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The relationship between endocrine hormones and the spectrum of rheumatic conditions
has long been discussed in the literature, focusing primarily on sexual hormones, such as
estrogens, androgens, prolactin (PRL). Estrogens are indeed involved in the pathogenesis
of the main inflammatory arthritis thanks to their effects on the immune system, both
stimulatory and inhibitory. The PRL system has been discovered in synovial tissue of
rheumatoid arthritis (RA) and psoriatic arthritis (PsA), patients and has been propose as a
new potential therapeutic target. Besides sexual hormones, in the last years scientific
interest about the crosstalk of immune system with other class of hormones has grown.
Hormones acting on the bone tissue (i.e. parathyroid hormone, vitamin D) and modulators
of the Wnt pathway (i.e. Dickkopf-1) have been demonstrated to play active role in
inflammatory arthritis course, defining a new field of research named osteoimmunology.
PTH, which is one of the main determinants of Dkkopf-1, plays a crucial role in bone
erosions in RA and a correlation between PTH, Trabecular Bone Score (TBS) and disease
activity has been found in ankylosing spondylitis (AS). In PSA is under studying the
interaction among IL-17 and bone metabolism. The purpose of this review is to discuss
and summarize the recent data about the interaction between endocrine hormone and
immune system in the main rheumatic disorders, covering in particular the role of bone-
related hormones and cytokines. We will describe this relationship from a biochemical,
diagnostic and therapeutic perspective, with a particular focus on RA, PsA and AS.
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INTRODUCTION

Hormones are involved in various aspects of the immune response and rheumatic diseases. To date,
there is a considerable body of evidence on the relationship between sex hormones and
autoimmunity. In recent years, the scientific interest in the crosstalk between hormones and
cytokines acting on bone metabolism has also grown, even in rheumatology. Emblematic examples
are arthritic disorders such as RA, PsA, and AS.

Bone tissue is nowadays considered an ‘osteo-immune’ system and a principal actor in the
pathogenesis of many rheumatic diseases; for those reasons, in the last decade, the term
“osteoimmunology” has been increasingly used (1, 2).
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In the following paragraphs, we will discuss and review the
main concepts and the latest findings on the interplay between
hormones, cytokines, and bone in the main arthritic conditions
from a biochemical, diagnostic, and therapeutic perspective
without attempting to be comprehensive (Figure 1).

Bone remodeling is principally enacted by three types of cells:
osteoblasts, osteoclasts, and osteocytes. One of the primary
regulatory pathways of bone turnover is the Wnt/beta-catenin
signaling (the canonical Wnt pathway) (3). Wnt signaling induces
the commitment of the mesenchymal stem cell toward the
osteoblast line (osteoblastogenesis) and favors their maturation
and survival. In addition, in certain circumstances, it can also
reduce osteoclastogenesis and bone resorption by promoting the
osteoprotegerin (OPG) expression from the osteoblasts themselves
(4). Dickkopf-related protein 1 (Dkk-1) is a secretory glycoprotein
mainly expressed by osteoblasts and bone marrow stromal cells in
the late phase of osteoblast differentiation. Dkk-1 is a potent
inhibitor of the Wnt canonical pathway (5). Its role has also
been investigated in various pathological conditions: low Dkk-1
and sclerostin serum levels have been described in diffuse
idiopathic hyperostosis (6, 7), while its excessive overexpression
seems to correlate with osteolytic lesions in multiple myeloma (8),
with cortical erosions, low bone formation, and secondary
osteoporosis in rheumatoid arthritis (9, 10).

Scloeristin is another inhibitor ofWnt signaling, and it is secreted
mostly by osteocytes (11). Among the factors that influence Dkk-1
Frontiers in Endocrinology | www.frontiersin.org 2
and sclerostin, we find several hormones, such as estrogens,
androgens, parathyroid hormone (PTH) and vitamin D (12).

PTH is a polypeptide secreted by the parathyroid glands in
response to decreases in plasma calcium, other regulators of PTH
are 1,25- dihydroxyvitamin D, serum phosphate levels, and the
phosphaturic hormone fibroblast growth factor-23 (FGF23). PTH
acts via its own G protein-coupled receptors (GPCR) (Figure 2),
a transmembrane protein expressed in different organs (13, 14).
Parathyroid hormone 1 receptor (PTH1R) is expressed in bone and
kidney and regulates calcium ion homeostasis through activation of
adenylate cyclase and phospholipase C and the parathyroid hormone
2 receptor (PTH2R) that is expressed primarily in the central nervous
system, pancreas, testis, and placenta.

