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Background: Individuals exhibit fluctuations in the concentration of serum thyroid-
stimulating hormone (TSH) over time. The scale of these variations ranges from minutes
to hours, and from months to years. The main factors contributing to the observed within-
person fluctuations in serum TSH comprise pulsatile secretion, circadian rhythm,
seasonality, and ageing. In clinical practice and clinical research however, such within-
person biological variation in serum TSH concentrations is often not considered. The aim
of this review is to present an overview of the main sources of within-person variation in
TSH levels, as well as the potential underlying biological mechanisms, and the clinical
implications.

Summary: In euthyroid individuals, the circadian rhythm, with a nocturnal surge around
02:00–04:00 h and a nadir during daytime has the greatest impact on variations in serum
TSH concentrations. Another source of within-person variation in TSH levels is
seasonality, with generally higher levels during the cold winter months. Since TSH is
secreted in a pulsatile manner, TSH levels also fluctuate over minutes. Furthermore,
elevated TSH levels have been observed with ageing. Other factors that affect TSH levels
include thyroid peroxidase (TPO)-antibody positivity, BMI, obesity, smoking, critical illness,
and many xenobiotics, including environmental pollutants and drugs. Potential underlying
biological mechanisms of within-person variation in TSH levels can be safely concluded
from the ability of TSH to respond quickly to changes in cues from the internal or external
environment in order to maintain homeostasis. Such cues include the biological clock,
environmental temperature, and length of day. The observed increase in TSH level with
ageing can be explained at a population level and at an organism level. In clinical practice,
the season for thyroid testing can influence a patient’s test result and it occurs frequently
that subclinical hypothyroid patients normalize to euthyroid levels over time without
intervention.
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Conclusions: Serum TSH concentrations vary over time within an individual, which is
caused by multiple different internal and external factors. It is important to take the within-
person variations in serum TSH concentrations into account when testing a patient in
clinical practice, but also in performing clinical research.
Keywords: thyrotropin, thyroid-stimulating hormone, biological variation, circadian rhythm, ageing, seasonality,
within-person variation
INTRODUCTION

Hormones of the hypothalamus-pituitary-thyroid (HPT) axis are
part of a feedforward and feedback system. Thyroid stimulating
hormone (TSH) is a key player in this system, which is designed
to respond quickly to changes in the environment aiming to
maintain homeostasis in the human body. By adapting the level
of TSH, circulating levels of thyroxine (T4) and partly
triiodothyronine (T3) are controlled and kept within a normal
range (1, 2). Indeed, it is known that TSH levels can vary over
time within a person.

Among other, TSH levels are influenced by drugs, acute and
chronic illness, undernutrition, the biological clock, seasonality,
pregnancy, and by other hormones, e.g., cortisol. However, the
magnitude and the importance of variation in TSH levels within
a person over time are not completely clear yet. Consequently,
the influence of variation in TSH levels on diagnosis and study
outcomes might be underestimated. In this review, we discuss the
magnitude of the variation in TSH levels and the potential
sources (internal and external) that may contribute.

Variation in TSH levels can be caused by biological and non-
biological variation, the latter includes pre-analytical and
analytical variations, and has been reviewed by others (3). In
the current review we focus on biological variation, in particular
on within-person biological variation. Within-person variation
in TSH levels is caused by rhythms ranging from minutes to
years, including pulsatile secretion, circadian rhythm, monthly
changes, and seasonality (3, 4). Furthermore, TSH levels change
with age, with in general higher levels with increasing age (5).
Independent of time, within-person variation in TSH is also
caused by effects of among others medication, illness, TPO
antibody positivity, and iodine intake.

Medical practice and guidelines have been traditionally based
on the “average” patient and how the “average” patient responds
to various treatments, as informed by randomized clinical trials.
Especially vulnerable patients, which include older patients with
comorbidities and polypharmacy, are underrepresented in
clinical trials. Consequently, evidence on how such vulnerable
patients respond to treatment is lacking (6). As it is becoming
increasingly clear that patients are a heterogeneous group, in
current practice and guidelines, there is increasing recognition of
the need to individualize management of a patient’s disease. As a
promising strategy toward personalized medicine, N-of-1 studies
have been proposed as a design to determine the best treatment
for individual patients (7). In a N-of-1 trial, each individual
receives several treatments in a multiple crossover design,
allowing determination of the best intervention for an
n.org 2
individual patient. However, a drawback of this type of study is
that different points in time are compared with one another, and
thus results may be influenced by fluctuations that occur within
an individual over time (8).

