and the production
of proinflammatory cytokines, such as IL-6 and TNF-a (182).
The fact that CRP has been observed to be increased in women
with PCOS implicates chronic inflammation as a mechanism
that contributes to the increased risk of CVD in women with
PCOS (183). A large study performed in 2011 compared CRP
levels in the serum of 2.359 women with PCOS with those from
1.289 healthy women, pointing out the significant difference
between the two groups, as the group with PCOS had a mean
value 95% higher than the control group (184). These findings
were irrespective of the high body mass index (BMI), as they had
not changed much after eliminating the bias from BMI.

Different approaches have been indicated to be beneficial for
the reduction of CRP in women with PCOS, such as medication
with statins or an increase in daily activity. In a study carried out
in 2008, which included 40 medication naïve women with PCOS,
an effective reduction of mean high sensitivity CRP (hs-CRP) in
serum was demonstrated after 12 weeks of atorvastatin
administration. This reduction was around 1.5 mg/liter and
was accompanied by a reduction of mean levels of total
cholesterol, LDL cholesterol, triglycerides, testosterone, and
insulin resistance (185). Moreover, in another study, an
increase of 1000 steps per day was associated with a decrease
of 13% in serum CRP levels for a group of 65 women with PCOS,
following 6 months of increased daily activity. For this research,
data was adjusted for different parameters, such as age and
baseline step count, while the observed reduction in CRP levels
had a p-value of 0.005 (186).
Homocysteine
Homocysteine is a well-known marker of oxidative stress, as it
has the ability to promote the production of ROS, and, when in
high concentration, it can induce the injury of endothelial cells
(187). In a big meta-analysis performed in 2013, a group of 4.933
women with PCOS has been compared with a control group of
3.671 healthy women for the detection of circulating markers
that indicate OS and PCOS (188). The findings of this study
pointed out a 23% higher mean concentration of homocysteine
in the group of women with PCOS, implying the increased levels
of OS in this group. Homocysteine can induce OS and increase
the risk of CVD in PCOS patients by restricting the expression
and the activity of glutathione peroxidase and superoxide
dismutase (SOD), while promoting the expression of inducible
nitric oxide synthase (iNOS). Moreover, it induces the expression
of NADPH oxidase and diminishes thioredoxin, thus favoring
the build-up of ROS (189).
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The implication of homocysteine for the development of
CVD has been noted since the 1990s, due to the promotion of
atherosclerosis and hypercoagulability (190). Apart from PCOS
patients, homocysteine has been associated with CVD, such as
coronary artery disease (CAD), in individuals with chronic renal
dysfunction (191). The fact that atherosclerosis is a pathological
process with very strong associations with the onset of CVD,
correlates hyperhomocysteinemia with conditions such as stroke,
heart failure, and myocardial infarction (192). Moreover, there has
been described a strong correlation between homocysteine and
CRP expression in vascular smooth muscle cells (VSMCs). In this
regard, it has been shown that increased levels of homocysteine
can induce the expression of CRP at the transcriptional and the
translational level, through harnessing signal pathways of N-
methyl-D-aspartate receptor (NMDAr) in VSMCs (193).
Therefore, a connection between hyperhomocysteinemia and
inflammation comes up, which further corroborates the role of
homocysteine in atherosclerosis.

The correlation of homocysteine with CAD has also been
pointed out in a study where 70 patients were monitored and
compared for their homocysteine serum levels and the presence of
CAD through coronary angiography. The patients with CAD had
considerably higher levels of homocysteine at a fasting state
compared to individuals without CAD, showing increased
statistical significance (p < 0.001) (190). In addition, the severity of
CAD has been found to be associated with the levels of
homocysteine, having a p-value below 0.001. Homocysteine seems
to induce the proliferation of VSMCs while also augmenting the
activity of HMG Co-A reductase, which promotes the synthetic
production of cholesterol (190). These findings highlight once again
the significant role of homocysteine in atherosclerosis.