Vitamin D hormone, once metabolically converted in its
active metabolite, 1,25-dihydroxyvitamin D [1,25(OH)2D],
plays an essential role in calcium homeostasis and bone
metabolism. Vitamin D, by acting on different pathways, can
also modulate both the innate and adaptive systems thanks to its
ubiquitously distributed cellular receptor (vitamin D receptor or
VDR), which alters the transcription rates of target genes
responsible for the biological responses.

Another key molecule involved in bone turnover and the
immune system is the receptor activator of nuclear factor-kB
ligand (RANKL). Its stimulation on the macrophage/dendritic
progenitors leads to osteoclast differentiation (15), and its
expression has been observed not only in the bone marrow but
FIGURE 1 | Hormones and cytokines involved in bone metabolism in the main arthritic disorders. AS, anskylosing spondilits; Dkk-1, Dickopf-1; IL-, interleukin-; PsA,
Psoriatic Arthritis; PTH, parathyroid hormone; RA, Rheumatoid Arthritis; TNFalfa, Tumor necrosis factor alpha.
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FIGURE 2 | Schematic representation of PTH signaling via the PTH1R in bone. AC, adenylate cyclase; PTH, parathyroid hormone; PTH1R, parathyroid hormone 1
receptor, PLC, phospholipase C.
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also in lymphocytes and in the lymphoid tissues (16), where it
regulates the development of immune tolerance (7).

In recent years, lymphocytes, particularly T cells, have been
found to play an important role in the bone health regulation (8).
Lymphocytes play a dual role in the modulation of bone
remodeling: on one side, resting T cells, via INFg, inhibit
in vitro osteoclast differentiation; on the other, activated T cells
partake in the osteoclasts development (17).
ANKYLOSING SPONDYLITIS

AS is a chronic rheumatic disease characterized by inflammation
and extensive remodeling of the spine and joints. Eventually, it
can lead to the development of spinal syndesmophytes and extra-
articular enthesophytes (18). AS belongs to the spondyloarthritis
(SpA) spectrum, such as PsA and axial spondyloarthritis
(axSpA). These diseases are characterized by pathologic bone
formation involving primarily the entheses complex and, at the
same time, by cortical bone erosions (19).

Moreover, AS shows a dichotomous relationship with bone
metabolism: the pathological neoformation coexists with an
increased risk of fracture and impaired bone mineral density
(BMD) (20, 21) (Figure 1).

The Wnt pathway seems to be one of the key players involved
in the dual relationship with systemic bone metabolism found in
AS. Unsurprisingly, the role of Dkk-1 in this disease has been the
object of several investigations (22, 23). Rossini M. et al. (24)
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observed decreased serum levels of both Dkk-1 and sclerostin,
suggesting a link between excessive Wnt exposure and the new
focal bone formation. The Authors also reported a negative
association between Dkk-1, spinal BMD, and vertebral fractures.

One metanalysis published in 2018 concluded that Dkk-1
serum levels in AS patients seem to be comparable to healthy
controls (25). However, when the subanalysis considered only
the studies characterized by high degrees of structural
involvement (modified Stoke AS Spine Score >30), or increased
levels of serum C reactive protein (CRP), Dkk-1 was found to be
significantly reduced (25).

In addition, in AS patients, the incidence of osteoporosis is
varying from 18.7 to 62%, according to studies (26). The risk of
fracture is increased compared (27), despite normal or only
slightly reduced BMD values (28, 29).

Boussoualim K et al. evaluated AS patients through the
measurement of the Trabecular Bone Score (TBS) (30), an
algorithm that leads a better assessment of vertebral bone quality
(31), and documented an association between lower TBS values and
disease activity and, an inverse association between TBS and
parathyroid hormone (PTH) levels. Signaling through the PTH1R
has been suggested as one of the main pathways that regulate Dkk-1
in AS patients and other inflammatory conditions (32).

In our opinion, it should be emphasized that the contradictory
data on Dkk-1 in AS could be, at least in part, related to the
variability of PTH and of vitamin D, one of its main determinants,
whose metabolism could be impaired in inflammatory
conditions (33).
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Another relevant category of hormones implicated in
rheumatic condition are sex hormons and nowadays gender
medicine is an increasing topical issue.

The male-to-female ratio of SpA ranges approximately from
1:1 in patients with non radiographic-axSpA and 2:1 in patients
with AS (34) and has been demonstrated that the proportion of
female patients is significantly lower among the patients who
progressed from nr-axSpA to AS (35). Furthermore male
patients with AS have more severe radiographic damage than
female (36).

Even if underlying biological differences between men and
women with AS are still unknowns, estrogens are known to
modulate T cell differentiation, type 2 cytokine production (37)
and, in animal model, the inhibition of the differentiation of T
helper17 cells (38).

