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Background: Adipose tissue (e.g. white, brown and brite) plays a critical role in
modulating energy metabolism. Activating brown adipose tissue (BAT) and inducing
browning in white adipose tissue (WAT) has been proposed to be a potential molecular
target for obesity treatment. Emodin is a natural anthraquinone derivative that exhibits
variety of pharmacologic effects including lowering lipids and regulating glucose utilization.
However, the underlying mechanism of action is still unclear. In the present study, we
investigated whether emodin could alleviate obesity via promoting browning process in
adipose tissue.

Methods: C57BL/6J mice were fed with high fat diet to induce obesity. Emodin at the
doses of 40 and 80 mg/kg were orally given to obesity mice for consecutive 6 weeks.
Parameters including fasting blood glucose, oral glucose tolerance, blood lipids, and the
ratios of subcutaneous white adipose tissue (scWAT) or BAT mass to body weight, and
morphology of adipose tissue were observed. Besides, the protein expression of
uncoupling protein 1 (UCP1) and prohibitin in BAT and scWAT was determined by
immunohistochemistry method. Relative mRNA expression of Cd137, transmembrane
protein 26 (Tmem26) and Tbx1 in scWAT was analyzed using qRT-PCR. And the protein
expression of UCP1, CD36, fatty acid transporter 4 (FATP4), peroxisome proliferator-
activated receptor alpha (PPARa) and prohibitin of scWAT and BAT were analyzed using
western blotting. In addition, ultra-high-performance liquid chromatography with
electrospray ionization tandem mass spectrometry was utilized to detect the small lipid
metabolites of scWAT and BAT.

Results: Emodin decreased the body weight and food intake in HFD-induced obesity
mice, and it also improved the glucose tolerance and reduced the blood lipids. Emodin
treatment induced beiging of WAT, and more multilocular lipid droplets were found in
scWAT. Also, emodin significantly increased markers of beige adipocytes, e.g. Cd137,
Tmem26 and Tbx1 mRNA in scWAT, and UCP1, CD36, FATP4, PPARa and prohibitin
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protein expression in scWAT and BAT. Furthermore, emodin perturbed the lipidomic
profiles in scWAT and BAT of obese mice. Emodin increased total ceramides (Cers),
lysophosphatidylcholines (LPCs), lyso-phosphatidylcholines oxygen (LPCs-O), and
phosphatidylethanolamines oxygen (PEs-O) species concentration in scWAT.
Specifically, emodin significantly up-regulated levels of Cer (34:1), LPC (18:2), LPC-(O-
20:2), PC (O-40:7), PE (O-36:3), PE (O-38:6), PE (O-40:6), and sphingolipid (41:0) [SM
(41:0)], and down-regulated PC (O-38:0), PE (O-40:4), PE (O-40:5) in scWAT of obesity
mice. In terms of lipid matabolites of BAT, the emodin remarkably increased the total PCs
levels, which was driven by significant increase of PC (30:0), PC (32:1), PC (32:2), PC
(33:4) and PC (38:0) species. In addition, it also increased species of LPCs, e.g. LPC
(20:0), LPC (20:1), LPC (22:0), LPC (22:1), LPC (24:0), and LPC (24:1). Especially, emodin
treatment could reverse the ratio of PC/PE in HFD-induced obese mice.

Conclusions: These results indicated that emodin could ameliorate adiposity and
improve metabolic disorders in obese mice. Also, emodin could promote browning in
scWAT and activate the BAT activities. In addition, emodin treatment-induced changes to
the scWAT and BAT lipidome were highly specific to certain molecular lipid species,
indicating that changes in tissue lipid content reflects selective remodeling in scWAT and
BAT of both glycerophospholipids and sphingolipids in response to emodin treatment.
Keywords: emodin, obesity, brown adipose tissue, white adipose tissue, browning of white adipose tissue, lipid
metabolic signature
BACKGROUND