In this context, a lack of awareness among clinicians of
variation in TSH levels within individual patients over time
could lead to under- or overdiagnosis of (subclinical) thyroid
diseases, or to inadequate prescription of thyroid medication to
patients with thyroid disease. Furthermore, if the variation in
TSH levels is not considered, this could lead to a distorted
interpretation of outcomes and results in scientific research.
Therefore, in this review we give an overview of the main
sources of within-person variation in euthyroid individuals to
provide insight into TSH variation within the normal range.
Additionally, available research on TSH variation in patients
with thyroid disease and/or using thyroid medication will be
discussed. Moreover, the potential underlying biological
mechanisms and the clinical implications of within-person
variation in TSH levels are reviewed. Much is known about the
short-term within-person variation in TSH levels. However,
long-term variations in TSH levels are rarely investigated in
longitudinal studies and more often in cross-sectional studies. In
this review, evidence from both cross-sectional and longitudinal
studies is described. Literature research was mainly performed
using PubMed in the first 8 months of 2020.
SOURCES OF WITHIN-PERSON
VARIATION IN TSH LEVELS

Pulsatile Secretion
TSH is secreted in a basal (non-pulsatile) and in a pulsatile
manner by the anterior pituitary gland (9, 10). The feedback
control by mainly T3 and T4 from the thyroid gland, together
with the feedforward control by mainly thyrotropin-releasing
hormone (TRH) from the hypothalamus, tightly regulate TSH
secretion. It is also important to note that other hormones,
including leptin, somatostatin, and dopamine, are known to
influence the secretion of TSH, albeit to a lesser extent (11–
15). The frequency, size, and duration of a secretory burst (i.e.,
pulse) of TSH is determined by the interplay between these
feedback and feedforward signals.

Studies on Pulsatile Secretion
In 1978, Weeke et al. found short-term variations with a mean
cycle-length of 31 min in serum TSH concentrations measured
February 2021 | Volume 12 | Article 619568
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in blood withdrawn every 5 min starting in the evening for 6 to
7 h in five healthy men (4). Using spectral analysis together with
periodic regression analysis in a study with frequent blood
sampling, pulsatile secretion of TSH was detected with
periodicities of 60 or 85–100 min in six out of the ten healthy
volunteers (10). The mean pulse frequency of TSH levels was
found to be 13 pulses (range 10–18) per 24 h in blood withdrawn
every 10 min in six healthy subjects (9).

Deconvolution Analysis to Detect Pulsatile Secretion
Several techniques can be used to determine pulsatility in TSH
serum concentrations, but deconvolution analysis is most
commonly used in 24-h time series data. Keenan et al.
developed a deconvolution analysis algorithm by which a 24-h
hormone concentration profile is decomposed into underlying
secretory bursts, basal secretion, elimination of previously
secreted hormone, and random experimental variability (16–
18). Therefore, deconvolution analysis can be used to assess
the frequency, size, and duration of a hormone pulse. The
algorithm in the software program MATLAB (the MathWorks,
Inc., Natick, MA) first detrends the data and normalizes
concentrations by converting them to values between 0 and 1
(18). This step is performed to normalize the span of diverse
values in separate datasets so that all have a comparable chance
of detecting pulses, despite variable baselines. Second, successive
potential pulse-time sets, each containing one fewer burst, are
created by a smoothing process. Finally, a maximum-likelihood
expectation deconvolution method estimated all secretion and
elimination rates simultaneously for each candidate pulse-time
set. Deconvolution analysis determines secretory bursts and
thereby calculates which part of TSH was secreted in a
pulsatile manner within a 24 h time period. The “remaining
part” of the 24-h TSH concentration that cannot be explained by
secretory bursts, is called non-pulsatile or basal. It is therefore
assumed in this model that the basal secretion is constant during
the day. However, it is not known whether there is a constant
tonic release of TSH from the pituitary or that it might be
variable over time like insulin, which was studied by using portal
vein sampling (19).

Example of Concentration Profile and Secretion Rate
Figure 1 presents an example of a fictional 24-h TSH
concentration profile and a corresponding fictional secretion
rate diagram. In the top figure, a pulse, and the mode, which is
the time it takes before the pulse reaches its maximum, is
indicated. In the bottom figure, the secretion rate is depicted,
with an indication of the pulsatile and the non-pulsatile part of
the TSH secretion.

Characteristics of Pulsatile Secretion
In a study with 38 healthy individuals, including 20 women and
18 men, with a mean age of 41 years (range, 25–64 years), the
mean [standard error of the mean (SEM)], number of pulses
(secretory-burst frequency) was determined as 16.7 (0.091) per
24 h with a mean mass per pulse of 0.90 (0.06) mU/L (20).
Furthermore, the mean (SEM) time before the pulse reaches its
Frontiers in Endocrinology | www.frontiersin.org 3
maximum (mode) was calculated as 20.0 (2.0) min. The fast
component of the half-life of TSH, which is effected by the
advection and diffusion of TSH, is generally set to be estimated
FIGURE 1 | Schematic representation of a fictional 24-h thyroid-stimulating
hormone (TSH) concentration profile (top) and secretion rate (bottom). The
top figure represents an example of a 24-h TSH concentration profile starting
at 09:00 h. A pulse and the mode of one pulse, which is the time it takes
before the pulse reaches its maximum, are indicated. The bottom figure is a
schematic representation of an example of the secretion rate, which can be
determined by deconvolution analysis. The basal tonic (or non-pulsatile)
secretion and the pulsatile secretion together contribute to the total TSH
secretion.
February 2021 | Volume 12 | Article 619568
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by deconvolution analysis between 17 to 26 min (21). The slow
half-life, which is affected by the irreversible metabolism and
elimination of TSH, is set between 66 to 93 min. The mean
(SEM) fast half-life was calculated as 22.6 (1.0) min and the slow-
phase half-life 104 (2.9) min in these healthy individuals (20). No
differences were found between men and women (22, 23).
Similar results were obtained in a group of 38 healthy older
individuals, including 20 men and 18 women, with an average
age of 65 (range 52–76) years, although the slow half-life was
lower in this group (on average 78.1 min) (24).