Gooren et al. reported in 22 male AS patients reduced levels of
testicular testosterone reserve, elevated levels of LH, inversion of
estradiol testosterone ratio and slightly increased estradiol. Levels of
estrogens (17b-estradiol) have been founded lower in active AS
patients disease than in those in remission state (39). To explore this
latter evidence, Jeong and colleagues have demonstrated how
estrogens can suppress the development of arthritis in SpA mouse
model, probably because estrogens inhibit Wnt signaling (40).
RHEUMATOID ARTHRITIS

RA is a chronic inflammatory disorder that leads to severe joint
damage and disability (41). The most studied type of bone
involvement in RA is the focal cortical bone loss (erosions).
However, we can indeed label RA as a “bone disease”: cortical
erosions, systemic bone loss (osteoporosis), and periarticular
bone loss contribute to the disease burden (Figure 1). Local
and systemic inflammation suppresses both bone formation and
erosion healing (42, 43). Focal bone impairment is the result of
the interaction between the dysregulated inflammation of the
synovial membrane (synovitis) with the surrounding bone
microenvironment. Eventually, this induces an excessive
differentiation and activation of the osteoclast line and the
development of cortical erosions (44).

At the systemic level, pro-inflammatory cytokines such as
TNF-alfa, interleukin1(IL-1), and interleukin 6 (IL-6) play a
crucial role in systemic bone impairment throughout, mainly
via the RANK/RANKL/OPG system (45).

Among the hormones involved in the pathogenesis of RA,
data suggest that PTH could play a significant role in
bone erosions.

Indeed, in RA patients has been documented an association
between joint erosions and higher PTH levels (10), probably in a
vitamin D-independent way. T lymphocytes are hypothesized to
promote PTH-induced osteoclastogenesis by increasing the
medullary stromal cell responsiveness to PTH itself (46). As
shown in both healthy and in subjects with primary
hyperparathyroidism (47), persistent PTH signaling increases
the RANKL/RANK pathway activity (48), negatively correlates
with sclerostin and positively with Dkk-1.
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As seen in AS (49), in mastocytosis with bone involvement
(50), and in other conditions, also in RA PTH is suspected to be
one of the main determinants of Dkk-1 serum levels (32).
Furthermore, in RA patients, Dkk-1 and PTH serum levels are
significantly higher, despite therapy with glucocorticoid (GC),
tumor necrosis factor-alfa inhibitors (TNFi) or bisphosphonates
(BPs) (32).

Different studies have remarked that levels of Dkk-1 in RA
patients correlate inversely with BMD, in particular at cortical
bone sites (32) and a significant association between low BMD
and focal bony erosions has been described (51, 52). RA patients
are generally characterized by increased diffuse bone loss
together with a higher risk for hip and vertebral fractures (53).

Simon and colleagues analyzed in patients affected by RA the
quantity and quality of intra-articular bone of the metacarpal
heads (54), which are one of the typical erosion sites (55). In their
study, a significant trabecular and cortical intra‐articular bone loss
was observed, similar to the impairment that characterizes the
bone microstructure after the menopause (54). These
microstructural features in RA patients correlate with disease
activity, with serum levels of pro‐inflammatory cytokines and, as
already mentioned, with serum levels of Dkk-1 and PTH, as a
consequence of a common pathological mechanism of both
inflammatory and metabolic nature (32, 56, 57). For these
reasons, we speculated that osteoporosis might be a significant
and independent determinant of bone erosions in RA (10). Similar
intra-articular microstructural alterations can also be secondary to
aging and/or estrogen deficiency, and have also been found in
extra-articular bone, such as the radius (58). Moreover, erosions
and low mineral density share many risk factors: anti-citrullinated
protein antibodies (ACPAs) (59, 60), disease activity, cigarette
smoking, alcohol consumption, hypovitaminosis D, corticosteroid
use, and aging (44). In line with this hypothesis, some osteoporosis
treatments seem to prevent erosions in RA. Denosumab (Dmab), a
monoclonal antibody that blocks RANKL, has been demonstrated
to stop the structural progression in RA (61). Furthermore, it
determines the increase in bonemass, especially in trabecular bone
areas, regardless of GC use (62).

The keystone that allows Dmab to perform this protective
effect is the inhibition of the osteoclast, a multinucleated cell that
contributes not only to the development of erosions in the
subchondral bone tissue but also to the destruction of the
mineralized cartilage (61).

In our opinion, overlooking the bone metabolic status in
osteoporotic RA patients might be one of the key determinants in
those patients whose erosions continue to progress despite
adequate treatment with DMARDs (63). To date, the meta-
analyses on effects of DMARDs on radiographic progression of
RA patients lack of BMD data, and this might represent an
important bias (63).

