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Described almost 50 years ago, the glycerophosphocholine lipid mediator Platelet-
activating factor (PAF) has been implicated in many pathologic processes. Indeed,
elevated levels of PAF can be measured in response to almost every type of pathology
involving inflammation and cell damage/death. In this review, we provide evidence for PAF
involvement in pathologic processes, with focus on cancer, the nervous system, and in
photobiology. Importantly, recent insights into how PAF can generate and travel via
bioactive extracellular vesicles such as microvesicle particles (MVP) are presented. What
appears to be emerging from diverse pathologies in different organ systems is a common
theme where pro-oxidative stressors generate oxidized glycerophosphocholines with PAF
agonistic effects, which then trigger more enzymatic PAF synthesis via the PAF receptor. A
downstream consequence of PAF receptor activation is the generation and release of
MVP which provide a mechanism to transmit PAF as well as other bioactive agents. The
knowledge gaps which when addressed could result in novel therapeutic strategies are
also discussed. Taken together, an enhanced understanding of the PAF family of lipid
mediators is essential in our improved comprehension of the relationship amongst the
diverse cutaneous, cancerous, neurologic and systemic pathologic processes.

Keywords: platelet-activating factor (PAF), oxidized glycerophosphocholine, skin, central nervous system, cancer,
inflammation, ultraviolet - B, microvesicle particles
INTRODUCTION

The term “platelet-activating factor” was first given by Benveniste and colleagues in their landmark
Journal of Experimental Medicine manuscript in 1972, to a biochemical activity released by
activated basophils which caused platelets to aggregate (1). This activity (PAF) was subsequently
determined to be a class of glycerophosphocholines (GPC) with 1-hexadecyl-2-acetyl-GPC being
amongst the most potent (2, 3). Though PAF has been demonstrated to have multiple biological
activities due to a binding at high picomolar-low nanomolar concentrations to single G-protein
coupled receptor widely expressed (4, 5), the term Platelet-activating factor has remained. Indeed,
the PAF family of lipid mediators have been implicated in pro-inflammatory processes ranging
from asthma to sepsis to ultraviolet radiation (UVR) responses. Administration of PAF results in an
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acute inflammatory response, yet also can generate
immunosuppressive effects via upregulation of regulatory T
cells (6–9). A recent PubMed search indicates that more than
14,000 publications involve PAF, which attests to the large body
of information available on this lipid mediator.

The synthetic pathways for PAF have been extensively
reviewed (5, 10). The major pathway associated with cellular
stimuli is the remodeling pathway. Cellular activation resulting
in increased intracellular calcium levels induces phospholipase
A2 (often group IVA cytosolic cPLA2) activation which releases
an unsaturated fatty acid from the sn-2 position of a GPC, with
the released fatty acid often a substrate to form eicosanoids. The
lyso GPC species then is acetylated using acetylCoA by an
acetyltransferase (10) to form PAF. Of interest, the PAF
receptor (PAFR) is a potent stimulus for enzymatic PAF
synthesis via this pathway, indicating a feed-forward system
(11). The limit on enzymatic PAF synthesis appears to be the
substrate as well as amounts of acetylCoA available. Once
produced, PAF is quickly broken down by cell- and serum-
associated PAF acetylhydrolases (PAF-AH) (12). Thus, PAF is a
highly potent mediator whose synthesis and degradation are
tightly regulated.

In contrast to the highly regulated enzymatic pathways, PAFR
agonists can also be formed in response to reactive oxygen
species (ROS) via the direct attack of free radicals on the sn-2
long-chained unsaturated fatty acids in the GPC (13–15).
Oxidation of the esterified fatty acyl residue can introduce oxy
functions, bond rearrangements and can result in the
fragmentation of carbon-carbon bonds via b-scission. This
process can result in a large number of phospholipid reaction
products, to include some that exert PAFR agonistic activity.
Unlike the tightly regulated enzymatic processes, this non-
enzymatic process producing oxidized GPC (ox-GPC) with
PAFR activity is dependent upon amounts of GPC substrate,
pro-oxidants and antioxidant defenses. It should be noted that
the majority of ox-GPC species have not been structurally
characterized to allow quantitation using mass spectrometric
techniques. Hence, we believe that the most accurate manner to
measure PAF is via its biochemical effects such as intracellular
calcium mobilization responses or release of cytokines such as
IL-8 in genetically engineered cell lines with/without the PAFR
(14, 16–18).

