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The proliferator-activated receptor g (PPARg), a member of the nuclear receptor
superfamily, is one of the most extensively studied ligand-inducible transcription factors.
Since its identification in the early 1990s, PPARg is best known for its critical role in
adipocyte differentiation, maintenance, and function. Emerging evidence indicates that
PPARg is also important for the maturation and function of various immune system-
related cell types, such as monocytes/macrophages, dendritic cells, and lymphocytes.
Furthermore, PPARg controls cell proliferation in various other tissues and organs,
including colon, breast, prostate, and bladder, and dysregulation of PPARg signaling is
linked to tumor development in these organs. Recent studies have shed new light on
PPARg (dys)function in these three biological settings, showing unified and diverse
mechanisms of action. Classical transactivation—where PPARg activates genes upon
binding to PPAR response elements as a heterodimer with RXRa—is important in all three
settings, as underscored by natural loss-of-function mutations in FPLD3 and loss- and
gain-of-function mutations in tumors. Transrepression—where PPARg alters gene
expression independent of DNA binding—is particularly relevant in immune cells.
Interestingly, gene translocations resulting in fusion of PPARg with other gene products,
which are unique to specific carcinomas, present a third mode of action, as they
potentially alter PPARg’s target gene profile. Improved understanding of the molecular
mechanism underlying PPARg activity in the complex regulatory networks in metabolism,
cancer, and inflammation may help to define novel potential therapeutic strategies for
prevention and treatment of obesity, diabetes, or cancer.
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INTRODUCTION: PPARG

General Modes of Action
Since its discovery in the early 1990s by Tontonoz et al (1)., the nuclear receptor PPARg, encoded by
the PPARG gene on chromosome 3p25.2 in humans (Figure 1A) (2), has been recognized as the
master regulator of adipose tissue biology. The human PPARG gene, encompassing 9 exons,
generates four PPARG splice variants (PPARG1-4) encoding for two protein isoforms via
differential promoter usage and alternative splicing (Figure 1B) (3). The mRNAs PPARG1,
n.org February 2021 | Volume 12 | Article 6241121
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PPARG3, and PPARG4 all give rise to the PPARg1 isoform.
PPARg1 is a 477 amino acid protein that is broadly expressed
with relative high levels in the adipose tissue, liver, colon, heart,
various epithelial cell types, and skeletal muscle. In addition,
PPARg1 is expressed in numerous cells of the immune system,
including monocytes/macrophages, dendritic cells, and T
lymphocytes. The PPARG2 mRNA transcript translates into
the PPARg2 isoform. PPARg2, containing an additional 28
amino acids in its NH2-terminus, is almost exclusively
expressed in adipose tissue. This isoform is also expressed in
urothelial cells (4, 5), which are highly specialized transitional
epithelial cells that line the organs of the urinary system,
including the bladder, and in regulatory T cells (Tregs) and
other T cell populations, albeit that total PPARg expression is low
in non-Tregs (6). Recently, a third and fourth PPARg protein
isoform, denoted as PPARg1D5, and PPARg2D5, respectively,
have been reported (Figure 1B) (7). PPARg2D5 is endogenously
expressed in adipose tissue and lacks the entire ligand binding
domain (LBD) due to physiological exon 5 skipping (7). The
endogenous expression PPARgD5 positively correlates with body
mass index (BMI) in overweight or obese and type 2 diabetic
patients. The naturally occurring PPARgD5 isoforms impair the
adipogenic potential of adipocyte precursor cells by dominant-
negative inhibition of PPARg, which possibly contributes to
adipose tissue dysfunction in obesity (7).

PPARg is a representative member of the nuclear receptor
(NR) superfamily. To date, 48 NRs have been identified in
human. NRs regulate various critical aspects in development,
physiology, reproduction, and homeostasis. NRs are multi-
domain ligand-inducible transcription factors that share a
structural homology to a varying extent (8). Alike other NRs,
PPARg contains an autonomous transactivation domain 1 (AF-1)
in the unstructured N-terminus (Figure 2). The AF-1 domain is
implicated in the constitutive ligand-independent activation of
PPARg target genes. Juxtaposed to the AF-1 domains is the DNA
binding domain (DBD) that contains two zinc fingers required
for DNA binding. The DBD connected to the ligand binding
domain (LBD) via a flexible hinge region. In the case of PPARg,
this hinge region physically interacts with the DNA (9). The
ligand binding domain (LBD) is situated in the C-terminus. The
LBD is a complicated structure that is arranged in a conserved
three-layered a-helical sandwich containing 12 a-helices and 4 b-
strand elements (8). The LBD overlaps with the ligand-dependent
transactivation domain 2 (AF-2). The LBD is a key domain for
transactivation of PPARg target genes as it is implicated in ligand
binding, heterodimerization with binding partner retinoid X
receptor alpha (RXRa), and interactions with transcriptional
co-regulators.

PPARg exerts its gene regulatory potential via transactivation
and transrepression (Figure 3). Transactivation involves a
mechanism by which PPARg binds as a heterodimer complex
with RXRa to PPAR response elements (PPREs) (10). PPREs
consist of a hexameric repeat (AGGTCA) spaced by one or two
nucleotides (referred to as DR1 and DR2 elements) (11), which are
situated in promoter and enhancer regions of PPARg target genes
(12). Noteworthy, enhancers may not only loop to the nearest
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promoters, but can also increase transcription of their target genes
via looping to promoters at greater genomic distances.

In the last decade, genome-wide binding profiles of PPARg
have been mapped in different cell types, including adipocytes
and macrophages (13–17). These binding profiles have not only
indicated that PPARg binds to thousands of sites in the genome,
of which many binding sites are located far from proximal
promoters, but also that the PPARg binding is highly context-
dependent as binding sites differ between cell types and even
between adipocytes from different anatomical locations (13–17).
The context-dependency of PPARg binding is at least in part
mediated by cooperative binding to the chromatin with other
adipogenic transcription factors, such as C/EBPa, followed by
cooperative recruitment of coactivators (15).