Teriparatide (TPTD), a PTH analog, is an effective drug used
in severe osteoporosis, with a completely different action than
Dmab (64). TPTD boosts bone formation biomarkers already
from the first month of treatment (64). Interestingly, long-term
stimulation with PTH analogue seems to increase serum Dkk-1
in women postmenopausal osteoporosis (65). And this
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observation is consistent with the demonstrated relationship
between serum levels of PTH, serum levels of Dkk1 and bone
erosions in RA patients (32). These data suggest that PTH might
contribute to determinate local DKK1 over-expression. Hence,
high serum PTH levels may enhance local bone resorption and
hinder bone repair by promoting DKK1 expression (32). Besides
the prevention of erosions, there is still controversy on the
possibility of their repairment over time. Apparently, this
might occur in some cases (66).

In different settings, TPTD has been suggested as a possible
treatment to enhance fracture healing. Furthermore, in a TNF-
transgenic murine model of RA, combination therapy with TPTD
and TNFi was associated with erosions repair (67). Unfortunately,
in a recent trial on RA subjects, this endpoint was not achieved
(68, 69). To explain this finding, one should remember that the
bone microenvironment might be permanently altered in the
setting of a longstanding inflammation. Therefore, this might
cause a permanent impairment in the number and
differentiation potential of the osteoblast progenitors (70), on
which TPTD is supposed to exert its function. Furthermore, the
chronically high serum PTH levels are associated with increased
bone porosity (71) and decreased cortical thickness, contributing
to the explanation for these disappointing results (68).

Ebina and colleagues compared the effects on joint erosions of
the three different classes of therapies (BPs, Dmab, and TPDT) in
biologic-naïve RA patients. Switching from BPs to Dmab was
found to be more effective than continuing BPs or switching to
TPTD in the prevention of structural progression (72).

As already mentioned, pro-inflammatory cytokines activate
the osteoclast line via the RANK/RANKL/OPG axis, and are
directly involved in bone complications (45). Pro-inflammatory
cytokines are currently the main targets of the most widely used
drugs for RA, i.e. TNFi and anti-IL6 receptor (IL-6R)
monoclonal antibodies.

TNFa contributes substantially to RA pathogenesis, and it is
involved in many pathways (73). Interestingly, some studies have
demonstrated its relationship with bone turnover cytokines (9,
74, 75). TNF-alfa increases Dkk-1 levels in synovial fibroblasts
both in vitro and in vivo, and it is correlated with the presence (9,
74) and the progression (75) of bone erosions.

On the other hand, in RA patients, TNFa inhibition
demonstrated bone metabolic effects by reducing Dkk-1 and
sclerostin serum levels (76, 77).

In RA, also IL-6 is strongly involved in bone loss through the
inhibition of the Wnt canonical pathway (78). A recent study
investigated the short-term effects of an anti-IL-6 treatment
(tocilizumab) on bone turnover markers (BMTs) in RA patients,
comparing it with TNFi and GCs (methyl-prednisone) (79). The
strong and prompt influence of TNFis on bone turnover markers
seen in previous studies (76) was not observed with the IL-6R
blockade. Indeed, no significant change was observed either for
sclerostin or Dkk-1 in the tocilizumab arm, while the arm
receiving TNFis showed a decrease in markers of bone
resorption and an increase in the markers of bone formation
(80). To explain this difference, the Authors hypothesized a slower
influence of tocilizumab on the Wnt pathway.
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As seen in other arthritis, sex hormones, especially estrogens,
are closely involved in RA. RA is more prevalent in women with a
female-to-male sex ratio of 4:1 (81), even if the reason is still
partially unclear. Estrogens can have both stimulatory and
inhibitory effects on the immune system, as described by Straub
(82), and estrogen exposure has been associated with increased
risk of RA due to pro-inflammatory action of these hormones
unbalanced with the anti-inflammatory one of androgens (82).
However it must be noted that two conditions characterized by a
low level of estrogens such as menopause and the use of anti-
estrogen agents have been associated with an increased risk of
developing RA (respectively HR, 2.1; (95% CI, 1.5–3.1) and OR,
2.4 (95% CI, 1.9–3.0) and OR, 1.9 (95% CI, 1.6–2.1) depending by
dose and time of anti-estrogens exposure) (83–85). Furthermore,
long duration of pharmacological estrogen exposure under oral
contraceptives (OCs), seems to protect from the development of
the disease, with a cumulative positive dose effect (86–88). Also the
pregnancy condition has been described as protective against RA,
probably thanks to a balance between progesterone to the high
level of estrogens (89–91). On the contrary the post-partum and
the lactating period, characterized respectively by a decline of
estrogens and by the release of prolactin (PRL), has been
consistently associated with an increased risk of RA (92).
Captivatingly, in a small study, levels of 17b-estradiol and other
hormones (progesterone, aldosterone and growth hormone) were
founded higher in synovial fluid (SF) of RA patient in comparison
to patients with osteoarthritis (93), suggesting a influencing roles
also at local sites.