White adipose tissue (WAT) andbrownadipose tissue (BAT)play a
critical role in modulating energy metabolism (1). The adipocytes
withinWATstore large amounts of triglycerides as chemical energy
inunilocular droplets, which are released into circulationasneeded.
WAT also functions to produce hormones and cytokines, regulates
immune system and supports local tissue frame (2). Increases in
WATmass are directly associated with increased rates ofmetabolic
diseases such as obesity and type 2 diabetes (3). BAT is specialized
for energy expenditure, which is characterized by small multi-atrial
lipid droplets, abundant mitochondria and expresses uncoupling
protein 1 (UCP1) (4, 5). BAT dissipates energy as heat and stores
energy for use of non-shivering thermogenesis, which also plays a
significant role in energy regulation (5, 6). It has been confirmed
thatwhen thebody is stimulatedbycoldexposure (7) oractivatedby
b-adrenoceptors agonist (8), brown-like phenotypic adipocytes
(e.g. beige adipocytes) can be detected in WAT, which are
characterized by an increased number of mitochondria and
e; BAT, brown adipose tissue; HFD,
te adipose tissue; UCP1, uncoupling
or-activated receptor alpha; PGC-1a,
g coactivator-1a; PRDM16, positive
prohibitin; AMPK, AMP activated
element-binding protein; Tmem26,
holesterol; TG, triglyceride; HDL-c,
c, low-density lipoprotein cholesterol;
le; IR, insulin resistance; LCFA, long-
orter 4; PC, Phosphatidylcholine; PE,
tidylserine; SM, sphingolipid; Cer,
LPE, lyso-phosphatidylethanolamine.
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increased expression of brown fat marker genes (e.g. Ucp1, Pgc-
1a,Prdm16). The above process is called browning ofWAT.Recent
studies showed that increasing metabolic activity of brown and
beige adipose tissuemight be a novel way to ameliorate glucose and
lipidmetabolism in obese patients (9–12). Furthermore, changes in
tissue lipid content reflects selective remodeling in scWATandBAT
of both phospholipids and glycerol lipids in response to specific
conditions such as exercise training (1).

Emodin (1,3,8-trihydroxy-6-methylanthraquinone) is a
natural anthraquinone derivative, and is the main component
of Rheum palmatum L (13). It has been reported to exhibit
anti-inflammatory, anti-bacterial, anti-cancer, anti-diabetic,
anti-ulcerogenic, immunosuppressive, pro-apoptotic and
chemopreventive activities (14–18). It has been found that the
emodin can regulate glucose utilization and lower lipids in
epididymal WAT by activating AMP activated protein kinase
(AMPK) pathway (19, 20). In addition, the emodin could inhibit
adipocyte differentiation and enhances osteoblast differentiation
from bone marrow mesenchymal stem cells (BMSCs) (21). And
it could improve the inactive glucocorticoid-induced adipose
tissue dysfunction by selective inhibition on 11b-hydroxysteroid
dehydrogenase type 1 (11b-HSD1) in 3T3-L1 adipocyte (22).
Our previous research also showed that emodin could inhibit the
accumulation of white adipocytes and inducing browning of
WAT in apolipoprotein E knockout (ApoE-/-) mice (23).
However, the effect of emodin on the lipid metabolic signature
of scWAT and BAT has not been investigated. Here, we report
the effect of emodin on adipose tissue in high fat diet-induced
obese mice, as well as a comprehensive analysis of lipid
composition in scWAT and BAT.
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MATERIALS AND METHODS

Chemicals and Reagents
Emodin (purity 95%) was purchased from Shanghai Yuanye
Biotechnology Co., Ltd. CL 316243 disodium salt was purchased
from APExBIO Technology LLC (Houston, USA). Biochemical
kits of serum total cholesterol (TC), triglyceride (TG), high-
density lipoprotein cholesterol (HDL-c), and low-density
lipoprotein cholesterol (LDL-c) were purchased from Nanjing
Jiancheng Bioengineering Institute (Nanjing, China). Free fatty
acid (FFA) ELISA assay kit was purchased from Jiangsu Kete
Biotechnology Co., Ltd. (Jiangsu, China). Leptin ELISA assay kit
and adiponectin ELISA assay kit were purchased from cloud-
clone Corp. Wuhan (Wuhan, China).

Animals and Experimental Protocol
Eight-week-old male C57BL/6J mice weighing 18-22g were
purchased from Sibeifu (Beijing) Biotechnology Co., Ltd (grade
SPF, Certificate No: SCXK (jing) 2016-0002). Mice were
maintained at 23 ± 1°C and 60-70% humidity with a 12h light/
dark cycle. The regular diet was a standard chow diet containing
3.65 kcal/g. And the high fat diet was 60% of kilocalories from
fat containing 5.24 kcal/g. Normal diet is purchased from
SBF (Beijing) Biotechnology Co., Ltd (Beijing, China,
0817SH08200438C). High fat diet was purchased from Beijing
huafukang Biotechnology Co., Ltd (Beijing, China, 20180376).

Mice were randomly divided into two groups according to
weight and fed with normal control diet (n=8) or fed with high
fat diet (HFD) for 8 weeks to induce hyperlipidemia. After 8
weeks of HFD, mice were randomly divided into four groups as
follows (n=8/group): HFD group, emodin 40 mg/kg group, and
emodin 80 mg/kg group, and CL 316243 1 mg/kg group. Mice in
normal control group and HFD group were administrated with
equal amount of 0.1% carboxymethyl cellulose-Na (CMC-Na).
Mice in emodin 40 and 80 mg/kg groups were taken emodin
(dissolved in 0.1% CMC-Na) by intragastric administration for
consecutive 6 weeks. Before dissection, mice in CL 316243 1 mg/
kg treatment group were intraperitoneally injected with 1mg/kg/
day of CL 316243 disodium salt for 3 days. All the animal studies
were in accordance with ethics standards of the Animal Care and
Welfare Committee of Beijing University of Chinese Medicine
(Certificate No. BUCM-04-2018070603-3015).