Circadian Rhythm
The greatest impact on variations in serum TSH concentrations
has been observed for the sampling time (25, 26), which is caused
by the circadian rhythm of TSH. This daily cycle of 24 h is driven
by the biological clock of the suprachiasmatic nucleus (SCN). In
general, it has been observed that TSH levels reach a maximum
between 02:00 and 04:00 h in healthy individuals (5, 20, 27–30).
The minimum (i.e., the nadir) of the circadian rhythm of TSH
occurs during daytime (4, 5, 27, 28, 31).

Cosinor Analysis to Detect Circadian Rhythmicity
To illustrate the circadian rhythm of TSH, we included an example
(see Figure 2) of a fictional 24-h TSH concentration profile and
drawn a cosinor model and its parameters. Cosinor analysis can be
used to determine whether a 24-h concentration profile displays a
Frontiers in Endocrinology | www.frontiersin.org 4
sinusoidal circadian rhythm. Cosinor analysis is a model-dependent
method which fits a cosinor function to the raw data (32). First, the
rhythm detection test, also called the zero-amplitude test, is
performed to test the overall significance of the cosinor model. If
this model fits significantly, it determines among others the midline
estimating statistic of rhythm (MESOR), which is a circadian
rhythm-adjusted mean based on the parameters of a cosine
function fitted to the raw data. In addition, the amplitude is
provided, which is the difference between the maximum and
MESOR of the fitted curve. The acrophase represents the time of
the maximal value assumed by the curve. Furthermore, the nadir,
the lowest point of the cosinor model, is calculated based on the
MESOR and the amplitude. Other methods that can be used to
examine the circadian rhythmicity of a 24-h TSH concentration
profile are for example a modified cosine function (21, 33), a locally
weighted polynomial regression analysis (24, 34), or a periodic
spline analysis (5).

Circadian Rhythm in Thyroid Disease
TSH secretion patterns have also been studied in treated and
untreated primary hypothyroidism patients, which has been
reviewed previously (29). In seven patients with primary
hypothyroidism on T4 therapy and eight patients with primary
hypothyroidism on combined therapy (T3/T4) for more than 3
months, a circadian rhythm with a nocturnal rise persisted (35).
Also another study in eleven primary hypothyroid patients on
stable T4 replacement therapy showed retention of the circadian
rhythm in TSH secretion (36). However, in untreated primary
hypothyroid patients, 24-h TSH secretion was increased and the
nocturnal surge was often decreased or absent while the pulse
frequency was similar compared to euthyroid controls (37–41).

Circadian Rhythm and Ageing
In a population of euthyroid individuals, mean levels of TSH
differ with age, but some studies showed that the circadian
rhythm does not change with age (5, 27). In contrast, others
reported a diminished nocturnal TSH surge in older subjects
compared to young controls (42, 43) and an advanced (earlier)
shift of the onset of the nocturnal surge of TSH with increasing
age (23).

Seasonality
Multiple studies showed that TSH levels are subject to change of
season. Evidence for such circannual variation in serum TSH
comes from cross-sectional studies, but also from longitudinal
studies. In general, TSH levels were highest in winter season.

Cross-Sectional Studies on Seasonality
Several cross-sectional studies found higher TSH levels in euthyroid
individuals without thyroid disease whose blood withdrawal for
TSH measurements was performed in autumn or winter seasons
compared to individuals with blood withdrawals for TSH
measurements in spring or summer seasons. An impressively
large American study using 465,593 TSH measurements of
324,750 individuals without thyroid disease aged 1–104 years
showed that the upper TSH limit of the 95% reference interval
FIGURE 2 | Schematic representation of a fictional 24-h thyroid-stimulating
hormone (TSH) concentration profile with cosinor model parameters. A
cosinor model with its parameters is drawn on the same fictional 24-h TSH
concentration profile of Figure 1 to illustrate the circadian rhythm of TSH.
Cosinor analysis calculates the midline estimating statistic of rhythm (MESOR),
which is a circadian rhythm-adjusted mean, the maximum, the nadir
(minimum), the amplitude, and the acrophase, which is the time at which the
cosinor model reaches its maximal value.
February 2021 | Volume 12 | Article 619568
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was significantly higher in December (6.06 mU/L) than in August
(4.31 mU/L) for both sexes and all age groups (5). The lower limit of
the 95% reference interval was 0.5 throughout the year. Barchetta et
al. found in 294 Italian euthyroid subjects with a mean age (SD) of
48.5 (12.4) years higher mean TSH levels in individuals evaluated in
autumn or winter seasons (2.3 ± 1.3 µU/ml) compared with
individuals who had their blood samples taken in spring or
summer seasons (1.8 ± 1.1 µU/ml, p = 0.03) (44). Also in a large
group (N=206,486) of patients (health check-ups, inpatient and
outpatient visits) in Peking, it was observed that median TSH
concentrations were highest in winter (1.96 ± 0.128 mU/L) and
lowest in summer (1.86 ± 0.111 mU/L) (45). Likewise, mean
monthly TSH levels were highest in December in groups of
middle-aged and older Italian euthyroid individuals using 8,310
laboratory TSH measurements (46).