PRL is a sex hormones, mainly secreted by pituitary gland and
with pleiotropic functions, among which the capacity to enhance
or inhibit pro-inflammatory cytokine production (94). PRL can
be locally produced by macrophages, T cells and synovial
fibroblasts and its receptor (PRLR) is expressed in synovial
macrophages and lymphocytes (94). For those reasons, PRL
have long been thought to play an important role in RA
disease (95, 96) even if there are contradictory results about its
serum levels, that have been founded raised in RA patients
compared to healthy controls in some studies (97–100). Levels
of PRL has been dosed also in SF of RA patients without finding
significant differences with patients with osteoarthritis (93).
Nevertheless PRL and its receptors were suggested by Tang
and colleagues to be engaged in RA thanks to a local crosstalk,
via auto- or paracrine ways, between the immune and endocrine
systems. The local presence of PRL system in synovial tissue of
RA (and PsA, as we will see later) patients has been propose as a
new potential therapeutic target (94).
PSORIATIC ARTHRITIS

PsA is a chronic, systemic inflammatory disease that affects
peripheral joints, the axial skeleton, and it is associated with
psoriasis of the skin and nails (101).

The bone involvement in PsA patients differs from the one
seen in RA, presenting erosive damage associated with exuberant
bone formation, especially in entheseal sites (102) (Figure 1).
May 2021 | Volume 12 | Article 620920
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The different bone involvement in RA and PsA may be explained
by a diverse interplay of the involved mediators and cytokines.

PsA is a strongly IL-17-driven disease (103). Among its
functions, IL-17 is a potent osteoclastogenetic factor (104),
particularly at inflamed sites undergoing mechanical stress,
such as the entheses.

Concerning the etiopathogenesis of enthesopathy, it is well
known that local trauma and inflammation play a pivotal role in
the T cells activation, especially the gamma-delta subset (105).
Cytokines such as IL-23 and IL-17 stimulate resident cells
(chondrocytes, osteoblasts, and, to a lesser extent, osteoclasts)
to secrete metalloproteinase and to overexpress the RANK-
RANK-ligand, leading to both erosion and bone formation
(106). However, entheses are poor in osteoclasts, and this
consideration might suggest one explanation for a focal
unbalance between bone formation and erosions. Furthermore,
the mechanical stress in the synovial-entheseal complex might
contribute to promote bone formation (19).

The relationship between anti IL-17 therapy and bone
metabolism in PsA has been studied in a small longitudinal
study in which Dkk-1 and sclerostin levels increased after
treatment with secukinumab in a cohort of PsA patients,
suggesting a possible drug-induced inhibition of local bone
over-proliferation (107).

Conversely, one meta-analysis reported benefits in terms of
BMD under TNFi treatment, thanks to the suppression of
systemic inflammation (108). Over the past years, the
relationship between inflammation and the consequent role of
TNFi in the structural progression has been greatly debated both
in AS (109) and PsA (110).

According to older RCTs, TNFi treatments failed to control
the radiographic progression, despite the achievement of clinical
improvement (111). For this reason, a few years ago, the so-
called “TNF brake” hypothesis was proposed: early in the
pathogenesis, TNFa might upregulate Dkk-1 expression.
However, when the inflammatory lesions are established and
mature, the bone microenvironment undergoes some other
changes, activating bone formation pathways with the
consequent expression of bone growth factors.

In this setting, TNFa has been hypothesized to act as a brake
slowing down the new bone formation through the Dkk-1
upregulation. This model was postulated to explain why the TNFi
failed to prevent radiological progression (i.e. syndesmophytes)
(109). Nowadays, some new data suggest the efficacy of TNFis on
radiological damage if started in a timely fashion. The suppression
of local inflammation from the very beginning is thought toprevent
the activation of bone formation pathways (112, 113).

Finally, in all inflammatory arthritis, the occurrence of
physiological aging and senile osteoporosis can alter the function
of bone mechanoreceptors, whose dysfunction can contribute to
bone impairment through the impairment of different pathways
that eventually converge on Wnt signaling (114).