Oral Glucose Tolerance Test
After 6 weeks of intervention, the mice were fed by oral gavage
with 50% D-glucose (2.0 g/kg) after overnight (12 h) fasting.
Blood samples were taken from the tail 0, 30, 60, 90 and 120 min
after oral gavage, and glucose levels were measured by the One
Touch Ultra blood glucose monitoring system (ONETOUCH
Ultra Easy).

Measurement of Lee’s Index
At the end of the treatment, the body mass of the mice was
accurately weighed, and the body length (the distance from the
tip of the nose to the anus) was accurately measured, and then
the Lee’s index was calculated according to the reference (24).
Frontiers in Endocrinology | www.frontiersin.org 3
Measurement of Adipose Tissue Mass/
Body Weights
Subcutaneous WAT (scWAT) mass and scapular brown adipose
tissues (BAT) mass were accurately weighed. The ratios of
scWAT mass to body weight (BW) and BAT mass to body
weight (BW) were calculated.

Serum Biochemical Analysis
Serum TC, TG, HDL-c and LDL-c levels were measured with the
method of biochemical kits (Nanjing Jiancheng, China). The
levels of FFA were determined by the Mouse FFA ELISA kit
(Kete, China). Serum leptin and adiponectin levels were analyzed
using the mouse leptin and adiponectin ELISA kit respectively
(Cloud-clone, China).

Histological and Immunohistochemical
Analysis
BAT and scWAT were fixed with 10% formalin, dehydrated,
embedded in paraffin and sectioned. For histological analysis,
sections were deparaffinized and stained with hematoxylin and
eosin. The expression of UCP1 (1:500, ab10983, Abcam) and
prohibitin (1:500, ab75766, Abcam) in mouse BAT and scWAT
was determined by immunohistochemistry. All images were
acquired with the microscope (Leica, Germany). The
expression level of UCP1 and prohibitin in BAT and scWAT
of the mice was quantified by using Image Pro Plus 6.0.

Quantitative Real-Time PCR Analysis
Total RNA of scWAT was extracted with Trizol® Reagent
(Ambion, USA). Reverse transcription of total RNA (1 mg) was
performed with Revert Aid First Stand cDNA Synthesis Kit
(Thermo Scientific, USA). Real-time quantitative PCR (qRT-
PCR) was performed with a SYBR Green Master Mix
(Novoprotein, China). The PCR reaction was operated in
triplicate for each sample using the Step One Real-Time PCR
System (Applied Biosystems, USA). After standardizing the
expression level of internal control actin in each sample, the
data were expressed in arbitrary units. The sequences of primer
in this study were shown in Table 1.

Western Blot Analysis
The homogenates of scWAT and BAT were dissolved in RIPA
lysate and protease inhibition for protein extraction. Sample
protein concentrations were measured using the bicinchoninic
acid (BCA) method (Beyotime). Total protein (10mg/Lane) was
separated on a 12% acrylamide/acrylamide gel using sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)
May 2021 | Volume 12 | Article 618037
TABLE 1 | Primer sequences were used for quantitative real-time reverse
transcription polymerase chain reaction (qRT-PCR).

Gene name Forward (5’-3’) Reverse (5’-3’)

Cd137 GGTGGACAGCCGAACTGTAA GCTGCTCCAGTGGTCTTCTT
Tmem26 AGTGTGAGCAAGAACTCGGG GATGGCCGGAGAAAGCCATT
Tbx1 CGCTACCGGTATGCTTTCCA GTCTTTTCGAGGGGCCACAT
b-actin GGTGGGAATGGGTCAGAAGG GTTGGCCTTAGGGTTCAGGG
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and transferred to polyvinylidene difluoride (PVDF) membranes.
PVDF membranes containing protein were incubated with
specific anti-alpha tubulin antibody (1:5000, ab18251, Abcam),
anti-UCP1 antibody (1:1000, ab10983, Abcam), anti-Prohibitin
antibody (1:10000, ab75766, Abcam), anti-PPAR a antibody
(1:2000, ab8934, Abcam), anti-CD36 antibody (1:5000,
ab133625, Abcam), anti-slc27a4/FATP4 antibody (1:1000,
ab200353, Abcam), respectively. Then membranes were
incubated with HRP-conjugated Affinipure Goat Anti-Mouse
IgG (H+L) (1:5000, 20000175, proteintech) or HRP-conjugated
Affinipure Goat Anti-Rabbit IgG (H+L) (1:5000, 20000174,
proteintech). Protein bands were visualized using the ECL kit
(EMD millipore). Image was analyzed using Image-Pro-Plus 6.0.