Longitudinal Studies on Seasonality
Similar results were obtained when the seasonality of TSH levels
was investigated in longitudinal studies, with repeated
measurements in the same individuals. Maes et al. showed that
08:00 h fasting TSH levels were highest in December and lowest
in June when performing monthly blood sampling for 1 year in
26 Belgian healthy subjects with a mean age (SD) of 38.7 (13.4)
years (47). When clustered per season, highest mean (SD) TSH
levels (1.85 (1.02) mU/L) were observed in autumn (21
September–20 December) and lowest (1.48 (0.72) mU/L) in
spring (21 March–20 June) (47). Furthermore, TSH levels were
higher in the winter and spring seasons compared to summer
and fall seasons (maximal difference of 0.30 mU/L) in a large
group of Korean euthyroid subjects (N=28,096) who had on
average 3.1 tests per person during a median (interquartile range
(IQR)) follow-up of 36 (22–53) months (48).

Studies With No Statistically Significant Seasonality
A few studies found higher TSH levels in winter/autumn
compared to summer/spring, but were unable to demonstrate
statistically significant seasonality in TSH. For example, no
significant seasonal variation in TSH levels was found in a
cross-sectional Italian study of a large cohort of 11,806
euthyroid subjects with a median (IQR) age of 49 (37–61)
years (49). Nevertheless, median (IQR) TSH values were
slightly higher in December [1.46 (0.90–2.20) mU/L] and
January [1.46 (0.90–2.16) mU/L] compared to all other
months, with lowest median (IQR) TSH levels of 1.39 (0.90–
2.10) in April (49). Likewise, no significant seasonal difference
was present in a small subset of 159 subjects of this study in
which TSH was measured twice in the same year (49). In 152
Iraqi euthyroid subjects with a mean (SD) age of 32.24 (12.05)
years who had their TSH levels measured in both summer and
winter seasons, no significant difference was found between
summer [mean (SD) of 2.34 (1.25) mU/L] and winter [2.25
(1.25) mU/L] measurements (50). Andersen et al. found 8%
higher serum TSH concentrations in autumn and winter than in
spring and summer using monthly blood samples in 15 healthy
Danish men with an age range of 24–53 years, but this difference
was not statistically significant (51).
Frontiers in Endocrinology | www.frontiersin.org 5
Seasonality in Thyroid Disease
In addition, comparable annual changes were observed in Japanese
treated and untreated patients with thyroid disease aged > 20 years
(using 1,637,721 TSH measurements) with median TSH levels of
1.46 (range 0.01–769.1) µU/ml in winter and 1.31 (0.01–594.8)
µU/ml in summer (52), and in Korean patients (mean (SD) age of
48.6 (11.6) years) with subclinical hypothyroidism without
medication (N=1,751) with a maximal TSH difference of 0.69
mU/L (48). Median TSH levels were highest in January compared
to other months in 3,934 L-T4-treated athyreotic patients with a
median (IQR) age of 50 (41–59) years of an Italian cross-sectional
study (49). Additionally, in a subset of 119 patients [mean (IQR) age
of 46 (39–59) years] with one blood withdrawal taken in winter and
one in summer, median (IQR) TSH levels were higher in winter
season [0.80 (0.22–1.44) mU/L] compared to summer season [0.20
(0.06–0.70) mU/L] (49). Furthermore, although the 10 (aged 32 to
66 years) (53) and 7 (aged 27 to 66 years) (54) primary hypothyroid
patients in two longitudinal Japanese studies received constant doses
of levothyroxine (L-T4), their unstimulated TSH levels and TSH
levels after TRH stimulation were higher in winter compared to
summer. In contrast, no significant difference was found in mean
(SD) TSH levels measured in 25 subclinical hypothyroid patients
with a mean (SD) age of 36.44 (14.82) years in winter [6.04 (1.17)
mU/L] compared to summer [6.64 (1.60) mU/L] in Iraq (50).

Seasonality and Ageing
Whether the circannual rhythm of TSH changes with ageing is
not clear, one study showed that the seasonal changes were
independent from age (55), but another study showed that the
circannual rhythm of TSH was stronger in middle-aged and
older subjects compared to young subjects (46). In summary,
studies showed that TSH levels were higher during winter than
during other seasons in both euthyroid individuals as well as in
patients with thyroid disease, but the influence of age on the
seasonality of TSH concentrations is unsettled.

Ageing
Numerous studies, both cross-sectional and longitudinal, have
shown that TSH levels differ with age, with in general higher
mean levels with increasing age. A longitudinal study (N=908)
with a follow-up of 13 years found that mean (SD) serum TSH
concentrations increased from 1.49 (0.79) to 1.81 (0.96) mU/L
with the largest difference in subjects aged 60+ years (56).
Another longitudinal study in 533 healthy older individuals
(65+ years) found a mean (SD) increase of 0.28 (1.4) mU/L in
13 years of follow-up (57). In a cross-sectional retrospective
analysis of 465,593 TSH measurements of 324,750 individual
without thyroid disease, the 97.5% reference interval increased
from 6.25 mU/L in subjects aged 21–40 years, to 6.55 (41–60
years), to 6.80 (61–80 years), to 7.55 mU/L in subjects aged 80+
years (5). A similar increase was observed in another cross-
sectional retrospective study in 1,388 healthy subjects with a
mean (95% reference interval) of 1.30 (0.39–4.29) mU/L in the
group of 20–29 years and 1.96 (0.63–6.15) mU/L in the 70+
group (58). Boucai et al. observed an increase in serum TSH
concentrations over different age groups with median (2.5–97.5%
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interval) levels of 1.30 (0.40–3.98) in the 20-to-29-years-old-
group and 1.99 (0.44–6.92) mU/L in over-80-years-old-
group (59).