Once PAF is generated, it can either reside in the cellular
membranes and potentially act upon the cell itself or to neighbor
cells in juxtacrine fashion (19, 20). Some cell types, in particular
monocytes, neutrophils and keratinocytes have been demonstrated
to release PAF to allow it to exert effects away from the host cell. The
exact mechanisms by which cells release PAF is as yet unknown,
however, our group has recently demonstrated that a keratinocyte
cell line can generate subcellular microvesicle particles (MVP; see ref
(21–23) for recent reviews) released from budding from the plasma
membrane which contain PAFR agonistic activity (24, 25). As
PAFR activation results in both MVP release as well as PAF
generation, this results in the potential linkage of the two
processes. Presumably, traveling in an MVP might afford
protection from degradation by PAF-AH in comparison to being
Frontiers in Endocrinology | www.frontiersin.org 2
free or protein-bound in tissue fluids. As MVPs merge with target
cells, this could place PAF back into a target cell membrane. It
should be noted that recent evidence from x-ray crystallography of
the PAFR indicates that helix VIII appears to cover the ligand-
binding site (26). This novel structural finding could be suggestive
that optimal PAFR agonists bind to the receptor while residing in
the plasma membrane, rather than accessing the binding site
extracellularly. This finding might also provide an explanation for
the low affinity of all known PAFR antagonists in comparison to
native PAF ligand (27). Of importance, MVP release from many
stimuli (including PAF) are dependent upon the lipid enzyme acid
sphingomyelinase (aSMase) (25, 28). As aSMase inhibitors
including imipramine and other molecules in the tricyclic anti-
depressive class of molecules are available (29), this could potentially
result in pharmacologic modulation of PAF release. This adds a
potential adjunctive pharmaceutical strategy in addition to the use
of PAFR antagonists.
PAF AND DISEASE PROCESSES

Because elevated PAF levels can be measured in many diseases,
and exogenous PAF can mimic many aspects of disorders, PAF
has been implicated in many processes. However, no actual
diseases have been demonstrated to be due entirely to the
presence or lack of the PAF system. The picture that is
emerging is that the PAF system appears to serve as a
modulator of pathologic processes. There are three areas that
we would like to focus this review upon- the role of PAF in
cancers and cancer therapy responses, central nervous system
pathologies, and the effects of ultraviolet B radiation. Given that
the skin is a complex organ that has epithelial, mesenchymal,
immunologic, and neuronal components, all of these areas link
to the overall theme of the epilipidome. Moreover, the three areas
are connected to what we believe is a common three-part
process. First, ROS from various agents generate small levels of
PAFR agonists. Second, these PAFR agonists act upon the PAFR
resulting in cellular activation and generation of additional PAF
enzymatically, potentially allowing a PAFR amplification
response. Finally, aSMase activation results in the formation
and release of MVP carrying PAFR agonists to other sites.
Activation of PAFR in target organs then mediate further
pathology. This process provides several therapeutic targets to
include antioxidants, PAFR antagonists, aSMase inhibitors as
well as agents that block down-stream effects such as
cyclooxygenase-2 (COX-2) inhibitors.
PAF AND CANCER AND CANCER
THERAPIES

Evidence Linking PAF System to Cancers
The ability of the PAF-PAFR signaling to induce a robust systemic
pro-inflammatory, pro-proliferative, and delayed immune
suppressive responses, implicated in various pathological
March 2021 | Volume 12 | Article 624132
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conditions, rationalized its exploration in cancer development as
many malignant cells were identified to express PAFR (3–5, 30).
Notably, studies by Im and colleagues provided the first report
demonstrating that a single systemic administration of PAF can
augment IL-1a andTNF-a-induced increasedpulmonarymetastasis
of murine B16F10 melanoma cells in syngeneic C57BL/6 hosts, in a
process blocked by the PAFR antagonist BN50739 (31). The critical
role of the PAF-PAFR signaling inmelanoma tumorigenesis was also
supported by the phenotype of the PAFR-overexpressing transgenic
mice that exhibited keratinocyte hyperplasia, which was
accompanied by hyperpigmentation and increased number of
dermal melanocytes in the ear and tail with subsequent
development of melanocytic tumors (32, 33). Since the PAFR is
expressed in keratinocytes but not melanocytes (34), it is presumed
that the melanocytic tumors are in response to inappropriate
expression of the PAFR which resulted in a proliferative response.
Biancone and colleagues also evaluated the role of the PAF-
metabolizing enzyme PAF-AH in melanoma tumor development
(35). C57BL/6 mice implanted with PAF-AH-overexpressing
B16F10 melanoma cells exhibited significantly decreased tumor
vascularization and growth, as well as increased survival compared
to themice harboring PAF-AH-deficient B16F10 tumors (35). These
studies provided the rationale to further define the contributions of
tumoral versus host PAFR signaling in melanoma development.