Targeted Lipidomics Analysis
Tissue Sample Preparation
BAT and scWAT tissue samples were thawed on ice. Samples were
accurately weighed and then homogenized in the 1.5 mL
centrifuge tube using a Speed Mill Plus. Internal standards were
dissolved in 300mL of methanol [SPLASH® II LIPIDOMIX®Mass
Spec Standard (330709), Cer/Sph Mixture I (LM6002, Avanti),
12:0-13:0 PC (LM1000, Avanti), 12:0-13:0 PE (LM1100, Avanti)]
and added to each sample, and then extracted with 1mL of methyl
tert-butyl ether (MTBE) for 1 hour. The extraction was added
250 mL of water and pelleted in a 4°C centrifuge at 12,000 rpm for
5 min. 100 mL of the MTBE layer was transferred to a new 1.5 mL
centrifuge tube and dried in a Savant™ SpeedVac™ High
Capacity Concentrator. The dried sample was reconstituted with
400 mL of isopropanol/acetonitrile (1:1) and shaken for 40s. And
the dissolved matter was centrifuged at 12,000 for 5 min, and then
100 mL of the supernatant was transferred to a 200 mL vial insert
for liquid chromatography-mass spectrometry analysis.

Chromatography
ACQUITY Ultra Performance Liquid Chromatography (UPLC)
I-Class System (Waters, USA) with ACQUITY UPLC BEH C8

Column (2.1 mm×100 mm, 1.7 mm) was used to perform the
UPLC separation. For C8 separation, mobile phase A is
acetonitrile/water (60/40) and mobile phase B is acetonitrile/
isopropanol (90/10), and both A and B contain 0.1% formic acid
and 5 mM ammonium acetate (formate). The gradient
conditions were shown in Tables 2 and 3.

Quality Control
Five QC samples of adipose tissue were continuously injected at
the beginning of the sequence to monitor the UPLC-MS system
stability by the Overlay Graphs method using Mass Lynx
software. And QC samples were run at regular intervals (8
samples) throughout the entire sequence.

Mass Spectrometry
Electrospray ionization tandem mass spectrometry (XEVO TQ-S
Micro, Waters, USA) was used for mass spectrometry. And the
conduct conditions of ESI+ and ESI- showed in Table 4.
Masslyxn4.1 was used for mass spectrometry data acquisition.
Frontiers in Endocrinology | www.frontiersin.org 4
Statistical Analysis
The data of target metabolism group were operated by skyline
19.1. The parameters were set as follows: the quality extraction
error was 5 ppm and the allowable retention time error was 15s.
Other data were statistically analyzed using SAS 8.2 software. All
data were expressed as means ± SE. Two-way analysis of variance
for repeated measures was used for body weight analysis (for the
effects of treatment and time). Other statistics was performed
using the one-way analysis of variance (ANOVA) followed by
SNK-q test. P-value<0.05 was considered as statistically significant.
RESULTS

Emodin Can Inhibit Obesity and Appetite
and Reduce Fat Mass in HFD Induced
Obese Mice
The HFD treated mice showed characteristics of obesity. When
compared with the control mice, parameters including body
weight, food intake, Lee’s index and scWAT/BW ratio were
significantly increased in HFD treated mice (by 51.6%, 41.1%,
8.5% and 39.1%, respectively). Emodin at the dose of 40 mg/kg
caused a significant reduction in body weight at week 5 and 6 (by
13.0% and 15.7%, respectively), and emodin 80 mg/kg caused a
remarkable reduction in body weight at week 3, 4, 5, 6 (by 11.1%,
TABLE 2 | The gradient conditions for reversed phase C8 separation for lipids.

Time(min) A (v%) B (v%)

0 68 32
1.5 68 32
15.5 15 85
15.6 3 97
18 3 97
18.1 68 32
20 68 32
May 2021 | Volume 12 | Article
TABLE 3 | The gradient conditions for reversed phase C8 separation for fatty acids.

Time(min) A(v%) B(v%)

0 90 10
1.5 90 10
8 3 97
13 3 97
13.1 90 10
15 90 10
6

TABLE 4 | Analysis condition of positive and negative electrospray ionization.

Parameter ESI+ ESI-

Capillary voltage 3200V 2000V
Desolvation temperature 500°C 500℃
Source temperature 120°C 120℃
Desolvation gas flow 1000 L/h 1000L/h
Cone gas flow 150 L/h 150 L/h
Nebuliser gas 7.0 bar 7.0 bar
Collision gas flow 0.13 L/h 0.13 L/h
18037
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12.6%, 12.6% and 13.9%, respectively), when compared with
HFD mice (Figure 1A).