Transcriptional control of the target genes by PPARg
furthermore depends on multiprotein coregulatory complexes
that are recruited to the PPREs (18). In basal conditions, i.e., in
absence of ligand, PPARg/RXRa favors stable interactions with
corepressor complexes, containing NCoR or SMRT, which
recruit chromatin-modifying enzymes such as histone
deacetylases that make the chromatin inaccessible to binding
of transcription factors or resistant to their actions and thereby
actively repress transcription (Figure 3A). Upon ligand binding,
the PPARg/RXRa heterodimer undergoes a conformational
change that promotes corepressor release and recruitment of
coactivators, like SRC1 and CBP. Coactivators enhance PPARg
transactivation by facilitating acetylation of the histone tails,
making the chromatin less restrictive, and assembly of general
transcriptional machinery. Next to the “classical” transactivation
mechanism described above, PPARg can also negatively regulate
gene expression by a mechanism referred to as ligand-dependent
transrepression (Figure 3B). This mechanism involves
antagonizing the NF-kB and AP-1 pro-inflammatory signaling
pathways, and has been mostly described in immune cells
(19–23). In this case, PPARg does not bind to DNA itself, and
several studies indicate that PPARg transrepresses genes as
a monomer, i.e., independent of RXRa (23). While various
mechanisms have been postulated for transrepression by
different NRs (24–26), the most detailed mechanism proposed
for PPARg involves inhibition of co-repressor degradation.
Pascual et al. (27) showed that clearance of NCoR/SMRT-
HDAC3 complexes by proteosomal degradation from various
AP1- and NFkB-regulated promoters (e.g., IL-8, Mmp12, and
iNOS) upon activation is prevented in the presence of liganded,
monomeric PPARg.

Interestingly, the transrepression mechanism described above
involves a specific post-translational modification, SUMOylation
of lysine 365. In fact, to adequately processes external signals and
adapt to relevant gene expression programs PPARg activity is
regulated by several, probably interconnected, post-translational
modifications, including phosphorylation, acetylation, and the
aforementioned SUMOylation [reviewed in (28)]. Depending
on cellular context and the kinases involved, phosphorylation
of PPARg S112 can either impair or increase PPARg activity
(29). Phosphorylation of PPARg S273 by Cdk5 does not affect
its adipogenic capacity, but affects many PPARg target genes
February 2021 | Volume 12 | Article 624112
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A

B

FIGURE 1 | Genomic map of the PPARG gene on chromosome 3p25 and structure of PPARg isoforms. (A) The gene PPARG is situated on chromosome 3p25.
The gene encompassed 9 exons (exon A1-2, exon B-D, and exons 1-6). (B) Alternative promoter and mRNA splicing give rise to several PPARg mRNA and protein
isoforms. The mRNAs PPARG1, -3, and -4 translate into PPARg1 (477 amino acids; AA). mRNA PPARG2 gives rise to PPARg2 (505 AA). A third and fourth PPARg
protein isoform, denoted as PPARg1D5 and PPARg2D5, have been reported. These isoforms lack the ligand binding domain (LBD), which is due to alternative
splicing. Chromosomal rearrangement of PPARg leading to PAX8/PPARg and CREB3L2/PPARg fusion proteins, contains functional DBDs of both proteins, have
been described in carcinogenesis.
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that have been shown to be dysregulated in obesity (30). In
addition, acetylation of K268 and K293 correlates with the
phosphorylation status of S273 and favors lipid storage and
cell proliferation (31). Selective adipocyte deletion of the
deacetylase Sirt1 that deacetylates PPARg K268 and K293
leads to dephosphorylation of S273 and improve metabolic
functions (32).

Alike other NRs, PPARg governs nutrient- and hormone-
mediated responses. Despite intensive efforts, it is not clear
whether PPARg is in vivo activated by a specific, high-affinity,
and endogenous ligand. PPARg LBD crystal structures reveal a
Frontiers in Endocrinology | www.frontiersin.org 4
large ligand binding pocket (LBP), which not only allows for
promiscuous binding of ligands with lower affinity, but also
allows ligands to occupy the canonical LBP in different
conformations (33). Indeed, the activity of PPARg can be
modulated by a variety of natural compounds, including
polyunsaturated fatty acids (34), eicosanoids (35, 36), and
oxidized lipid components (discussed below) (37), suggesting
that PPARg functions as a general lipid or nutrient sensor (34).
However, the physiological relevance of these compounds is not
exactly clear. Endogenous ligands not only bind with low affinity
for PPARg, also the physiological concentrations in mammalian
A

B

FIGURE 2 | Overview of identified natural PPARG mutations implicated in FPLD3 and cancer. (A) Schematic representation of the distinct domains of PPARg.
Mutations indicated above the PPARg structure are mutations are germline loss-of-function mutation, implicated in FPLD3. Mutations depicted below the PPARg
structure are somatic loss-of-function or gain-of-function mutations identified in different cancer types. Mutations have been identified in tissue form digestive tract
(colon, stomach, oesophagus, and pancreas; indicated in blue), melanoma (green), breast cancer (pink), prostate cancer (yellow), and bladder cancer (red). Some
bladder cancer-associated PPARg mutations (underscored in figure) have also been identified in other types of cancer, including lung cancer (E3K), kidney cancer
(R164W), endometrium cancer (S249L), melanoma (M280I), and diffuse glioma (T465M), respectively. (B) FPLD3 (orange, left panel) and cancer associated mutations
(red, right panel) indicated in 3D representation, based on the crystal structure of PPARg (green)-RXRa (blue) on DNA (yellow) with Rosiglitazone, 9-cis retinoic acid
and NCOA2 peptide (grey) (PDB entry 3DZY).
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cells are often insufficient to function as a physiological ligand
(38). Alternatively, the physiological activation of PPARg could
be the resultant of combined effects of multiple ligands that
simultaneously bind with different affinities to distinct
subregions in the LBP (39), thereby inducing different PPARg
conformations with potential different biological outcomes (39).

PPARg is the cognate receptor for thiazolidinediones (TZDs),
a class of anti-hyperglycaemic drugs, including rosiglitazone and
pioglitazone (40). TZDs stimulate adipogenesis (40) and cause a
metabolically beneficial shift in lipid repartitioning from storage
in visceral to subcutaneous adipose tissue depots as well as from
ectopic storage in non-AT organs (e.g., liver muscle) to AT (41–
43). TZDs and endogenous ligands have overlapping binding
sites in the LBP, which potentially allows for binding
competition to the same site. TZDs occupy the canonical LBP
of PPARg and by interacting with residues in helices 3, 5, 6, and 7
and the b-sheet, stabilizes the dynamics of helix 12 and the AF2
surface (44, 45).
Frontiers in Endocrinology | www.frontiersin.org 5
Whereas TZDs are commonly referred to as full classical
PPARg agonists, TZDs have a separate biochemical activity:
inhibition of the Cdk5-mediated phosphorylation of PPARg
at serine residue 273 (30). Phosphorylation of PPARg S273
requires a physical interaction between CDK5 and PPARg (46).
The transcriptional corepressor NCoR is an adaptor protein for
the physical interaction between CDK5 and PPARg. Upon
rosiglitazone the interaction between NCoR and PPARg is
reduced, which leads to i) derepression of PPARg and
activation of the PPARg transcriptional program and ii)
attenuation of the psychical interaction between CDK5 and
PPARg and subsequent reduced phosphorylation of S273 (46).
Interestingly, MRL24 that displays poor agonistic activity but
robust anti-diabetic activity in mice (47), was also very effective
in inhibiting the Cdk5-mediated phosphorylation (30). This
suggests that new classes of antidiabetic drugs that i) bind with
high affinity to PPARg, ii) specifically target the Cdk5-mediated
phosphorylation of S273, and iii) completely lack the classical
A