Given that ectopic PAF-AH expression in KS-Imm human
Kaposi’s sarcoma cells, or B16F10 melanoma cells resulted in
reduced neoangiogenesis and tumor growth in their respective
SCID and C56Bl/6J hosts, and that IFNg-stimulated PAF
synthesis enhanced the invasiveness of F10-M3, a clone of
B16F10 melanoma line (35, 36), the direct evidence of tumoral
PAFR in melanoma growth remained unclear as unlike many
human melanoma cell lines (37–40), murine B16F10 cells do not
express PAFR (41, 42). To address this question, our group
generated PAFR-expressing B16F10 melanoma cells and
demonstrated that regardless of the tumoral-PAFR expression,
systemic administration of a PAFR agonist, CPAF resulted in
increased growth of melanoma tumors in wild type (WT) mice,
but not in PAFR-deficient (PAFR-KO) counterparts (43). Using
environmental UVB exposure that generates PAF-agonists (to
mirror systemic immunosuppressive model), we observed that
similar to systemic CPAF injection, cutaneous UVB radiation
also significantly increased the growth of PAFR-deficient,
parental B16F10 tumor xenografts in WT hosts, and can be
blocked by antioxidants supplementation (43). Importantly, this
UVB-mediated increased growth of melanoma tumors was not
seen in PAFR-KO hosts (43). Along similar lines, we have also
shown that host activation of the host PAFR signaling augments
the in-vivo growth and metastatic ability of murine Lewis lung
carcinoma cells, yet these effects were not seen in PAFR-KO
hosts (44). These studies support an important role of the host
PAFR signaling in favoring the development and progression of
melanoma and lung tumors.

PAFR Expression in Tumor Proliferation
and Clinical Significance
As most malignant cells of murine and human origins such as the
Kaposi’s sarcoma, breast, prostate, lung, esophageal squamous
Frontiers in Endocrinology | www.frontiersin.org 3
cell carcinoma, ovarian, and pancreatic cancers express PAFR
(40, 45–52), several studies have evaluated its relevance using
various experimental in vitro models, as well as in clinical
settings of cancer patients. Data from in vitro cellular models
indicate that regardless of the anatomical origins, genetic
backgrounds or the mechanisms involved, activation of tumoral-
PAFR or PAFR overexpression accelerate the proliferation,
aggressiveness, migration and invasion compared to respective
control cells in various cancer models (45, 49, 50). Of note,
multiple tumor cell lines expressing PAFR have been shown to
produce more PAF or undergo increased PAFR expression in
response to various stimuli including multiple growth factors and
therapeutic agents (39, 40, 42). These lines of evidence also suggest
that tumoral-PAFR expression could directly modulate the in vivo
tumor growth via inducing systemic immunosuppressive effects
mediated by more enzymatic PAF production by positive feed-
forward mechanisms. Of significance, high tumoral-PAFR
expression has also been detected in clinical settings of primary
as well as lymph nodemetastatic tumors compared to the matched
normal tissue (49, 50). High levels of tumoral PAFR expression
was found to be positively correlated with increasing tumor stages,
tumor status, tumor invasiveness, and poor prognosis in lung and
esophageal squamous cell carcinoma patients (49, 50).
Importantly, patients with high PAFR-expressing tumors
experienced significantly decreased overall survival compared to
the patients with low tumor PAFR expression (49, 50). Moreover,
increased PAF concentrations were also detected in tumor samples
of esophageal squamous cell carcinoma patients compared to
matched adjacent normal tissue (50). These studies suggested
the translational significance of tumoral PAFR expression in
impacting not only tumor progression but also affecting the
prognosis and overall survival of cancer patients.