Emodin (40 mg/kg, 80 mg/kg) significantly decreased the
food intake by 9.8% and 7.3%, respectively, when compared with
the obese mice (P <0.01 or P <0.05) (Figure 1B).

Lee’s index can be used as an indicator to evaluate the degree
of obesity in adult obese model mice (25). Emodin at the doses of
40 and 80 mg/kg and CL316243 (1 mg/kg) treatment group
could significantly reduce the Lee’s index, when compared with
HFD mice (P <0.01) (Figure 1C).

The ratio of scWAT to BW in mice treated with emodin
(40mg/kg, 80mg/kg) and CL316243 (1mg/kg) was significantly
decreased (by 39.1%, 46.4% and 40.9%, respectively), when
compared with the HFD mice (P < 0.01 or P < 0.05).
(Figure 1D).

The function of BAT is consuming glucose and lipids,
mediating the thermogenic effects of non-shivering, thereby
increasing energy expenditure (26). Interestingly, compared
with HFD mice, emodin (80 mg/kg) and CL 316243 (1 mg/kg)
treatment significantly decreased the ratio of BAT/BW (by 22.5%
and 47.5%, respectively (Figure 1E).

Emodin Ameliorates Abnormal Blood
Glucose and Blood Lipid in Mice Fed
With HFD
In this study, we investigated whether emodin improved glucose
tolerance in obese mice. The results indicated an impaired glucose
tolerance in HFD mice, and high fat diet significantly increased
AUC index, when compared with control mice (P <0.01). Emodin
Frontiers in Endocrinology | www.frontiersin.org 5
at the doses of 40 and 80 mg/kg and CL316243 (1 mg/kg)
treatment significantly decreased AUC value (31.1%, 35.3% and
45.1% respectively), when compared with HFD mice (P <0.01)
(Figures 2A, B). These results suggested that emodin could
ameliorate glucose metabolism in obese mice.

To investigate whether emodin improved hyperlipidemia in
obese mice, blood lipid parameters were measured. When
compared with control mice, serum TC, TG, LDL-c, HDL-c
and FFA levels were significantly increased in obese mice
(P <0.01). When compared with obese mice, emodin (40 mg/kg,
80 mg/kg) could remarkably decrease serum TC, TG and LDL-c
by 15.1%-16.3%, 19.6%-34.0%, 52.9%-54.3%, respectively (P <0.01
or P <0.05) (Figures 2C–E), and emodin (80 mg/kg) could
remarkably decrease serum FFA levels (Figure 2G), but there
was no significant difference in the content of HDL in serum
(Figure 2F).

Leptin plays an important role in maintaining energy
metabolism and regulating adipose ratio (27). It was
demonstrated that the serum leptin content of HFD mice was
significantly increased by 574.3%, when compared with control
mice (P <0.01). Emodin (40 mg/kg, 80 mg/kg) and CL316243
(1 mg/kg) caused significant reduction in leptin levels (by 40.7%,
54.6% and 41.5%, respectively), when compared with HFD mice
(P <0.01) (Figure 2H).

As an endogenous insulin sensitizer secreted by adipose
tissue, reduction of adiponectin is an independent risk factor
for hyperlipidemia and diabetes (28). When compared with
control mice, serum adiponectin in HFD mice was significantly
decreased (P <0.01). Emodin (40 mg/kg, 80 mg/kg) treatment
A B

C D E

FIGURE 1 | Effects of emodin on body weight, food intake and Lee’s index in HFD mice. Mice were fed with high fat diet (HFD) containing 5.24 kcal/g for 8 weeks
to induce hyperlipidemia. The mice in HFD+Emo group were intragastrically administered with emodin at the doses of 40 and 80 mg/kg/day respectively for
consecutive 6 weeks. The mice in HFD+CL 316243 group were intraperitoneally injected with 1mg/kg/day of CL 316243 disodium salt for 3 days just before
detecting time point. (A) Body weight. (B) Food intake. (C) Lee’s index. (D) The ratio of scWAT mass/BW. (E) The ratio of BAT mass/BW. HFD, high fat diet;
Emo, emodin. Data are expressed as mean ± SE, with n = 8. *P < 0.05, **P < 0.01 vs. HFD group.
May 2021 | Volume 12 | Article 618037
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could significantly increase the serum adiponectin levels in HFD
mice (by 28.6% and 42.9%, respectively), when compared with
HFD mice (P <0.01 or P <0.05) (Figure 2I).