As seen for RA, PRL has been studied also in PsA. As mention
above for RA, PRL is locally expressed in the synovial tissue also
of PsA patients and PRL mRNA expression positively correlates
with disease activity (94).
Frontiers in Endocrinology | www.frontiersin.org 6
The PRL-PRLR binding activates various signaling pathways
among which the Janus kinase/signal transducer and activator of
transcription (JAK-STAT) one, once the more recently studied
therapeutic target both for RA and PSA.

Not many studies have faced the role of sex hormones in PsA,
a disease with sex ratio of 1:1 and a bimodal distribution in
female sex, with peaks of incidence during late adolescence and
the perimenopausal period (115). Literature shows how psoriasis
often improves during pregnancy and reappear in the post-
partum, suggesting a direct link between estrogen and
progesterone and disease severity (115). but less is known
about PsA.
OTHER RHEUMATIC CONDITIONS

The strong link between hormones, bone turnover, and
rheumatic diseases has been described not only in the chronic
arthritides but also in other rheumatic conditions, such as
Polymyalgia rheumatica (PMR), Crystal-Induced Arthritides,
and even connective tissue diseases (i.e. Systemic Erythematous
Lupus, Sjogren Syndrome and Systemic Sclerosis) (116–119).

PMR is a chronic inflammatory disease affecting older adults
that causes pain, stiffness, and inflammation of the shoulder and
pelvic girdles, mainly treated with GCs (120). Data on the changes
of bone metabolism induced by GCs and on the profile of bone
markers its fine regulators (i.e. Dkk-1, sclerostin) in PMR are scarce.

In a very recent study (116), we showed an increase in Dkk-1
serum levels in also treatment-naive PMR patients. In this study,
we also observed a significant decrease of Dkk-1, together with
C-terminal telopeptide of type-1 collagen (CTX, a bone
resorption marker) and in N-propeptide of type I collagen
(PINP), after one month of GCs therapy. A similar trend was
documented for sclerostin.

Systemic sclerosis (SSc) is a connective tissue disease
characterized by tissue fibrosis and microvascular involvement.
Even if difficult to assess due to the heterogeneity of the cohorts,
it seems that SSc patients have an increased risk of developing
osteoporosis (121). The most interesting aspect of bone
involvement is that the modulators of bone metabolism are
partially involved in SSc pathogenesis. The Wnt system plays a
significant role in the development of fibrosis (122), through the
endothelial-to-mesenchymal transition (117). For this reason,
data about bone turnover markers are often conflicting,
especially on Dkk-1. For instance, one study found a
correlation between elevated Dkk-1 and low TBS (123), while
in another, a similar correlation has been found with modified
Rodnan Skin Score (mRSS) but not with BMD (124).

Furthermore, in SSc patients, increased serum RANKL levels
have been observed (125), and TRIAL, a ligand of OPG with
vascular protection properties (126), was found to be higher in
SSc compared to the general population, suggesting a possible
link between microvascular damage and bone loss.

Systemic Lupus Erythematosus (SLE) is an autoimmune
connective tissue disease with a complex pathophysiology and
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a spectrum of clinical manifestations involving potentially every
organ and system of the body (127).

As seen above in RA, bone tissue could be affected both at the
systemic level, with low BMD and fragility fractures, and at the focal
site, with joint erosions (118). Furthermore, the bone loss could be
secondary to the disease itself and/or to steroid treatment (128), and
its pathophysiology is extremelyheterogeneous: its takes into account
systemic inflammation, impairment of vitamin D-PTH-calcium
system both for limited sun exposure and altered renal function,
impairment of sex hormones (i.e. dehydroandrostenedione) (129). A
two to threefold increased fracture risk has been reported in several
large cohorts (130).

Decreased osteocalcin serum levels (a marker of bone
formation) and increased levels of CTX in untreated
premenopausal SLE patients have been observed, with a
correlation between osteocalcin and disease activity (119).

A dysregulation in the Wnt/beta-catenin signaling has been
observed in B and T cells involved in SLE pathogenesis and
among bone mediators, Dkk-1 has been suggested as a potential
biomarker for bone erosions (118) and as an independent
biomarker for lupus nephritis (131).
CONCLUSIONS