Clinical Trials in Older Persons With Subclinical
Hypothyroidism
One potential school of thought states that age-related changes in
hormone levels, including TSH, contribute to health problems in
older individuals. It is therefore an ongoing debate whether TSH
levels should be “normalized” in older individuals to prevent age-
related loss in functioning or whether the upper reference limit for
TSH should be adapted according to age (60). In line with the
increase in mean TSH levels with age, the prevalence of subclinical
hypothyroidism is also increasing, which is defined as an elevated
TSH level that occurs in conjunction with a serum fT4
concentration within the normal range (61, 62). Therefore,
recently, two relatively large (N=737 and N=251) randomized
placebo-controlled clinical trials (RCTs) have been performed in
which older persons with subclinical hypothyroidism received
levothyroxine (L-T4) or placebo supplementation (63, 64). The
two primary study outcomes were the change in the hypothyroid
symptoms score and tiredness score from the thyroid-related quality
of life patient-reported outcome (ThyPRO) questionnaire from
baseline to 1-year follow-up. Although TSH levels in participants
receiving L-T4 treatment declined, there was no beneficial effect
on their thyroid-related symptoms compared to the placebo group
(63, 64). Along the same line, a systematic review and meta-
analysis provided evidence that the use of thyroid hormone
therapy was not associated with improvements in general
quality of life or thyroid-related symptoms in RCTs with a
follow-up of 3–15 months (65).

TSH and Human Longevity
In fact, higher TSH levels might even be beneficial for healthy
ageing and longevity. Older individuals from the Leiden 85-Plus
Study with elevated serum TSH levels without thyroid disease
were not at risk of increased morbidity and may have a
prolonged life span (66). We have previously reported that the
offspring of long-lived families, who have the propensity to reach
an advanced age with limited clinical issues, seem to have higher
levels (within normal range) of serum TSH and total 24-h
secretion of TSH (67). Other studies have also shown that
centenarians as well as their offspring had a higher level of
TSH when compared to age matching controls (68, 69). Thus,
these studies support the hypothesis that elevated TSH levels
with ageing are not necessarily unfavorable.

Other Sources of Within-Person Variation
in TSH Levels
TPO-Ab Positivity
Evidence for the influence of several other factors on the within-
person variation in TSH levels can be found in literature. For
example, a positive association was found between thyroid
peroxidase (TPO)-antibody positivity and TSH levels during
early pregnancy in a large (N=11,212) individual participant-
based meta-analysis (70). Similarly, a positive correlation
Frontiers in Endocrinology | www.frontiersin.org 6
between TPO-Ab positivity and TSH levels was observed,
cross-sectionally as well as over months, within 21 individuals
with subclinical hypothyroidism (60, 71).

BMI and Obesity
Furthermore, a positive correlation between TSH levels and body
mass index (BMI) was found in a population-based (N=8,727)
cross-sectional study (72). Similarly, median (IQR) TSH levels in
obese (BMI ≥ 30 kg/m2) euthyroid subjects were somewhat
higher [1.53 (1.07–2.23) vs. 1.47 (1.04–2.12) mU/L] than in the
reference group (18.5–24.9 kg/m2) in a cross-sectional study with
11,224 participants (73). Moreover, TSH levels decreased
significantly 12 months after weight loss due to bariatric
surgery in 949 euthyroid patients with morbid obesity, which
was more pronounced in the high-normal TSH group (74). BMI
was positively associated with basal TSH secretion in healthy
individuals, but not with pulsatile or total TSH secretion, and a
higher BMI was associated with a delay in the nocturnal onset of
the TSH surge in 117 healthy subjects with a mean age of 43
(range 22–77) years and a mean BMI of 26.8 (range 18.3–39.4)
kg/m2 (23). In contrast, TSH levels were not different between a
small group of overweight women (N=22) and women with
normal weight (N=30) (75).

Selenium, Iodine, and Smoking
Although selenium deficiency is associated with impaired thyroid
function, there is no evidence for a direct effect of selenium intake
on TSH levels in individuals without severe selenium deficiency
(76). Also, iodine intake can influence TSH levels; a positive
correlation was found between urinary iodine concentrations and
TSH levels in a large (N=6,565) Korean dataset (77). However, more
research on the direct relationship between iodine intake and TSH
levels is necessary. In the same Korean study, it was observed that
mean serum TSH levels were lower in current smokers than in non-
smokers, which was more apparent in iodine-deficient subjects (78).
Other studies also showed that smoking is associated with lower
TSH levels with modestly higher fT4 levels (79–81), which was
reviewed before (82, 83).