Over and above, homocysteine has been implicated in the
progress of increased arterial stiffness, as it has been correlated
with increased aortic stiffness and pulse pressure. Although the
mechanism that connects hyperhomocysteinemia with aortic
stiffness remains to be further clarified, it seems to be triggered
by the elevated oxidation and inflammation levels of vascular
endothelial cells, which lack in nitric oxide production and
availability (194).

Increased risk of vein thrombosis has been also connected
with hyperhomocysteinemia. It has been indicated that elevated
levels of homocysteine can enhance platelet adhesion on
endothelial cells, while promoting the production of
prothrombotic factors, such as tissue plasminogen activator
and b-thromboglobulin (194, 195).

MicroRNAs
MicroRNAs are small non-coding molecules involved in the
regulation of numerous genes due to their ability to recognize
target sequences situated within the 3 prime untranslated region
(3′-UTR) of messenger RNA (mRNA). miRNAs have a
regulating effect in the post-transcriptional expression of
eukaryotic genes and their role in PCOS patients is prominent.
In a recent study performed in 2015, where 25 women with
PCOS were compared with 24 healthy women of the same age
and weight, an increased presence of miRNA-93 and miRNA-
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223 has been observed in the group of women with PCOS. The
p values for these observations were <0.01 and 0.029 respectively,
indicating miRNA-93 as a better circulating biomarker for the
detection of PCOS (196). The upregulation of miRNA-93
induces insulin resistance, through targeting the CDKN1A and
GLUT4 genes, therefore contributing to the increased risk of
CVD in PCOS patients (197).

On the other hand, miRNA-223 which targets glucose
transporter type 4 (GLUT4), has also been found significantly
upregulated in patients with type II diabetes mellitus (T2DM)
and left ventricular heart dysfunction (LVD) in biopsies from the
left ventricle. When the effect of miRNA-223 was studied in vivo
in rat cardiomyocytes, a GLUT4 mediated glucose uptake increase
has been found as a response to miRNA-223 upregulation. The
regulatory function of miRNA-223 on the post-transcriptional
expression of GLUT4 and subsequently on glucose uptake was
validated using a synthetic inhibitor of the miRNA in vivo, which
diminished the levels of GLUT4 and glucose uptake (198).

Apart from miRNA-93 and miRNA-223, several other
miRNAs have been found to be differentially expressed in
women with PCOS in the follicular fluid. The most significant
ones, which have been observed to demonstrate a more than 2-
fold change, are miRNA-199b, miRNA-650, miRNA-663b,
miRNA-361, miRNA-127, miRNA-382, miRNA-425, miRNA-
212, miRNA-891b, miRNA-513c, miRNA-507, miRNA-32,
miRNA-200c (199).

In a recent meta-analysis performed in 2020, two new
miRNAs have been proposed as potential diagnostic
biomarkers for PCOS, miR-29a-5p, and miR-320, respectively,
indicating miR-29a-5p as a superior potential biomarker (200).
Both molecules seem to be downregulated in patients with
PCOS. There is a connection between miR-320 and the
regulation of genes associated with PCOS morbidity, whereas
miR-29a-5p is involved in several metabolic diseases and
comorbidities. Moreover, the significant role of miR-29a-5p
regarding cell growth, differentiation, and proliferation has also
been highlighted. When the DIANA-microT-CDS tool was used
for the determination of differentially expressed target genes,
which are involved in pathways targeted by miRNAs and
associated with PCOS, several results came up. In particular,
miR-320 was found to possibly interact with the expression of
ESR1, IL-1A, 10, 12B, 37, 8, RAB5B, PDK3, and HMGA2, all of
which are involved in estradiol synthesis, steroidogenesis, insulin
signaling, fertilization, cell adhesion, and embryo development.
On the other hand, miR-29a-5p was found to potentially regulate
AR, AKT2, TGFb, MAP, KFBN3, STARD3, ITGB1, TGFB2, and
INRS, which are involved in follicle growth, cell growth, insulin,
and collagen synthesis (200).