Emodin Induces Browning of scWAT in
Mice Fed With HFD
We analyzed the morphology of scWAT and the expression of
thermogenic protein UCP1 and mitochondrial membrane
protein prohibitin in scWAT (Figure 3A). When compared
with the control mice, the diameter of fat cells in HFD mice
increased and the number of cells per unit area decreased. When
compared with HFD mice, the adipocytes of the mice in the
emodin (40 mg/kg, 80 mg/kg) groups are small and tightly
arranged, with obvious nuclei. As an important thermogenic
protein, UCP1 is specifically expressed in BAT (6, 29).
Prohibitin, mainly located in the inner membrane of
mitochondria, plays an important role in maintaining
mitochondrial morphology, function and regulating energy
metabolism (30). Therefore, we measured the expression of
UCP1 and prohibitin protein in scWAT (Figure 3B). The
expression of UCP1 and prohibitin protein in scWAT of
Frontiers in Endocrinology | www.frontiersin.org 6
emodin 80 mg/kg-treated group was significantly increased
(P <0.01), Compared with HFD mice. We also evaluated the
mRNA expression of beige adipocyte marker genes, such as
Cd137, Transmembrane protein 26 (Tmem26) and Tbx1. As
expected, the expression of several beige adipocyte marker
genes, including Cd137, Tmem26 and Tbx1, was significantly
upregulated in scWAT after emodin (80 mg/kg) and CL316243
(1 mg/kg) treatment (Figure 3C).

In order to confirm whether emodin can induce the browning
of scWAT, we measured thermogenic protein and fatty acid
transporter (Figure 3D). The expression of UCP1, prohibitin,
CD36, FATP4 and PPARa protein in scWAT of emodin (80 mg/
kg) and CL316243 (1 mg/kg) treatment group increased
significantly, when compared with HFD mice (P <0.05 or
P <0.01) (Figures 3E–I). These results suggested that emodin
could induce the browning of scWAT in HFD mice.

Emodin Activates Brown Adipose Tissue in
Mice Fed With HFD
We also analyzed the morphology of BAT and the expression of
thermogenic protein UCP1 and mitochondrial membrane
A B C

D E F

G H I

FIGURE 2 | Effects of emodin on blood glucose and lipids in HFD mice. (A) Oral glucose tolerance test (OGTT). The mice were fasted for 12 h, and then 2 g/kg
glucose was given oral gavage. Glucose levels were tested before (0) and after fed glucose at 30, 60, 90, and 120 min. (B) Quantification of AUC from the OGTT.
(C–F) Serum TC, TG, LDL-c, HDL-c concentration. (G) Serum free fatty acids concentration. (H) Serum leptin concentration. (I) Serum adiponectin concentration.
HFD, high fat diet; Emo, emodin. Data are expressed as mean ± SE, with n = 8. *P < 0.05, **P < 0.01 vs. HFD group.
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FIGURE 3 | Effects of emodin on the morphology and function of scWAT in HFD mice. (A) H&E and immunohistochemical staining of scWAT. (B) Relative
expression of UCP1 and Prohibitin protein in scWAT. (C) Relative expression of Cd137, Tmem26 and Tbx1 mRNA in scWAT. (D) Protein expression of UCP1,
prohibitin, PPAR a, CD36 and FATP4 in scWAT using western blotting. (E) Protein expression of UCP1. (F) Protein expression of prohibitin. (G) Protein expression
of PPAR a. (H) Protein expression of CD36. (I) Protein expression of FATP4. HFD, high fat diet; Emo, emodin. Data are expressed as mean ± SE. *P < 0.05,
**P < 0.01 vs. HFD group.
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protein prohibitin in BAT (Figures 4A–C). When compared
with control mice, the diameter of fat cells in BAT of HFD mice
was significantly increased, the number of cells per unit area
decreased, and the number of white fat cells increased. This
indicates that long-term HFD feeding results in so-called
‘whitening’ of BAT. When compared with HFD mice, the
adipocytes of the mice in the emodin (40 mg/kg, 80 mg/kg)
groups are small and tightly arranged, with large and obvious
nuclei. We also measured the expression of UCP1 and prolibitin
protein in BAT. The expression of UCP1 and prohibitin protein
in BAT of emodin and CL316243-treated group was significantly
increased (P <0.05 or P <0.01), when compared with HFD mice.