Severe Illness
Critically ill patients exhibit a decrease in serum concentrations
of thyroid hormones but with TSH levels in the normal range or
slightly decreased, which is known as non-thyroidal illness
syndrome (NTIS) or euthyroid sick syndrome (ESS). These
effects of severe illness on thyroid function have been reviewed
by others (84, 85). Another study found that pulsatile TSH
secretion is diminished in 26 critically ill patients with a mean
(SEM) age of 63 (2) years (86, 87).

Drugs and Xenobiotics
Many drugs can also affect thyroid function, including
glucocorticoids, lithium, amiodarone, and antiepileptic drugs.
A comprehensive review on the effects of drugs on TSH levels
can be found elsewhere (88). Other xenobiotics, such as
environmental endocrine disrupters, also have a large influence
on thyroid parameters and metabolism (89).
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POTENTIAL UNDERLYING BIOLOGICAL
MECHANISMS OF WITHIN-PERSON
VARIATION IN TSH LEVELS

Potential Underlying Mechanisms of
Pulsatile Secretion
The main sources of within-person variation in TSH levels have
been discussed, but what are the biological mechanisms that
underlie the sources of within-person variation in TSH levels?
One of the main roles of the HPT axis is to respond to
environmental changes in order to maintain homeostasis. TSH
is a key player in this system, which is responsible for maintaining
constant circulating levels of thyroid hormones within the normal
ranges over time. TSH is highly responsive to different stressors,
including inflammation (90) and environmental endocrine
disrupters (89). To be able to respond quickly to changes in the
environment, TSH is secreted in a pulsatile manner and the
half-life of TSH is relatively short (17 to 93 min). It is not known
whether T3 and T4 are secreted in a pulsatile manner from
the thyroid gland. The half-lives of T3 and T4 are much
longer (0.75 and 6.7 days respectively) than that of TSH (27).
Free T3 exhibits a minor circadian rhythm and fT4 does not
exhibit a circadian rhythm (27). However, it is not completely
clear why TSH fluctuates in periods of minutes, hours, and
months while fT4 levels stay relatively constant over time.
Other pituitary hormones also have a short half-life and
fluctuate over time—they are all designed to adapt in response
to changes in the environment—while levels of peripheral
hormones are more stable over time. For example, within the
somatotropic axis, growth hormone (GH) is secreted in a pulsatile
manner and fluctuates strongly over 24 h, while insulin-like
growth factor 1 (IGF-1) is relatively stable over 24 h. It is
known that manipulations of GH and IGF-1 have shared, but
also distinct effects (91). Therefore, a hypothesis could be that
TSH affects, besides similar, also different mechanisms and
processes in the human body than thyroid hormones, which
may explain the distinct fluctuations in levels over time between
TSH and thyroid hormones. In line with this hypothesis it was
observed, among others, that TSH receptors were located on T
cells in the thymus and that TSH directly—independent of
thyroid hormones—has an influence on the maturation of these
T cells (92).

Potential Underlying Mechanisms of
Circadian Variation
The biological mechanisms that underlie the daily fluctuations in
TSH levels are most likely related to the biological clock. The
biological clock of the SCN drives the circadian rhythm of several
processes, including hormones. The biological clock directly
influences the circadian rhythm of TSH, but it was also found
that the circadian rhythm of TSH is partly determined by the
circadian rhythm of cortisol, which is completely dependent on
the SCN (93). The circadian rhythms of TSH and cortisol are out
of phase; TSH has a nocturnal surge in the early night while
cortisol has its nadir around that time and its peak in the early
morning. The circadian rhythms of cortisol and TSH being out-
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of-phase can be explained by the inhibitory influence of cortisol
on serum TSH concentrations (94–98). Additionally, a strong
negative cross-correlation between cortisol and TSH
concentrations, with TSH following cortisol concentrations in
the opposite direction after a time delay of 170 min, was observed
in 38 healthy older individuals (99). Also, the biological clock
influences processes of the sympathetic and parasympathetic
nervous system. Differences in sympathetic/parasympathetic
tone could possibly lead to alterations in end organ sensitivity,
such as the thyroid gland. Although it is speculative, it could be
suggested that the thyroid gland is less sensitive to TSH during
the night and during winter seasons, and therefore higher TSH
levels are required to keep fT4 levels constant. It is also known
that other physiological processes exhibit a circadian rhythm,
including metabolic processes. TSH plays an important role in
metabolism and might therefore exhibit parallel fluctuations.
TSH plays an important role in energy balance and distribution.
Energy requirements also fluctuate over time, during the day as
well as during seasons. Furthermore, it has been is hypothesized
that TSH plays a role in maintenance and repair mechanisms,
including bone turnover (100). These processes fluctuate over
time, with a bone resorption marker, C-terminal cross-linked
telopeptide of type 1 collagen (CTX-I), exhibiting a strong
circadian rhythm (101).