B

C

FIGURE 3 | Mechanisms of action exerted by the PPARg/RXRa heterodimer. (A) Transcriptional repression by unliganded PPARg. Upon ligand binding the PPARg/
RXRa heterodimer undergoes a conformational change that promotes corepressor release and recruitment of coactivators, initiating transcription. (B) Ligand-
dependent transrepression by antagonizing the NF-kB (and AP-1, not indicated) pro-inflammatory signaling pathways. This effect does not require DNA binding by
the PPARg. (C) The mode of action performed by PPARg-fusion proteins in carcinogenesis is not completely understood. (I) altered expression of PPARg target
genes, (II) altered expression of PAX8 target genes (III) PPARg fusion protein may act as a negative inhibitor of tumor suppression by inhibiting PPARg target gene
expression.
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transcriptional agonism, hold promise for treatment of T2DM.
The PPARg ligand SR1664 was essentially displayed no
transcriptional activity and was very effective in blocking the
Cdk5-mediated phosphorylation (48). In obese mice, SR1664
displayed strong antidiabetic effects without adverse effects (48).
However, unfavorable pharmacokinetic properties of SR1664
preclude its administration in human (48). Therefore, SR1664
should rather be considered as a proof-of-principle.

In addition to binding in the canonical LBP, a recent
structure-function study shows that some PPARg ligands
denoted as noncanonical agonist ligands (NALs), like the
aforementioned compound MRL24, and SR1664, can also bind
to an alternate site of PPARg (49). TZDs, including rosiglitazone
and pioglitazone display less prominent alternate site functional
effects (49). The alternate binding of PPARg ligands can occur
when the canonical LBP is occupied by the covalent antagonists
or endogenous ligands. Although the exact mechanisms are not
clear, alternate site binding stabilizes the AF2 surface, most likely
indirectly via stabilization of helix 3. Furthermore, coregulator-
binding assays indicate that alternate site binding has an impact
on coregulator interactions, transactivation, and target gene
expression (49). The identification of the alternate binding site
has three important implications. Firstly, compounds that block
phosphorylation of S273 with little transactivation might be
complicated by alternate site binding if this site in vivo
contributes to classical PPARg agonism. Secondly, it needs to
be defined whether some of the supposed PPARg-independent
effects of TZDs could in fact be mediated by the alternate site
binding. Lastly, allosteric modulators that target the alternate site
might be particularly relevant for obese individuals in which the
probability that canonical LBP is occupied by oxidized fatty acids
due to increased bioavailability of endogenous ligands is
increased (49).
PPARg IN ADIPOSE TISSUE

White, beige, and brown adipocytes have been identified in
mammals. Although these three type of adipocytes rise from
different precursors and differ significantly in their morphology
and function, the cells all go through a well-orchestrated
differentiation process to become mature and fully functional
(50). During the various stages of the adipocyte lifespan, PPARg
is a well-established key player. Recently, a fourth type of
adipocyte, denoted as pink adipocytes, has been described in in
mammary glands of pregnant mice (51). During pregnancy,
lactation, and post-lactation subcutaneous white adipocytes in
murine mammary gland undergo a transdifferentiation process
ending in milk-producing epithelial glandular cells that contain
abundant cytoplasmic lipid droplets to meet the nutritional
needs of the pups (51, 52). As the number of studies in pink
adipocytes is limited so far, we will focus in this review on the
role of PPARg in white, brown, and beige adipocytes. In these
cells, PPARg exerts its essential functions primarily via “classical”
transactivation of target genes.
Frontiers in Endocrinology | www.frontiersin.org 6
White Adipocytes
White adipose tissue (WAT) is the most abundant adipose tissue
in the human body (53). Mature white adipocytes are unilocular
cells composed of a large lipid droplet occupying ~95% of the
cellular volume. Depending on the size of the lipid droplet, the
cell size varies from 20 to 200 µM (54). The in vivo regulation of
adipocyte development, including the stem cell commitment
toward white adipocytes, is poorly understood. Adipocyte-
lineage tracing, which so far can only be performed in mice,
indicate that white adipocytes can be derived from both Myf5−

and Myf5+ precursor cells (55). The Myf5-lineage distribution
in adipose tissue is dynamic and can be affected by ageing and
diet. The Myf5− and Myf5+ white adipocytes can compensate
for each other during development, reflecting adipose tissue
plasticity (55). In mice, depot-dependent variations were
observed among the degree of plasticity (55). Although it
remains to be defined whether this concept also applies to
human adipocytes, a heterogeneity in adipocyte origins may
explain the heterogeneity in adipose tissue depot function
and contribute to adipose tissue patterning variations in the
human population (55). After stem cell commitment toward
white adipocyte lineage, the expression and activation of
PPARg is both sufficient and crucial to initiate the adipogenic
differentiation program and maintain adipocyte phenotype,
integrity, and function, based on a large set of different genetic
mouse models (56). PPARg primarily regulates the expression of
genes implicated in adipocyte differentiation and adipocyte
maintenance. In addition, PPARg governs the expression genes
involved in various processes in lipid and glucose metabolism
including lipogenesis (e.g., LPL, ANGTPL4, and CIDEC), fatty
acid transport (e.g., FABP4), and gluconeogenesis (e.g., PEPCK,
GYK, and AQP7).

The importance of PPARg for white adipose tissue biology in
humans is underscored in patients suffering from familial partial
lipodystrophy subtype 3 (FPLD3), a rare autosomal dominant
inherited condition caused by loss-of-function mutations in the
PPARG gene [reviewed in (28)]. Patients with FPLD3 lack
subcutaneous adipose tissue in the extremities and gluteal
region combined with lipohypertrophy in the face, neck, and
trunk, and suffer from multiple metabolic complications
including type 2 diabetes mellitus (T2DM). Since the first
report of a germline loss-of-function mutation in PPARG in
patients with FPLD3 (57) an increasing number of FPLD3-
associated mutations in PPARG has been identified [reviewed
in (28)]. The FPLD3-associated PPARg mutations are mainly
situated in either the DBD or LBD (Figure 2). Mutations in the
DBD interfere in efficient DNA binding. Mutations affecting the
LBD—which are scattered over the whole LBD, based on crystal
structures (Figure 2)—often cause multiple molecular defects by
impairing heterodimerization with RXRa, ligand- and/or
cofactor binding (18).