To confirm that emodin can activate BAT of HFD mice, we
measured thermogenic protein and fatty acid transporter (Figure
4D). The expression of UCP1, prohibitin, CD36, FATP4 and
PPARa protein in BAT of emodin and CL316243-treated group
increased significantly, when compared with HFD mice (P <0.05
or P <0.01) (Figures 4E–I). These results suggested that emodin
could activate BAT in HFD mice.
Phospholipid Metabolism Is Altered in
scWAT With Emodin Treatment
Based on the above experimental results, we analyzed scWAT by
targeted metabolomics. We selected the biomarkers that have
changed and created a heat map (Figures 5A–E). The lipidomics
data show that emodin treatment can perturb the lipidomics
profile in HFD mice, and several phospholipid species (e.g. Cer,
LPC, LPC-O, and PE-O) are remarkably increased in scWAT,
indicating a remodeling of phospholipids after emodin 80 mg/kg
treatment. Specifically, when compared with HFD mice,
concentration of Cer (34:2), LPC (18:2), LPC-(O-20:2), PC (O-
40:7), PE (O-36:3), PE (O-38:6), PE (O-40:6), and SM (41:0) was
significantly up-regulated in emodin-treated group. Otherwise,
levels of PC (O-38:6), PE (O-40:4), PE (O-40:5) were
significantly reduced in emodin-treated group, when compared
with HFD mice.
Phospholipid Metabolism Is Altered in BAT
With Emodin Treatment
In addition, we also analyzed BAT by targeted metabolomics. We
selected the biomarkers that have changed and created a heat
map (Figures 6A–E). In BAT, the lipidomics indicated a
significant reduction of PEs and PCs in BAT of HFD mice.
And emodin treatment caused a significant increase of PEs and
PCs in BAT, when compared with HFD mice. The increase in
total PC was driven by significant increase of PC (30:0), PC
(32:1), PC (32:2), PC (33:4) and PC (38:0) species, as well as
species of LPC [e.g. LPC (20:0), LPC (20:1), LPC (22:0), LPC
(22:1), LPC (24:0), LPC (24:1)] with emodin treatment. In
addition, when compared with the control mice, the ratio of
PC/PE was significantly increased in HFD-induced mice
(P <0.05 or P <0.01). And emodin at the doses of 40 and
80 mg/kg and CL 316243 significantly decreased the ratio of
PC/PE compared with HFD-induced mice.
Frontiers in Endocrinology | www.frontiersin.org 8
DISCUSSION

Emodin ameliorates adiposity and improves whole-body
metabolic balance in obese mice. In this study, we demonstrated
that emodin could decrease the body weight and food intake in
high fat diet induced obese mice, also it could improve the glucose
tolerance and reduce the blood lipids, which was consistent with
the results of previous studies in vivo (22, 31, 32). The regulating
of white adipose tissue and brown adipose tissue acts a critical role
in combating obesity and metabolic disease. As a thermogenic
tissue, BAT is innervated by both sympathetic and sensory nerves.
The activity and metabolism of BAT could be influenced by cold
exposure and exercise (33), as well as some natural product
extracts or compounds, such as rose hip supplement (34),
black raspberry (35), green tea extract (36), genistein (37),
pentamethylquercetin (38), and etc. Here, we first proved that
emodin could promote browning in scWAT. The white adipose
tissue mass was decreased after emodin treatment. After treatment
of emodin, more multilocular lipid droplets were found in
scWAT, the mRNA expression of browning markers including
Cd137, Tmem26 and Tbx1 was increased in scWAT, and the
protein expression of browning markers including UCP1 and
prohibitin was increased in scWAT of obese mice. Meanwhile, the
protein expression of UCP1, prohibitin, PPARa was increased in
BAT of obese mice after emodin treatment. PPAR a is the key
factor of BAT thermogenesis, which can regulate lipid catabolism
and thermogenic gene expression in coordination with Pgc-1a and
Prdm16 (39). PPAR a can enhance the expression of PGC-1a and
UCP-1 by increasing the activity of erythropoietin (EPO). PPAR a
also plays a coordinating role with SIRT1 activated by EPO and
jointly regulates the level of NAD+ to heighten the metabolic
activity (40). The mitochondria are involved in the metabolic
control of brown adipocytes. Mitochondrial function is related
to the endocrine function of adipocytes. In addition, brown
adipocytes rely on mitochondria to maintain intracellular
metabolism. Located in mitochondrial inner membrane,
prohibitin plays a critical role in maintaining the shape and
function of mitochondria and regulating energy metabolism (30,
41). The results of western blotting demonstrated that emodin
increased the protein expression of PPAR a and prohibtin
of scWAT and BAT in obese mice. As a fatty acid translocase,
CD36 acts a pivotal part in the uptake and transport of long-chain
fatty acids (LCFA) in heart and adipose tissues (42, 43). It
was found that cold exposure drastically accelerated plasma
clearance of triglycerides as a result of increased uptake into
BAT, a process crucially dependent on local LPL activity and
transmembrane receptor CD36 (44). Fatty acid transporter 4
(FATP 4) is a member of the fatty acid transport proteins
(FATPs), which plays a significant role in the transport of long-
chain fatty acids with more effectively compared with FATP1. It
was found that FAT/CD36 and FATP4 were the most effective
fatty acid transporters (45, 46). In this study, emodin accelerated
the transport and consumption of fatty acids and improved
the disorder of lipid metabolism by increasing the expression
of CD36 and FATP4 protein in both scWAT and BAT of HFD-
induced mice.
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FIGURE 4 | Effects of emodin on the morphology and function of BAT in HFD mice. (A) H&E and immunohistochemical staining of BAT. (B) Relative expression of
UCP1 in BAT. (C) Relative expression of prohibitin in BAT. (D) Protein expression of UCP1, prohibitin, PPAR a, CD36 and FATP4 in BAT using western blotting.
(E) Protein expression of UCP1. (F) Protein expression of prohibitin. (G) Protein expression of PPAR a. (H) Protein expression of CD36. (I) Protein expression of
FATP4. HFD, high fat diet; Emo, emodin. Data are expressed as mean ± SE. *P < 0.05, **P < 0.01 vs. HFD group.
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White and brown adipocytes exhibit different lipid metabolic
signature, which reflect their distinct organelle composition and
cell functions. The neutral lipids in the lipid droplets core are
surrounded by a monolayer of phospholipids (47). PCs, PEs and
CLs make up 89% of the phospholipids in BAT, which are
increased in response to cold exposure and exercise (48). It was
confirmed that regulation and metabolism of PCs, PSs and PEs
prevented inflammation of adipose tissue, hyperlipidemia and
obesity (49). Exercise can increase specific molecular species of
PCs and PEs in brown adipocytes. It has been reported that after
exercise, the increase in total PC was driven by the significant
increase of the highly abundant PC (36:2) species, as well as
increases in numerous species of PC and PC-O. However, there
was no overall change in abundance of PE after exercise in BAT
(1). Our recent study manifested that the lipidomic profile of
adipocytes was remolded with high fat diets, and emodin
Frontiers in Endocrinology | www.frontiersin.org 10
treatment could perturb the profile and reverse some small
lipid metabolites of HFD mice.