Potential Underlying Mechanisms of
Seasonality: Environmental Temperature
A number of potential mechanisms may explain the circannual
changes in TSH levels, with environmental temperature being
the most apparent explanation which has been reviewed before
(102). Two studies in healthy individuals and one study in
patients with primary hypothyroidism under L-T4 treatment
indeed observed a significant negative correlation between TSH
levels and the environmental temperature (45, 48, 53). It is
important to note that these studies were performed in Korea,
China, and Japan where the environmental temperature is very
low in winter. In contrast, two Italian studies did not find a
significant correlation between TSH levels and environmental
temperature (46, 55). It becomes less cold in winter in Italy than
in Asia, which could explain the discrepancy in results. The
seasonal fluctuation might therefore be more pronounced in
particularly cold climates. Most studies on circannual changes in
TSH levels were performed in the United States, Asia, and
Europe. However, some studies were performed in Antarctica
and at the South Pole, where the effect of long-term cold
exposure could be studied in personnel of the McMurdo and
South Pole research stations. Mean TSH levels increased by
approximately 30% during a 9-month Antarctic residence in
nine healthy young subjects (103) and the TSH response to TRH
increased by approximately 50% in 17 healthy young men (104).
Similarly, mean TSH levels increased in ten healthy men after a
54-weeks Antarctic expedition (105) and comparable results
were obtained in a larger study of 187 workers at the
McMurdo and South Pole research stations (106). These
changes in thyroid function are known as the polar T3
syndrome, which is not only characterized by increased TSH
levels, but also by alterations in T3 kinetic parameters such as an
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increase in serum clearance of T3, possibly explained by
increased tissue uptake (107). This thyroidal response to cold
might be required to keep the core body temperature constant.
Further support for the effect of environmental temperature on
TSH levels are observations in bears. In a study with six
American black bears it was found that the TSH response to
TRH administration was prolonged, delayed, and exaggerated
during hibernation in winter while (f)T3 and (f)T4 levels were
decreased (108). In addition, T3 levels increased stronger after
TRH administration during hibernation than after hibernation.

Potential Underlying Mechanisms of
Seasonality: Length of Day
Studies in animals indicated that length of day, and possibly
melatonin (109), plays a role in the seasonal variation in TSH
levels, which has been reviewed by others (110). Animals that breed
seasonally exhibit seasonal variations in numerous processes and
functions, including reproduction, fattening, hibernation, and
migration, which are regulated via photoperiod-regulated systems.
It was for example found that the simulation of a long-day in the
quail induced the secretion of TSH from the pars tuberalis (PT) of
the anterior pituitary gland (111). Moreover, light induced the
expression of the gene encoding type 2-iodothyronine deiodinase
(Dio2), which converts T4 to T3, in quails (112). The underlying
mechanism is possibly that TSH and/or thyroid hormones stimulate
the secretion of gonadotropin-releasing hormone and gonadotropin
leading to gonadal growth, which is important for reproduction
(111, 113). Humans however are not seasonal breeders, so these
mechanisms could be of greater importance in animals than in
humans. Nevertheless, understanding the seasonal mechanisms
in animals might lead to better understanding of seasonality in
humans. The thyroid also plays a role in other transitions to
different physiological states that exist in nature, for example in
the metamorphosis of the tadpole to a frog (114–116).

Potential Underlying Mechanisms of Age-
Related Changes
Several hypotheses exist why there is an increase in population
TSH levels with increasing age (117, 118). At a population level,
the higher median TSH levels in older individuals compared to
younger individuals might be explained by 1) age-dependent
selective survival of individuals with elevated TSH levels or by 2)
a birth cohort effect since different birth cohorts have been
exposed to different environmental factors which could have
influenced their TSH levels. At the organism level, age-related
increase in TSH levels might be caused by 1) decreased TSH
bioactivity, 2) diminished response of the thyroid gland to TSH
stimulation, or 3) diminished sensitivity of the pituitary and/or
hypothalamus to the negative feedback of thyroid hormones. The
last hypothesis however would be associated with an increase in
thyroid hormone levels, which is not supported by literature. The
lack of evidence for increased thyroid hormone levels in response
to diminished sensitivity of the pituitary and/or hypothalamus
could be explained by enhanced thyroid hormone turnover in
peripheral tissues or greater clearance of thyroid hormones from
the circulation (67).
Frontiers in Endocrinology | www.frontiersin.org 8
CLINICAL IMPLICATIONS OF WITHIN-
PERSON VARIATION IN TSH LEVELS

TSH levels fluctuate over time within a person, both in euthyroid
individuals and in most patients with thyroid disorders. If
clinicians are not aware of fluctuations in TSH levels within an
individual patient, this could lead to under- or overdiagnosis,
and to inadequate prescription of thyroid medication to patients
with thyroid disease. Since the mean TSH levels and the
prevalence of subclinical hypothyroidism is increasing with
age, this is especially important for the diagnosis and follow-up
of older patients. Also, for clinical scientific research is it
important to consider within-person variations in TSH levels
over time, since this could cause more heterogeneity in
research outcomes.