Taken together, genetic mouse models together with the
FPLD3-associated PPARg mutations indicate that PPARg plays
a key role in white AT differentiation, function, and
maintenance. The dominant mode of action in this biological
February 2021 | Volume 12 | Article 624112
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setting appears to be “classical” transactivation: the majority of
genes regulated by PPARg in white adipocytes rely on direct
DNA binding, and FPLD3-associated PPARg mutations do not
alter transrepression, although this is not studied frequently (58).

Brown Adipocytes
Brown adipose tissue (BAT) emerged approximately 150 million
years ago in mammals (59). BAT is unique for endothermic
placental mammals and makes it possible to maintain a body
temperature that is higher than the ambient temperature by
producing heat independently of shivering and locomotor
activity. This process is also referred to as non-shivering
thermogenesis (59). BAT is richly innervated and vascularized
and is composed of brown adipocytes (~40 µM in size) that
contain multilocular lipid droplets and a large number of
mitochondria (54). BAT derives its brown color from the
conspicuous iron-rich mitochondrial mass. BAT uniquely
expresses the gene UCP1, which encodes for uncoupling
protein 1 (UCP1), located in the inner mitochondrial
membrane. When activated, UCP1 mediates non-shivering
thermogenesis by uncoupling of the oxidative phosphorylation
from ATP synthesis, thereby provoking 1) dissipation of
chemical energy in the form of heat and 2) stimulating high
levels of fatty acid oxidation (60).

BAT is present in dedicated depots. In rodents, BAT is
abundantly present throughout life. In human adults, BAT is
located mainly cervical/axillary, perirenal/adrenal, and in the
mediastinum along large blood vessels, trachea, and surrounding
the intercostal arteries (59). In new-born infants, BAT is also
situated between the shoulder blades as a thin kite-shaped layer
(60). Although BAT depots regress with increasing age and can
become even indistinguishable from WAT, healthy adults retain
metabolically active BAT (61–63). For instance, positron emission
tomography (PET) and computer tomography (CT) in human
indicated that BAT-mediated thermogenesis is activated and
increases in size by cold exposure (61–63). This process is also
known as BAT recruitment. Depending on the size of the BAT
depots, thermogenesis can account for up to approximately 15% of
the total daily energy expenditure (64). Therefore, increasing energy
expenditure by activation of BAT has been suggested as a
therapeutic strategy for treating obesity (65).

Mice studies indicate that PPARg functions is a master
regulator in BAT (66). BAT-specific PPARg knock out mice
showed reduced wet weight of BAT, smaller brown adipocytes,
and smaller lipid droplets when compare to wild type animals.
However, there was no difference in total body weight or body
composition (67). Furthermore, it was also shown that loss of
PPARg inhibited the ability of brown adipocytes to respond to b
-adrenergic stimulus in in vitro cultures (67). An increase in non-
shivering thermogenesis was observed in mice treated with TZDs
(68, 69), and in vitro studies showed that activation of PPARg in
brown adipocytes leads to increase in adipogenesis and increase
in lipid metabolism (70). Additional studies pointed at PPARg
as crucial regulator of UCP1 expression and BAT function (71).
Specific BAT PPARg target genes have been described (FABP3
and GYK), and particularly the de-acetylation of K268 and
K293 of PPARg by SIRT1 have been linked to BAT (32).
Frontiers in Endocrinology | www.frontiersin.org 7
De-acetylation of these residues is required for the recruitment
of Prdm16, an essential cofactor in BAT (72). Moreover PGC1a,
one of the most well-known regulators of BAT, has also been
identified as a cofactor of PPARg in BAT (73).

Collectively, PPARg plays a key role in BAT differentiation and
function, which most likely relies on “classical” transactivation,
although transrepression cannot be excluded given the limited
number of studies. BAT-specific molecular mechanisms, which
may be different from WAT, could involve for example specific
transcriptional cofactors (73), but details remain to be
fully elucidated.

Beige Adipocytes
Mammals possess a second type of thermogenic adipocytes: beige
adipocytes, also denoted as “brite” (brown-like in white)
adipocytes (74). Beige adipocytes are inducible thermogenic cells
that are sporadically located in white adipose tissue depots (74).
Beige adipocytes share many morphological and biochemical
features with brown adipocytes (Figure 1) (60). Alike brown
adipocytes, beige adipocytes contain multiple small lipid droplets
and a large number of mitochondria that express UCP1.
Recruitment of beige adipocytes, referred to as “browning” or
“beigeing/beiging” of white adipose tissue, is induced in response
to environmental conditions, including chronic cold exposure,
exercise, long-term treatment with PPARg agonists or b3-
adrenergic receptor agonists, cancer cachexia, and tissue injury
(75). It is currently unknown whether beige adipocytes arise
through transdifferentiation from pre-existing white adipocytes
or by de novo adipogenesis from a precursor cell pool, or both (76).

Although, the exact mechanism by which PPARg agonists
induce browning of white adipocytes is not exactly known,
PPARg agonist require full agonism to activate the browning
fat program. The effect is at least in part mediated by PRDM16, a
factor that as described above is essential in the development of
classical brown fat (77). Therefore, it is likely that in beige
adipocytes, alike brown adipocytes, “classical” transactivation
by PPARg is an important mechanism of action.
PPARg IN IMMUNE CELLS

Even though PPARg is the master regulator of adipocyte
differentiation and function (78), already in one of the first
publications showed high PPARg expression in mouse spleen
(79) suggesting a role for PPARg in immune cells. In fact, PPARg
is expressed in a variety of immune cells and its role and
importance have been investigated during the last twenty years
(80–82). Although PPARg expression have been described in
several types of immune cells we will focus on monocyte/
macrophages and dendritic cells as part of the innate immune
system, and T cells of the adaptative immune system.

As described above for adipocytes, PPARg plays a role in
determining the cellular phenotype by regulating differentiation
(adipogenesis) and function (e.g., lipid metabolism and secretome)
by directly activating the transcription of so-called PPARg target
genes. Similar molecular mechanisms are in place in immune cells,
and also here PPARg can deterimine cellular phenotype: amongst
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others, PPARg 1) regulates macrophage differentiation, 2) regulates
classical/alternative macrophage activation (“polarization”),
3) controls lipid metabolism in multiple immune cell types, and
4) plays an immune-modulatory role. PPARg function in immune
cells could also be categorized according to its mechanism of action,
with the regulation of lipid metabolism and the ability to induce
differentiation of immune cells more linked to “classical”
transactivation, while the transrepression activity of PPARg is
more important in its immunomodulatory role and both
mechanisms are involved in macrophage activation.