Over the last years, rheumatology, endocrinology and immunology
have intertwined especially with the domain of bone metabolism.
This new field of research is providing new data that are contributing
to the development of the evolving pathophysiological models of the
rheumatic diseases. RA could be labled as “bone disease” in which
have been described the connection between pro‐inflammatory
cytokines, PTH, Dkk-1, bone erosions and bone loss. Some
osteoporotic treatment, i.e. denosumab, demonstrates to stop the
Frontiers in Endocrinology | www.frontiersin.org 7
structural progression (61). In PsA, IL-23 and IL-17 interact with
bone system through chondrocytes, osteoblasts, and osteoclasts and
via RANKL/RANK signaling, leading to both erosion and bone
formation. And in AS, the Wnt pathway seems to be one of the key
players involved in the relationship with bone metabolism,
characterized by pathological neoformation and impaired bone
mineral density (20, 21). Hopefully, a deeper understanding of the
relationship among bone turnover, hormones and the different
rheumatic conditions’ phenotypes will be able to improve the
clinical and therapeutic management of our patients.
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Vicuña R, et al. Anti-Citrullinated Protein Antibodies are Associated With
Decreased Bone Mineral Density: Baseline Data From a Register of Early
Arthritis Patients. Rheumatol Int (2017) 37:799–806. doi: 10.1007/s00296-
017-3674-9

61. Cohen SB, Dore RK, Lane NE, Ory PA, Peterfy CG, Sharp JT, et al.
Denosumab Treatment Effects on Structural Damage, Bone Mineral
Density, and Bone Turnover in Rheumatoid Arthritis: A Twelve-Month,
Multicenter, Randomized, Double-Blind, Placebo-Controlled, Phase II
Clinical Trial. Arthritis Rheum (2008) 58:1299–309. doi: 10.1002/art.23417

62. Takeuchi T, Tanaka Y, Ishiguro N, Yamanaka H, Yoneda T, Ohira T, et al.
Effect of Denosumab on Japanese Patients With Rheumatoid Arthritis: A
Dose-Response Study of AMG 162 (Denosumab) in Patients With
RheumatoId Arthritis on Methotrexate to Validate Inhibitory Effect on
Bone Erosion (DRIVE)-a 12-Month, Multicentre, Randomised, Double-
Blind, Placebo-Controlled, Phase II Clinical Trial. Ann Rheum Dis (2016)
75:983–90. doi: 10.1136/annrheumdis-2015-208052

63. Rossini M, Adami G, Viapiana O, Idolazzi L, Gatti D. Denosumab, Cortical
Bone and Bone Erosions in Rheumatoid Arthritis. Ann Rheum Dis (2016)
75:e70. doi: 10.1136/annrheumdis-2016-210022

64. Compston J. Recombinant Parathyroid Hormone in the Management of
Osteoporosis. Calcif Tissue Int (2005) 77:65–71. doi: 10.1007/s00223-005-
0012-0

65. Gatti D, Viapiana O, Idolazzi L, Fracassi E, Rossini M, Adami S. TheWaning
of Teriparatide Effect on Bone Formation Markers in Postmenopausal
Osteoporosis Is Associated With Increasing Serum Levels of DKK1. J Clin
Endocrinol Metab (2011) 96:1555–9. doi: 10.1210/jc.2010-2552

66. Sharp JT, Van Der Heijde D, Boers M, Boonen A, Bruynesteyn K, Emery P,
et al. Repair of Erosions in Rheumatoid Arthritis Does Occur. Results From
2 Studies by the OMERACT Subcommittee on Healing of Erosions.
J Rheumatol (2003) 30:1102–7.

67. Redlich K, Görtz B, Hayer S, Zwerina J, Doerr N, Kostenuik P, et al. Repair of
Local Bone Erosions and Reversal of Systemic Bone Loss Upon Therapy
With Anti-Tumor Necrosis Factor in Combination With Osteoprotegerin or
Parathyroid Hormone in Tumor Necrosis Factor-Mediated Arthritis. Am J
Pathol (2004) 164:543–55. doi: 10.1016/S0002-9440(10)63144-6

68. Solomon DH, Kay J, Duryea J, Lu B, Bolster MB, Yood RA, et al. Effects of
Teriparatide on Joint Erosions in Rheumatoid Arthritis: A Randomized
Controlled Trial. Arthritis Rheumatol Hoboken NJ (2017) 69:1741–50.
doi: 10.1002/art.40156

69. Duryea J, Gravallese EM, Wortman JR, Xu C, Lu B, Kay J, et al. Healing of
Erosions in Rheumatoid Arthritis Remains Elusive: Results With 24 Months
Frontiers in Endocrinology | www.frontiersin.org 9
of the Anabolic Agent Teriparatide. Scand J Rheumatol (2020) 50(1):11–4.
doi: 10.1080/03009742.2020.1772362

70. Lepperdinger G. Inflammation and Mesenchymal Stem Cell Aging. Curr
Opin Immunol (2011) 23:518–24. doi: 10.1016/j.coi.2011.05.007