PAFR Activation Blocking Anti-Tumor
Immune Responses
Immune and non-immune factors including inflammatory
milieu within the tumor microenvironment play significant
roles in fostering tumor growth, angiogenesis, and metastatic
progression (53). Given that PAFR activation is critical in both
acute inflammatory and delayed systemic immunosuppressive
effects, studies including ours have assessed its function in anti-
tumor immune responses. Among various immune cell types,
macrophages have been recognized for their contributions not
only in phagocytosis but also in pathological conditions such as
cancer. Macrophages express various receptors including for
immunoglobulin (e.g., IgG), endotoxin, phosphatidylserine
(PS) etc., which get stimulated upon the engulfment of
microbial organisms or their products to then mediate
proinflammatory signals. However, when apoptotic bodies are
presented, PS interaction with PS-receptor (PSR) on macrophages
induce anti-inflammatory signal (54, 55). Importantly, the
published reports have also shown that the clearance of
apoptotic cells by macrophages induces their differentiation into
a regulatory phenotype possessing immune suppressive function.
The scavenger receptor CD36 expressed on macrophages, binds to
oxidized low density lipoproteins (oxLDL) consisting of
phospholipids, which also act as ligands for apoptotic cells.
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Thus, CD36 mediates apoptotic cell recognition by macrophages
and facilitates its clearance (54, 55). As oxLDL mediated effects
were found to be blocked by PAFR antagonists, studies by Oliveira
et al., have demonstrated that blockade of PAFR or CD36
inhibited apoptotic cell phagocytosis (i.e., efferocytosis) by bone-
marrow derived murine macrophages (56). These studies have
also shown that this efferocytosis increased the colocalization of
CD36 and PAFR in the plasma membrane of macrophages (56).
Overall, the data indicate that apoptotic cell phagocytosis requires
the engagement of both CD36 and PAFR in lipid raft, which
induces macrophage differentiation into a regulatory phenotype.

Earlier studies have evaluated the role of PAF in macrophage
regulation via measuring its spreading ability ex vivo.
Macrophages were isolated from the peritoneal cavity of mice
bearing Ehrlich ascites tumor (EAT) tumors and treated with or
without PAF antagonist and added over glass coverslips.
Increased spreading of macrophages was observed within a
shorter period after tumor cell implantation. However, as
tumors continued to grow, the spreading of macrophages
derived from the normal (vehicle-treated) mice decreased, but
macrophages from PAF antagonist-treated mice maintained the
elevated levels of spreading (57).

Systemic treatment of PAF antagonists not only reduced the
in vivo growth of EAT but also restored the spreading capability
of macrophages (57). Importantly, PAFR antagonists have also
been shown to decrease the growth of B16F10 tumors as well as
the number of tumor-associated regulatory immunophenotypes
expressing galectin-3 (58). Based upon the stimuli and tumor
microenvironment, macrophages can acquire pro-inflammatory
(M1) or anti-inflammatory (M2) phenotypes. These findings
were supported by a recent report demonstrating that the in vivo
tumor growth of PAFR-expressing TC-1 carcinoma or PAFR-
deficient B16F10 melanoma were significantly reduced in PAFR-
KO compared to their WT counterparts. Interestingly, the
reduced growth of these tumor types in PAFR KO mice was
accompanied by increased infiltration of Gr-1+ neutrophils and
CD8+ T cells in B16F10 tumors, and CD4+ T cells in TC-1
tumors (59). In addition, both tumor types from PAFR KO mice
exhibited high frequency of CD11c+ M1 and decreased frequency
of CD206+ M2 macrophages consistent with higher iNOS, lower
arginase activity and IL-10 expression levels as compared to the
tumors implanted into WT mice (59). Overall, these findings
suggested that endogenous PAF-like molecules bind with
macrophages expressing PAFR, which then acquire more M2-
like phenotype (TAMs) in the tumor microenvironment to favor
tumor promotion. Importantly, a novel macrophage phenotype
(i.e., Mox) has also been identified from oxidized phospholipid-
treated murine macrophages, which possess distinct genetic
profiles characterized by overexpression of Nrf2-mediated
redox-regulatory genes, decreased phagocytic and chemotactic
capabilities (60). These studies indicated that Mox macrophages
could play critical roles in the development of development of
atherosclerotic lesion as well as chronic inflammation.