Transactivation by PPARg in Immune Cells
PPARg can directly activate the transcription of target genes in
immune cells through direct DNA binding, similar to its activity in
adipocytes described above. As mentioned earlier, the genomic
locations where PPARg binds and the target genes partly overlap
between, for example, adipocytes and macrophages, but cell-type
specific regulation may depend on cooperation with other
transcription factors like PU.1 and STAT6 (17, 83).

PPARg expression is highly induced during monocyte to
macrophage differentiation (84–86), and although initial
studies using embryonic stem cells suggested that PPARg is
dispensable in this process (87), more recent studies have
demonstrated that PPARg is essential for the differentiation of
fetal monocytes into alveolar macrophages (88). In mature
macrophages, PPARg was found to cooperate with PU1
specifically on monocyte-unique target genes (17), reminiscent
of the interplay between PPARg and C/EBPa in adipocytes
mentioned earlier. PPARg is also expressed in several dendritic
cell (DC) subtypes and is also highly upregulated in monocyte-
derived DC differentiation (89, 90). Although the importance of
PPARg in immune cell differentiation is evident, little is known
about the exact function of the receptor in these differentiation
processes. Better models are required as well as studying the
contribution of PPARg in a more cell-type specific way.

Next to macrophage differentiation, PPARg is also an important
regulator in macrophage polarization, where PPARg activation drives
the alternative M2 macrophage phenotype (91–93). Alternatively
activated macrophages (M2 phenotype) can be induced by IL-4,
IL-10, and IL-13 and are characterized by the expression of several
genes including Arg1 and Mgl1/CD301a, CD-204 and mannose
receptor/CD163, and IL-10 and transforming growth factor beta
(TGF-b). Some of these, including Arg1 and Mgl1 (94), are direct
PPARg target genes. Furthermore, PPARg expression is induced by
IL-4/STAT6 signaling as well as IL-13 (95), and STAT6 functions as a
“facilitator” of PPARg signaling, all supporting the idea that PPARg
is crucial for the anti-inflammatory M2 phenotype in macrophages.
It was recently found that PPARg contributes to maintain a
chromatin structure that facilitates the binding of STAT6 and
polymerase II upon repeated IL-4 treatments. PPARg recruits the
coactivator P300 and RAD21 to the DNA and thus reinforcing aM2-
like phenotype in macrophages (96), is worth mention that this
function of PPARg is independent of ligand binding.

Next to macrophage and DC differentiation and macrophage
polarization, PPARg can also directly regulate lipid metabolism
in immune cells (37, 87, 92, 97, 98), reminiscent of its role in
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white and brown adipocytes. In monocytes, macrophages, and
dendritic cells, PPARg directly regulates the expression of genes
involve in lipid transport and metabolism such as the class B
scavenger receptor CD36 (99), FABP4, LXRA, and PGAR (86).
The use of PPARg ligands in these cells has shown that the
expression of these genes is upregulated upon treatment and
downregulated when treated with PPARg antagonists (100). The
CD36 protein is also involved in macrophage uptake of oxLDL,
but at the same time PPARg directly activates an LXR-ABCA1
pathway for cholesterol efflux (97). In DCs PPARg also plays a
key role in lipid homeostasis by directly regulating many “known
suspects” (101) but it also regulates another aspect of lipid
homeostasis and lipid antigen presentation. Activation of
PPARg gives higher expression of CD1d, a molecule involved
in the presentation of lipid antigens to T cells, resulting in a DC
subtype with increased potential to activate iNKT cells (100, 102,
103). These findings indicate that PPARg has a functional role in
the modulation of the immune response through DCs beyond
regulation of more classical lipid metabolism pathways.

Changes in the lipid microenvironment can trigger different
DC functions that regulate the immune response (104). PPARg
classical transactivation role bridges the lipid microenvironment
and the DC function by activating genes involve in lipid
transport, metabolism, and presentation.

The classical role of PPARg as a gene activator has also been
studied in T cells and again relates to lipid metabolism (81, 82). T
cells can be subdivided into cytotoxic T cells, T helper, and
regulatory T cells (Treg), and the T helper cells can be further
classified depending on the phenotype into Th1, Th2, and Th17;
less well characterized are Th9 and Th22 subsets. Regardless of
the subtype of T cell, activation of PPARg is linked to an
activation of genes related to lipid metabolism (CD36 and
FABPs) indicating the importance of PPARg in this process.
Special mention deserves the visceral adipose tissue resident
regulatory T cells (VAT Tregs), in which PPARg has been
implicated in its function and development (6). VAT Tregs
represents a unique subtype of cells in which the expression of
PPARg positively correlates with the expression of chemokines
and chemokines receptors (Ccr2, Cxcl3, and Cxcr6) that
regulates leukocyte migration and infiltration, lipid metabolism
genes, and IL10. Interestingly, the PPARg1 and PPARg2 isoforms
induce the same genes upon activation in VAT Tregs (mainly
related to lipid metabolism) but differ in the genes that they
downregulate (6), the latter happening most likely through the
mechanism of transrepression.

Transrepression by PPARy in
Immune Cells
The role of PPARg as an immune-modulator, and in particular
a repressor of inflammation, has been studied in most detail in
macrophages and T cells (19–22, 93). Although the transrepression
activity of PPARg is probably not exclusive to immune cells, this
immunomodulatory role is a good example of the importance of
this specific mechanism of action of PPARg.

In macrophages it has been shown that activation of PPARg
using TZDs suppresses the production of pro-inflammatory
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cytokine, such as TNFa, IL-1B, and IL-6 (19, 93) and the
expression of other genes involved in inflammation, including
iNOS and MMP9, in a dose-dependent manner. As described
above, inhibition of the transcription factors NFkB and AP-1 is
the most widely studied mechanism, but other mechanisms are
also possible (23). Similarly, in DCs PPARg ligands downregulate
chemokines and receptors (IL-12, CD80, CXCL10, RANTES)
that recruit Th1 lymphocytes (100, 102). In addition, PPARg
activation in DC may impair the migration of these cells to the
lymph nodes, and this might be partially due to inhibition of
CCR7 by PPARg (102, 105).