71. Zanchetta JR, Bogado CE, Ferretti JL, Wang O, Wilson MG, Sato M, et al.
Effects of Teriparatide [Recombinant Human Parathyroid Hormone (1-34)]
on Cortical Bone in Postmenopausal Women With Osteoporosis. J Bone
Miner Res Off J Am Soc Bone Miner Res (2003) 18:539–43. doi: 10.1359/
jbmr.2003.18.3.539

72. Ebina K, Hirao M, Hashimoto J, Matsuoka H, Iwahashi T, Chijimatsu R,
et al. Impact of Switching Oral Bisphosphonates to Denosumab or Daily
Teriparatide on the Progression of Radiographic Joint Destruction in
Patients With Biologic-Naïve Rheumatoid Arthritis. Osteoporos Int J
Establ Result Coop Eur Found Osteoporos Natl Osteoporos Found USA
(2018) 29:1627–36. doi: 10.1007/s00198-018-4492-y

73. Firestein GS. Evolving Concepts of Rheumatoid Arthritis. Nature (2003)
423:356–61. doi: 10.1038/nature01661

74. Garnero P, Tabassi NC-B, Voorzanger-Rousselot N. Circulating Dickkopf-1
and Radiological Progression in Patients With Early Rheumatoid Arthritis
Treated With Etanercept. J Rheumatol (2008) 35:2313–5. doi: 10.3899/
jrheum.080356

75. de Rooy DPC, Yeremenko NG, Wilson AG, Knevel R, Lindqvist E, Saxne T,
et al. Genetic Studies on Components of the Wnt Signalling Pathway and the
Severity of Joint Destruction in Rheumatoid Arthritis. Ann Rheum Dis
(2013) 72:769–75. doi: 10.1136/annrheumdis-2012-202184

76. Fassio A, Adami G, Gatti D, Orsolini G, Giollo A, Idolazzi L, et al. Inhibition
of Tumor Necrosis Factor-Alpha (TNF-Alpha) in Patients With Early
Rheumatoid Arthritis Results in Acute Changes of Bone Modulators. Int
Immunopharmacol (2019) 67:487–9. doi: 10.1016/j.intimp.2018.12.050

77. Orsolini G, Adami G, Viapiana O, Idolazzi L, Fassio A, Vitiello M, et al.
Ab0313 Short-Term Effects of Tnf Inhibitors on Bone Turnover Markers
and Bone Mineral Density in Rheumatoid Arthritis. Ann Rheum Dis (2016)
75:1007–8. doi: 10.1136/annrheumdis-2016-eular.4582

78. Malysheva K, de Rooij K, Löwik CWGM, Baeten DL, Rose-John S, Stoika R,
et al. Interleukin 6/Wnt Interactions in Rheumatoid Arthritis: Interleukin 6
Inhibits Wnt Signaling in Synovial Fibroblasts and Osteoblasts. Croat Med J
(2016) 57:89–98. doi: 10.3325/cmj.2016.57.89

79. Fassio A, Adami G, Giollo A, Viapiana O, Malavolta N, Saviola G, et al.
Acute Effects of Glucocorticoid Treatment, Tnfa or IL-6R Blockade on Bone
Turnover Markers and Wnt Inhibitors in Early Rheumatoid Arthritis: A
Pilot Study. Calcif Tissue Int (2020) 106:371–7. doi: 10.1007/s00223-019-
00649-3

80. Zerbini C a. F, Clark P, Mendez-Sanchez L, Pereira RMR, Messina OD, Uña
CR, et al. Biologic Therapies and Bone Loss in Rheumatoid Arthritis.
Osteoporos Int J Establ Result Coop Eur Found Osteoporos Natl Osteoporos
Found USA (2017) 28:429–46. doi: 10.1007/s00198-016-3769-2

81. Neogi T, Aletaha D, Silman AJ, Naden RL, Felson DT, Aggarwal R, et al. The
2010 American College of Rheumatology/European League Against
Rheumatism Classification Criteria for Rheumatoid Arthritis: Phase 2
Methodological Report. Arthritis Rheum (2010) 62:2582–91. doi: 10.1002/
art.27580

82. Straub RH. The Complex Role of Estrogens in Inflammation. Endocr Rev
(2007) 28:521–74. doi: 10.1210/er.2007-0001

83. Bengtsson C, Malspeis S, Orellana C, Sparks JA, Costenbader KH, Karlson
EW. Menopausal Factors are Associated With Seronegative RA in Large
Prospective Cohorts: Results From the Nurses’Health Studies. Arthritis Care
Res (2017) 69:1676–84. doi: 10.1002/acr.23194

84. Chen JY, Ballou SP. The Effect of Antiestrogen Agents on Risk of
Autoimmune Disorders in Patients With Breast Cancer. J Rheumatol
(2015) 42:55–9. doi: 10.3899/jrheum.140367
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