Nowadays, the correlation between miRNAs and different
pathological conditions has been profoundly studied, connecting
the dysregulated expression of miRNAs with complex diseases,
including CVD. Usually, the targets of a miRNA expand on
several different mRNAs, thus affecting the expression of a
collection of genes. It has been estimated that around 30% of
genes are regulated by miRNAs (201), depicting their
significance in human physiology. A promising field for future
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research is the monitoring of serum miRNAs, so as to be used as
diagnostic, prognostic, or treatment response markers.
CONCLUSION

Polycystic ovary syndrome is one of the most common endocrine
disorders in women of childbearing age and the most common
source of anovulatory infertility. This syndrome presents
heterogeneous clinical variants, where the pathogenesis involves
the existence of several cardiometabolic abnormalities that
manifest through changes in the metabolic balance in which
mitochondrial dysfunctions play a key role in the progression
and occurrence of complications. Besides mitochondrial
dysfunction, systemic inflammation characteristic of PCOS
women also fulfills an important role in the occurrence of
complications associated with metabolic disorders in these
patients, as well as in the predisposition to cardiovascular disease.

Among the metabolic disorders associated with PCOS that
occur from adolescence, insulin resistance and impaired glucose
tolerance are included, as well as other manifestations that are
more prominently expressed with age, such as hyperglycemia,
obesity - especially visceral, hepatic steatosis, dyslipidemia,
hypertension, type II diabetes, and an increased risk of
cardiovascular diseases such as hypertension and myocardial
infarction. Moreover, in addition to other features such as
chronic low-grade inflammatory state and endothelial
dysfunction, PCOS poses an increased risk of developing
cardiovascular disorders. One of the diverse mechanisms that
could enhance the overall cardiovascular risk especially by
causing arterial hypertension is represented by endothelial
dysfunction, which is tightly correlated with ROS levels that
are highly dependent upon the oxidative stress in the body.
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In this respect, high ROS levels are further involved in genetic
changes such as point mutations, DNA strand breaks, aberrant
DNA cross-linking, and DNA-protein cross-linking, DNA
methylation, with the effect of silencing the genes tumor
suppressors, phenomena that were observed in women with
PCOS syndrome. Moreover, owing to OS’s ability to induce
DNA injury and methylation, the activation of oncogenes along
with antioncogene silencing are not out of the question among
these patients, which are, in fact, also susceptible to developing
endometrial cancer.

Overall, current literature suggests an evident increase in OS
among PCOS women, contributing to the numerous metabolic
and cardiovascular dysfunctions characteristic of this disease.
The development of both preventive and therapeutic strategies
aimed at the cardiovascular risk of these patients ought to
therefore involve further studies regarding the reduction of
oxidative stress.
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169. Garcıá-Sánchez A, Miranda-Dıáz AG, Cardona-Muñoz EG. The Role of
Oxidative Stress in Physiopathology and Pharmacological Treatment with
Pro- and Antioxidant Properties in Chronic Diseases. Oxid Med Cell
Longevity (2020) 2020:2082145–2082145. doi: 10.1155/2020/2082145

170. Papalou O, Victor VM, Diamanti-Kandarakis E. Oxidative Stress in
Polycystic Ovary Syndrome. Curr Pharm Design (2016) 22:2709–22.
doi: 10.2174/1381612822666160216151852

171. Wallace DC. Mitochondrial DNA mutations in disease and aging. Environ
Mol Mutagen (2010) 51:440–50. doi: 10.1002/em.20586

172. Khashchenko E, Vysokikh M, Uvarova E, Krechetova L, Vtorushina V,
Ivanets T, et al. Activation of Systemic Inflammation and Oxidative Stress in
Adolescent Girls with Polycystic Ovary Syndrome in Combination with
Metabolic Disorders and Excessive Body Weight. J Clin Med (2020) 9
(5):1399. doi: 10.3390/jcm9051399