The role of transrepression by PPARg in T cells has been the
object of intensive discussion during the last two decades (81, 82,
106), as this mechanism of action was implicated in seemingly
conflicting biological processes. Initial studies suggested that
PPARg had an inhibitory effect on T cell proliferation (107),
and that the underlying mechanism involved transrepression of
the IL2 gene: activated PPARg was shown to bind to nuclear
factor of activated T cells (NFAT) and repress its activity and
binding to the IL-2 promotor (107, 108). Besides T cell
proliferation, PPARy-mediated transrepression was reported as
a repressor of excessive Th1 response, by on the one hand
inhibiting production of the Th1 cytokine and antigen-specific
proliferation and on the other hand controlling Th2 sensitivity to
IL-33 (109, 110). In fact, Cunard and colleagues showed that
PPARg binds to the IFNg promoter and is able to repress its
expression when T cell were treated with PPARg ligands, and
that IFNg expression was enhanced when cells were treated with
PPARg antagonist GW9662 (111). The underlying mechanism
was proposed to be inhibition of AP-1 activity, similar to the
transrepression mechanism in macrophages. However, while
these studies suggest a pro-Th2 role for PPARy mediated
transrepression, PPARg was also reported to be involved in the
downregulation of well-known Th2 cytokines like IL-4, IL-5, and
IL-13, again through interaction with NFAT (112). Altogether,
these studies indicate that the role of PPARg in the modulation of
the Th2 response in T cells remains unclear and further research
is needed to fully elucidate its function. Finally, PPARy-mediated
repression is important for Th17 differentiation, as lack of
PPARg leads to increased Th17 differentiation while activation
of PPARg was shown to have inhibitory effects (22). PPARg
recruits NCoR and SMRT to the Rorc promoter, thereby
inhibiting IL-17a expression, and blocks IL-6 signaling by
inhibiting the DNA binding activity of STAT3 (20, 21).

In summary, transrepression by PPARg—where it counteracts
other transcription factors like NFkB, AP-1, NFAT, and STAT3—
may be a major molecular mechanism that drives the functional
phenotype(s) and secretory output of macrophages, dendritic cells,
and T cells. Findings in T cells appear sometimes conflicting, which
makes it difficult to assign a clear pro-Th1 or pro-Th2 role to
PPARy activation. It also indicates that the use of ligands in these
cells might “hide” some of the PPARg functions and more subtle
approaches, such as the use of cels harboring specific PPARg
mutations or selective PPARg modulators, must be used in order
to fully elucidated PPARg role in immune cells, taking the complex
interactions between immune cell population into account.
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PPARg IN CANCER

Cancer is driven by the acquisition of genome instability.
The cancer genome landscape contains an enormous diverse
repertoire of amplifications, deletions, inversions, translocations,
point mutations, loss of heterozygosity, and epigenetic changes
that collectively result in tumorigenesis. The role of PPARg in
tumorigenesis is controversial. A large body of evidence suggests
that PPARg functions as a tumor suppressor, as activation of the
PPARg/RXRa signaling pathway in different types of cancer,
including colon (113), lung (114, 115), pancreatic (116), prostate
(117), and breast (118, 119) cancers, leads to inhibition of cell
growth, decreased tumor invasiveness, and reduced production
of proinflammatory cytokines. In addition, treatment with
TZDs was shown to increase sensitivity to chemotherapy
through downregulation of Metallothionein genes (120) and/or
endotrophin (121), which may be linked to ligand-mediated
prevention of S273 phosphorylation (122).

Furthermore, in lung cancer cells, a tumor suppressive
function of PPARg was contributed metabolic reprogramming
(123), an essential biochemical adaptation required for cancer
viability that is considered to be a crucial emerging hallmark of
cancer (124). In contrast, a protumorigenic role for PPARg has
been suggested in a variety of cancers as well (5, 125, 126). Here,
we will discuss several loss-of-function and gain-of-function
mechanisms by which PPARg can be implicated in tumor
initiation and progression in several major cancers. In
addition, we will address the yet partly undefined role of
PPARg fusion proteins in cancer.
Transactivation by PPARg
Loss-of-function Mutations
As discussed above, the PPARg1 isoform is highly expressed in
colon epithelial cells. The role of PPARg in the development of
normal colon epithelium and colorectal cancers is not completely
understood and seems to be dual. The growth and differentiation
of many colorectal cancers can be considerably inhibited upon
ligand activation of PPARg1 (113). This finding suggests that
PPARg functions as a tumor suppressor during colorectal
carcinogenesis. In line with this, somatic PPARG mutations
have been reported in ~8% of sporadic colorectal cancers
(Figure 2). Genetic and epigenetic phenomena due to genetic
alterations in other genes, like RAS, can further decrease PPARg
function in colon cancer. Activating mutations in RAS for
example can result in hyperactivation of ERK1/2 and JNK
pathways and ultimately impair PPARg activity (28). Whereas
all FPLD3-associated PPARG mutations that have been reported
to date lead to mutant proteins that show a consistent and
profound impairment in the transcriptional activity of PPARg,
the functional effects of colon cancer-associated PPARG
mutations vary considerably (127). So far, six unique somatic
PPARGmutations in colorectal cancers have been reported (128,
129). A side-by-side analysis of these colon-cancer associated
mutants with some FPLD3-associated PPARg mutants, shows
that the colon-cancer associated mutants do not consistently
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display profound intra- and/or intermolecular defects (127).
Moreover, while the abovementioned studies suggest that
PPARg functions as a tumor suppressor during colorectal
carcinogenesis, it should be noted that other studies suggest
that PPARg activation increases the risk of developing colorectal
cancer. Ligand-activation of PPARg in min mice, an animal
model for familial adenomatous polyposis due to mutations in
the APC gene, results in a considerably greater number of polyps
in the colon (125). Follow-up studies are clearly needed to
reconcile these apparently conflicting findings and assign a
clear role to PPARy in colon cancer.

In basal bladder tumors, four non-recurrent loss-of-function
PPARg mutations (S74C, F310S, E455Q, and H494Y, Figure 2)
have been identified (130). All four PPARg mutants display
significantly reduced transcriptional activities. Biochemical and
biophysical analysis of amino acid residues F310 and H494,
situated in helix 3 and 12, respectively, indicated that both
residues are essential for proper stabilization of helix 12. F310S
and H494Y favor an inactive conformation, impairing both a
proper release of corepressors and recruitment of coactivators
(130). Basal tumors rely on EGFR signaling for growth (131).
Interestingly, in basal cell lines the overexpression of wildtype
but not H494Y, downregulates EGFR signaling.

Although the cancer-related PPARg mutants—which are
mainly scattered throughout the LBD (Figure 2)—may display
variable and more subtle, i.e., context-dependent, intra- and/or
intermolecular defects than the FPLD3-associated PPARg, the
cancer-related PPARg mutants (Figure 2) are impaired in their
ability to exert “classical” transactivation.