Furthermore, the relative abundance of PCs and PEs on the
surface of LDs is important for their dynamics (50). An increase
in the relative amount of PEs on the surface of lipid droplets can
promote fusion of smaller droplets into larger ones (51).
Inhibition of PCs biosynthesis can promote TG storage
increases the size of the lipid droplets presumably (52, 53).
Either abnormally high, or abnormally low cellular PC : PE
molar ratios can influence energy metabolism in various
organelles (50). It has been shown that both PC amount and
PC : PE molar ratio tend to increase, and palmitate- and stearate-
containing LPC species were upregulated in 16-week-old Lepob/ob

adipose tissue macrophage, which related to WAT inflammation
and contribute to the development of insulin resistance in obesity
(54). It has been proved the different composition of
A
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E

FIGURE 5 | Effects of emodin on the lipid metabolites in scWAT of HFD mice. (A) The content of Cer in scWAT. (B) The content of LPC in scWAT. (C) The content
of LPC-O in scWAT. (D) The content of PE-O in scWAT. (E) Heat map. Only metabolites with VIP >1 and P <0.05 were selected in heat map, and different shades
of color present the concentration (red, white and blue presented the high, normal and low concentration). The red up arrow indicates up regulation or promotion,
and the blue down arrow indicates down regulation or inhibition. HFD, high fat diet; Emo, emodin; PC, phosphatidylcholine; PE, phosphatidylethanolamine; Cer,
ceramides; LPC, lyso-phosphatidylcholine. Data are expressed as mean ± SE. *P < 0.05, **P < 0.01 vs. HFD group.
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phospholipids in white and brown adipocyte, and thermogenic
adipocytes possess higher abundance of PCs and PEs, with longer
(C >36) and more polyunsaturated species (55). Our results also
indicated that the ratio of PC : PE was significantly increased in
brown adipose tissue but not scWAT in HFD-induced mice
compared with control mice. Interestingly, emodin 40 and 80
mg/kg treatment and CL 316243 could significantly increase
abundance of PCs and PEs, and decrease the PC : PE ratio in
BAT of obesity mice. Specifically, emodin significantly up-
regulated levels of Cer (34:2), LPC (18:2), LPC-(O-20:2), PC (O-
40:7), PE (O-36:3), PE (O-38:6), PE (O-40:6), and SM (41:0), and
down-regulated PC (O-38:6), PE (O-40:4), PE (O-40:5) in scWAT
compared with HFD mice. And in BAT, the remarkable increase
in total PCs was driven by significant increase of PC (30:0), PC
(32:1), PC (32:2), PC (33:4) and PC (38:0) species with emodin
treatment. In addition, emodin significantly increased species of
LPC (e.g. LPC (20:0), LPC (20:1), LPC (22:0), LPC (22:1), LPC
(24:0), when compared with HFD mice.
Frontiers in Endocrinology | www.frontiersin.org 11
CONCLUSION

These results indicated that emodin could ameliorate adiposity
and improve metabolic disorders in obese mice. Also, emodin
could promote browning in scWAT and activate the BAT
activities. In addition, emodin treatment-induced changes to
the scWAT and BAT lipidome were highly specific to certain
molecular lipid species, indicating that changes in tissue lipid
content reflects selective remodeling in scWAT and BAT of both
glycerophospholipids and sphingolipids in response to
emodin treatment.
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