173. Sathyapalan T, Atkin SL. Mediators of inflammation in polycystic ovary
syndrome in relation to adiposity. Mediators Inflamm (2010) 2010:758656.
doi: 10.1155/2010/758656

174. Repaci A, Gambineri A, Pasquali R. The role of low-grade inflammation in
the polycystic ovary syndrome. Mol Cell Endocrinol (2011) 335:30–41.
doi: 10.1016/j.mce.2010.08.002

175. Asemi Z, Samimi M, Tabassi Z, Shakeri H, Sabihi SS, Esmaillzadeh A. Effects
of DASH diet on lipid profiles and biomarkers of oxidative stress in
overweight and obese women with polycystic ovary syndrome: a
randomized clinical trial. Nutr (Burbank Los Angeles County Calif) (2014)
30:1287–93. doi: 10.1016/j.nut.2014.03.008

176. Kazemi M, Jarrett BY, Vanden Brink H, Lin AW. Obesity, Insulin Resistance,
and Hyperandrogenism Mediate the Link between Poor Diet Quality and
Ovarian Dysmorphology in Reproductive-Aged Women. Nutrients (2020)
12(7):1953. doi: 10.3390/nu12071953
February 2021 | Volume 12 | Article 614679

https://doi.org/10.1056/NEJM199901073400103
https://doi.org/10.1161/01.ATV.16.8.984
https://doi.org/10.1093/oxfordjournals.aje.a009302
https://doi.org/10.1161/01.STR.25.1.66
https://doi.org/10.1161/01.STR.28.3.513
https://doi.org/10.1161/01.str.26.8.1319
https://doi.org/10.1161/01.atv.11.4.966
https://doi.org/10.1093/oxfordjournals.aje.a009929
https://doi.org/10.1161/01.atv.13.12.1829
https://doi.org/10.1161/01.atv.13.12.1829
https://doi.org/10.1093/humupd/dmr046
https://doi.org/10.1016/S0735-1097(00)00872-X
https://doi.org/10.1210/jc.2003-030334
https://doi.org/10.1210/jc.2003-032237
https://doi.org/10.1210/jc.2007-1343
https://doi.org/10.3389/fphys.2019.00068
https://doi.org/10.1016/j.atherosclerosis.2008.11.028
https://doi.org/10.1016/j.mce.2010.08.002
https://doi.org/10.1186/1477-7827-3-28
https://doi.org/10.1186/1477-7827-3-28
https://doi.org/10.1152/ajpcell.00516.2003
https://doi.org/10.1111/j.1744-9987.2010.00883.x
https://doi.org/10.1016/j.talanta.2017.12.084
https://doi.org/10.1016/j.talanta.2017.12.084
https://doi.org/10.1016/j.cbi.2005.12.009
https://doi.org/10.2174/0929867013372922
https://doi.org/10.1097/WOX.0b013e3182439613
https://doi.org/10.1097/WOX.0b013e3182439613
https://doi.org/10.1016/s0005-2728(99)00028-6
https://doi.org/10.1016/S0140-6736(94)92211-X
https://doi.org/10.1016/S0140-6736(94)92211-X
https://doi.org/10.1016/s0015-0282(03)00266-8
https://doi.org/10.1016/s0015-0282(02)02959-x
https://doi.org/10.1016/s0015-0282(02)02959-x
https://doi.org/10.1007/s12291-014-0446-0
https://doi.org/10.1155/2020/2082145
https://doi.org/10.2174/1381612822666160216151852
https://doi.org/10.1002/em.20586
https://doi.org/10.3390/jcm9051399
https://doi.org/10.1155/2010/758656
https://doi.org/10.1016/j.mce.2010.08.002
https://doi.org/10.1016/j.nut.2014.03.008
https://doi.org/10.3390/nu12071953
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles
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