Gain-of-Function Mutations
In addition to its well-established role as master regulator in
adipocyte biology, PPARg has also been shown to be involved in
the terminal differentiation of urothelium (4), a layer of
specialized epithelial cells lining the lower urinary tract.
However, little is known about its function in the bladder and
in the pathogenesis of bladder cancer. In 12–17% of the muscle-
invasive bladder carcinomas (MIBC) and in 10% of the non-
muscle-invasive bladder carcinomas, PPARg focal amplifications
leading to PPARg overexpression have been reported, suggesting
a role for PPARg in the initiation and maintenance of bladder
cancer. MIBC are biologically heterogeneous and can further be
grouped into basal and luminal subtypes (132). PPARg has a
protumorigenic role in luminal MIBCS, as the loss of PPARg
expression impairs the bladder cancer cell viability (133). These
luminal tumors maintain molecular urothelial differentiation,
even in the loss of morphological differentiation (133). This
molecular differentiation depends on PPARg (133).

In approximately 5% of the MIBCs and the luminal subgroup
of MIBCs hotspot mutations of RXRa (S427F/Y) has been
identified. These RXRa mutations rely on the introduction of
an aromatic amino acid residue that enhances the ligand-
independent activation of PPARg (134). Tumors harboring
RXR S427F/Y display enhanced expression of genes implicated
in adipogenesis and lipid metabolism, including ACOX1, ACSL1,
ACSL5, and FABP4 (135). In addition, the RXRa hotspot
mutations stimulate the proliferation of urothelial organoids,
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render bladder tumor cell growth PPARg-dependent, and favor
tumor evasion by the immune system.

Recently, seven recurrent driver gain-of-function PPARg
mutations have been identified in luminal bladder tumors
(E3K, S249L, M280I, K164W, and T475M) (5). The mutations
occur throughout the protein, affecting the N-terminus, DNA-
binding domain, and ligand-binding domain (Figure 2). One
recurrent mutation (E3K) was specific to the PPARg isoform as it
was situated in the N-terminal end. Functional analysis indicates
that five mutations promote the transcriptional activity of
PPARg, which renders PPARg-dependence to the cells. The
three recurrent LBD-mutations promote, in absence of PPARg
ligands, the adoption of the active conformation of PPARg by
stabilizing helix 12 and induce recruitment of co-activators.
Interestingly, four of the seven recurrent PPARg mutations
have also been identified in other types of cancer, including
lung cancer, kidney cancer, cutaneous melanoma, and diffuse
glioma (Figure 2) (5). Furthermore, other recurrent mutations
that have not been identified in bladder cancer, have been
identified in other types of cancer, including melanoma and
prostate cancer (Figure 2) (5). Surprisingly, one of these
recurrent PPARg mutations, which are yet functionally
uncharacterized, results in the same amino acid changes as
FPLD3-associated loss-of-function PPARg mutations (e.g.,
R164W and E352Q/K). This may indicate that a potential loss-
of-function or gain-of-function effect is context dependent.

Although, not all recently identified gain-of-function PPARg
mutants have extensively been characterized and even affect
different domains in the protein, at least some of the mutants
have implications for “classical” transactivation of PPARg target
genes in bladder cancer.

Somatic PPARg Fusion Proteins in Cancer
Besides the loss- and gain-of-function mechanisms described
above, a third way in which PPARy may be involved in
carcinogenesis is represented by PPARG gene fusions observed
in follicular thyroid carcinomas (FTCs). The t(2;3)(q13;p25)
chromosomal translocation results in a PAX8/PPARG fusion
gene that is detected in approximately 35% of FTCs and in a
subset of follicular variant of papillary thyroid carcinomas (136).
This chromosomal rearrangement is occasionally present in
follicular adenomas as well (137). The gene paired-box gene 8
(PAX8) encodes for a member of the paired box (PAX) family of
transcription factors and is a critical regulator in physiological
thyroid development (138). In addition, PAX8 promotes the
thyroid progenitor survival en in the mature thyroid it drives the
expression thyroid specific genes, including genes encoding for
thyroglobin and thyroid peroxidase (138, 139). The endogenous
expression of PPARG in the thyroid is extremely low and it
remains to be defined whether PPARg has a physiological
function in the thyroid (140). The translocation t(2;3)(q13;p25)
results in a fusion transcript, driven by the PAX8 promoter,
wherein most of the coding sequence of PAX8 is fused in-frame
to the entire coding sequence of PPARg1 (141). The PAX8-
PPARg fusion protein (PPFP) contains functional DBDs of both
the PAX8 and PPARg (142). In vitro and in vivo evidence
indicates that the PAX8-PPARg fusion protein can function as
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an oncoprotein i) by acting as a negative inhibitor of tumor
suppressor PPARg or as ii) a novel transcriptional factor with
proto-oncogene activity. Nevertheless, the expression of PAX8-
PPARG in FTCs does not affect prognosis (143).

A second chromosomal translocation, t(3;7)(p25;q34)
resulting in a CREB3L2/PPARG fusion gene, is a low incidence
fusion mutation that is found in <3% of the FTCs (144). The gene
cAMP Responsive Element Binding Protein 3 Like 2 (CREB1L2)
encodes for a member of the bZIP transcription factor family.
The CREB3L2/PPARg fusion protein consists of amino acids 1 to
106 of wildtype CREB3L2, a new glutamic acid at position 107
juxtaposed to the all 477 amino acids of wildtype PPARg1 (144).
The CREB3L2/PPARg fusion protein stimulates cell growth
of transduced primary thyroid cells by inducing proliferation
(144). The fusion protein seems to be unresponsive to
thiazolidinediones. In addition, CREB3L2/PPARg interferes in
the CRE-related transcription as overexpression of CREB3L2/
PPARg inhibits the transcription of native cAMP-responsive
genes in normal thyroid cells (144). The impaired ability to
stimulate transcription is consistent with the loss of CREB3L2
bZIP domain, implicated in dimerization and DNA binding, in
the CREB3L2/PPARg fusion protein (144). The oncogenic
activities of the CREB3L2/PPARg fusion protein are most
likely (at least in part) due to 1) disruption one functional
CREB3L2 allele and 2) inhibition of cAMP responsive genes by
interfering in CREB3L2 DNA-binding (144).

Taken together, the PPARg fusion proteins display a third
mode of PPARg action, as they potentially alter the target gene
profile of both parent proteins in the chimeric protein (Figure
3C) and will target multiple signaling pathways implicated
in cancer.