Season of Testing and the Transition of
Subclinical Hypothyroidism to Euthyroid
Whether the sampling time has an influence on the assignment
of an individual to a clinical category of thyroid status is not
known. In contrast, it was shown that the season of thyroid
testing played a role in the transition of patients between
subclinical hypothyroidism and euthyroid status (48). In a
large (N=29,847) retrospective longitudinal study, 57.9% of
subclinical hypothyroid individuals (N=1,751) reverted to
euthyroid TSH levels during a median follow-up of 36 months.
Normalization of subclinical hypothyroidism to euthyroidism
was increased during summer-fall follow-up. The opposite was
true as well; the transition from euthyroidism to subclinical
hypothyroidism was more likely in individuals who had their
follow-up TSHmeasurement in winter or spring (48). Also, other
studies showed that TSH levels of patients with subclinical
hypothyroidism can normalize to euthyroid levels without
intervention. In total, 40% of the participants (N=2,936) aged
above 65 years from a longitudinal follow-up study, the
Birmingham Elderly Thyroid Study, who classified as being
subclinical hypothyroid at baseline normalized to euthyroid
status without intervention over a period of 5 years (119).
However, the authors also concluded that TSH concentrations
were quite stable over time; 61% of the participants had a
repeated TSH concentration within 0.5 mU/L of their original
result. A small study (N=107) found that 37.4% of older
(above 55 years) patients with subclinical hypothyroidism
showed normalization of their TSH levels during a mean
(range) follow-up of 31.7 (6–72) months (120, 121). Whether
the normalization was related to the season in which follow-
up measurements were taken was not reported in these
two studies.

Clinical Reference Range
Studying the within- and between-person variations in TSH levels
revealed that the within-person variation is smaller than the
between-person variation (3, 60, 122). A seemingly small change
in TSH level within the population reference interval might
therefore be large—and potentially even pathological—for an
individual. Indeed, a meta-analysis showed that variations in
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TSH levels within the population reference range are associated
with adverse health outcomes, including cardiovascular risk factors,
metabolic parameters, and increased risk of osteoporosis and
fracture (123). It has therefore been recommended to determine
individual trends and variations in experimental clinical research,
and thereby even establish one’s individual TSH reference range, by
performing repeated measurements (124). Although this strategy is
not feasible in routine clinical practice, it might be worthwhile to
explore the possibility to monitor patients who are diagnosed with
Frontiers in Endocrinology | www.frontiersin.org 9
subclinical hypothyroidism more regularly since their TSH level is
often close to the upper reference limit. Procedures for regular
monitoring of a subclinical hypothyroid patient’s TSH levels have
been recommended by others (60). Moreover, Hoermann et al.
stated that there should be more attention in clinical practice for
the interrelationships between TSH and thyroid hormones (125).
Mathematical models have shown that the relationship between
TSH and fT4 is not log-linear as previously thought, but much
more complex, dynamic, and individual (125).
FIGURE 3 | Graphical summary of 1) the potential underlying biological mechanisms of within-person variation in thyroid-stimulating hormone (TSH) levels over time,
2) the main sources, and 3) the clinical implications. The main topics discussed in this review are illustrated. The main sources of within-person variation in TSH levels
over time are pulsatile secretion, circadian rhythm, seasonality, and ageing, as illustrated in 3.2. The main hypotheses for the underlying mechanisms of within-person
variations are illustrated in 3.1. The pituitary needs to respond quickly to changes in the environment to maintain homeostasis, which is one of the potential
underlying biological mechanisms of pulsatile secretion of TSH. The biological clock regulates the circadian rhythm of many physiological processes including pituitary
hormones and energy metabolism. The seasonality in TSH levels are possibly caused by changes in environmental temperature, with studies indicating generally
highest levels during winter season. Multiple studies showed that on a population level, TSH levels generally increase with age. However, the size and rate of the
increase within an individual is not completely clear. Finally, the implications of within-person variation in TSH levels over time for clinical practice and scientific
research are illustrated in 3.3. Within-person variation in TSH levels is not only present in healthy euthyroid individuals, but also seen in patients with (un)treated
thyroid disease. It occurs frequently that subclinical hypothyroid patients normalize to euthyroid levels over time without intervention and the season of thyroid testing
plays a role in the transition of patients between subclinical hypothyroidism and the euthyroid status. We recommend regular monitoring of an individual’s TSH levels
by obtaining repeated measurements so different sources of within-person variations can be considered.
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CONCLUSIONS

A graphical summary of this review is provided in Figure 3. TSH
levels fluctuate over time within a person, in euthyroid
individuals as well as in most (un)treated patients with thyroid
disorders, ranging from minutes, hours, months, to years. These
within-person variations in TSH levels are mainly caused by
pulsatile secretion, circadian rhythm, seasons, and ageing. If TSH
is fluctuating around the upper reference range limit, these
marginal changes could lead to diagnosis of subclinical
hypothyroidism, especially in older adults. However, elevated
TSH levels can return to euthyroid levels in a short period of time
without intervention, which can be explained by the different
sources of within-person variation. Therefore, we recommend
considering the fluctuations in TSH levels and their potential
underlying biological mechanisms in clinical practice and when
performing clinical research. For example, by adaptation of the
TSH reference limits, specifically the upper TSH reference limit,
for the seasonal variations, circadian rhythm, and age. Future
studies should aim to find approaches to provide a more
personalized reference range for thyroid disease diagnosis and
clinical treatment which considers the different sources of
within-person variation in TSH levels. Moreover, we propose
that there should be more attention in clinical practice for the
Frontiers in Endocrinology | www.frontiersin.org 10
relationship between TSH and fT4 levels, for example using a
TSH-fT4 nomogram. Ideally, an algorithm will be developed
which includes the individual TSH-fT4 nomogram together with
the time of day and season of the blood sampling, the age of the
patient, and possibly other factors that influence TSH levels, such
as pre-analytical and analytical variation.
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