Since the identification of the PPARG gene in the early 1990s
the role of PPARg in cancer has extensively been studied in many
different human cancer cells and animal models. However, the
biological significance of PPARg in cancer development and
progression is far from completely understood and for some
cancers appears to be even inconsistent and contradicting. At
best, the overall conclusion from these studies is that the
context, e.g., specific tumor type, tumor stage, and tumor
microenvironment, determines the exact role and function of
PPARg in human cancer. Therefore, cell-culture studies are
limited in representing the complex gene-gene and gene-
environment molecular interactions that are implicated in
cancer onset and progression.
FUTURE PERSPECTIVES

For many years, PPARg was referred to mainly as the master
regulator of adipocyte function, and although its expression in
the immune system was already described in early research, its
actual role in these cells only became apparent later (Figure 4).
Nowadays, the immunomodulatory role of PPARg in several
immune cells is well-established as described in this review.
While PPARy clearly functions in gene transactivation in both
adipocytes and immune cells, gene repression by PPARy has
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been predominantly investigated in immune cells. PPARg has
also emerged as a factor involved in cancer onset and progression
of several cancer types in recent years. Also, in this case,
transactivation mechanisms are clearly relevant, underscored
by both loss-of-function and gain-of-function mutations. It
should be noted however that no single unifying role for
PPARy in human cancer emerges, and that transrepression has
not always been studied specifically. Finally, gene fusions with
other gene products (PAX8, CREB3L2) as reported in specific
carcinoma presents a third way in which PPARy regulates gene
expression, resulting in either altered target gene sets and/or loss
of activation.

It is well known that PPARy is the molecular target for TZDs,
these drugs have been widely used for the treatment of
hyperglycemia and T2DM. TZDs stimulate the expression of
genes implicated in lipid uptake and storage (145) and
consequently the levels of ectopically stored and circulating
lipids are decreased. In addition, TZDs also increase the
expression of adiponectin, which contributes to enhance
insulin sensitivity of the liver, and improves hepatic steatosis
(145). Given its central role in adipocyte biology and energy
homeostasis, there is a clear rationale behind therapeutically
targeting PPARy and improving insulin sensitivity. However, the
use of TZDs is curtailed due to serious side-effects [review in
(146)]. Although some side-effects, such as troglitazone-
associated hepatotoxicity and rosiglitazone-associated
myocardial infarction have been solved (147), others are still
present. These common side-effects include weight gain, fluid
retention, and osteoporosis. These unwanted side-effects are due
to the ubiquitous expression of PPARy1 in combination with the
full agonism characteristics of TZDs. As indicated earlier, new
generations of ligands, referred to as noncanonical agonist
ligands (NALs) and selective PPARy modulators (SPPARMs),
hold promise in that respect. In fact, very recently, it has been
shown how selective modulators of PPARy can improve liver
histology without affecting body weight in biopsy-confirmed
mouse model of nonalcoholic steatohepatitis (NASH) (148).

Similar to being a potential drug target in metabolism, PPARy
could represent a therapeutic target for a variety of cancers
because of its ability to be selectively activated through its LBD.
As indicated above, various parameters including tumor type
and genetic background must be taken into account, as PPARy
displays oncogenic and tumor suppressor roles. Nonetheless,
targeting PPARg in the cancer context can be effective. In
pancreatic ductal adenocarcinoma for example, the fourth
most frequent cause in cancer-related deaths, PPARg ligands
have shown promising results in vitro and in vivo increasing
apoptosis and reducing tumor growth, respectively (149, 150).

While we have described above that PPARy is expressed
in multiple cancer cell types, and PPARy ligands can affect
cancer cell function and behavior (e.g., proliferation and
sensitivity to chemotherapy), some of the anti-cancer effects
may actually occur indirectly through adipocytes surrounding
the tumor or distal adipose tissue. PPARg plays a crucial role in
AT, and as it has been shown before, AT influences cancer
initiation and progression through several mechanisms (151).
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It is estimated that obesity contributes to up to 20% of cancer-
related deaths. Obesity is associated with increased risk of cancer
development (i.e., colorectal, post-menopausal breast, and
kidney among others) but the association with poor prognosis
is even stronger for some of these cancer types. Obese AT is
characterized by a chronic low-grade inflammation that leads to
dysfunctional adipocytes, metabolic dysregulation, and secretion
of pro-inflammatory cytokines are some of the factors that have
been correlated with increased risk of cancer death. A clear
example of this is the adipokine endotrophin (152), a cleavage
product of the collagen VIa3 chain. Endotrophin has been
shown to promote tumor growth by enhancing the ability of
breast cancer cells to undergo epithelial to mesenchymal
transition (EMT) in mice and humans (153). Interestingly,
TZDs have been shown to decrease levels of endotrophin in
obese patients (154).
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A second exciting option to consider when considering
the use of PPARg ligands in cancer treatment is the role
of the receptor in epithelial to mesenchymal transition (EMT).
Epithelial cells that undergo EMT in the primary tumor acquire
crucial features that increase their invasiveness, migratory
phenotype, and resistance to apoptosis that are essential for the
development of metastasis (155). Transdifferentiation of breast
cancer epithelial cells undergoing EMT into post-mitotic
adipocytes cells using TZDs and MEK inhibitors have been
shown to be a promising therapeutic approach to repress
primary tumor invasion and metastasis formation (156). The
ability of PPARg to drive or inhibit EMT might be subjected
to the specific cell type from which the tumor arises however,
as for example different studies in lung cancer cells have
shown PPARg ligands to inhibit and promote EMT (157).
More research is needed to study the implication of PPARg in
FIGURE 4 | Overview of PPARg function and mechanisms in the different cell types. Schematic representation of PPARg in adipocytes (white, beige, and brown
adipocytes), immune cells (macrophages, dendritic cells, and T cells), and cancer cells. Indicated are different cellular processes and mechanisms of action in which
PPARg is involved.
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EMT to fully determine its role and if it can be a real cancer
treatment option.

PPARg plays a pivotal role in the crossroad between obesity,
immunity, and cancer. Understanding the common and unique
molecular mechanism underlying the function of PPARg in these
situations will allow the development of new therapies. In order
to do so, some challenges have to be overcome; achieving a
selective modulation of PPARg and a cell-specific delivery of
these modulators are two of them. In order to maximize the
beneficial effects of targeting PPARg, the key might be that
PPARg has to be targeted in one specific cell type, and not
indiscriminately throughout the whole body. The use of
nanoparticles coupled to biological ligands that binds to
specific membrane receptors for drug delivery is a technique
that is been study for cancer treatment and it could have a bright
future in the nuclear receptor field if its proven successful. Given
the different and complex roles of PPARy in metabolism,
immunity, and cancer, which rely on overlapping and diverse
Frontiers in Endocrinology | www.frontiersin.org 13
mechsmisms of action, cell-specific delivery of PPARg ligands,
especially noncanonical agonist ligands (NALs) and selective
PPARy modulators (SPPARMs), represent a promising field of
study for future research.
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