Notably, dendritic cells have been shown to express PAFR,
and its stimulation was found to result in increased production of
cytokines such as IL-10 and the prostaglandin PGE2 associated
Frontiers in Endocrinology | www.frontiersin.org 4
with the regulatory phenotype in a process blocked by PAFR
antagonists (61). Our studies have also supported the
involvement of immune cells and PAFR in regulating the
tumor growth by demonstrating that PAFR activation did not
appreciably augment the growth of B16F10 melanoma tumors in
immunocompromised SCID mice (43). As other prominent
suppressive immunophenotypes which play critical roles in
host anti-tumor immune response are regulatory T cells
(Tregs), we have shown that increased growth of B16F10
tumors mediated via UVB-PAF agonists in syngeneic hosts
was correlated with upregulation of tumoral Tregs compared
to the sham-treated mice (43). Importantly, depletion of Tregs
via anti-CD25 Abs or neutralizing Abs against IL-10, a cytokine
secreted by immunosuppressive phenotypes including Tregs
significantly blocked both UVB- and CPAF-mediated increased
growth of B16F10 tumors compared to control groups of mice
injected with isotype control Abs (43). Similarly, these effects are
blocked by COX-2 inhibitors which appear critical for PAF-
mediated Treg generation (18, 42). Myeloid-derived suppressor
cells (MDSCs), a heterogeneous group of immature myeloid cells
have also been shown to favor tumor development via
mechanisms including the recruitment of other suppressive
immunophenotypes into the tumor microenvironment (62).
Given that murine MDSCs express CD11b and Gr-1 surface
markers, and that their depletion have been explored as potential
therapeutic approaches against solid tumors (reviewed in ref. 62),
we evaluated its role in mediating PAFR-dependent tumor
growth. Our studies found that UVB- or CPAF-mediated
increased growth of B16F10 melanoma tumors was blocked by
depleting MDSCs (via systemic injection of anti-Gr-1 Abs) (63).
Overall, these studies indicated the relative contributions of
several immune cell types in favoring tumor growth.

Multiple Therapies That Kill Tumor Cells
Generate PAF
That dying tumor cells could generate PAF ligands provided the
premise to explore the significance of PAFR signaling in the
therapeutic efficacies of anti-cancer agents with known cytotoxic
effects. Studies including ours have shown that multiple tumor
lines including melanoma, lung, lymphoma, pancreatic, and
nasopharyngeal carcinomas generate oxidized PAF agonists in
response to chemotherapeutic agents or radiation therapy, with
increased levels were detected in PAFR-expressing tumor cells
(41, 42, 52, 64). Importantly, increased tumoral PAFR expression
has also been detected upon the treatment of chemotherapy and
radiation therapy (39, 64). These findings led to the hypothesis
that systemic generation of PAF agonists via these therapies
could tolerize the tumor bearing mice due to their ability to
induce systemic immunosuppression, and thus, can impact their
therapeutic efficacies. Notably, one of the major challenges in the
medical oncology field is to define the mechanisms involved in
inducing tumor resistance to the ongoing therapeutic options for
cancer treatment, with the focus of devising novel approaches to
improve their effectiveness. To address this clinically relevant
question, ours and Sonia Jancar’s group have evaluated the
potential significance of this “bystander effect” generated by
March 2021 | Volume 12 | Article 624132
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chemotherapeutic agents and radiation therapy using murine
cutaneous melanoma or squamous cell carcinoma (SCC) tumor
lines (41, 42, 64).

Consistent with the systemic immunosuppressive model, we
implanted two tumors into the flanks of mice, where one tumor
is treated with chemotherapy or radiation therapy and their
responses were evaluated on the growth of secondary-untreated
tumors. Our studies demonstrated that treatment of one tumor
resulted in increased growth of secondary tumor in a PAFR-
dependent manner in a process blocked by systemic
administration of antioxidants, cyclooxygenase type 2 (COX-2)
inhibitors or depleting antibodies against Tregs (41, 42).
Consistent with our findings, Jancar’s group have shown that
co-injection of irradiated TC-1 cells with TC-1 expressing
luciferase (TC-1 fluc+) in syngeneic hosts, or human PAFR-
expressing KBP cells with irradiated PAFR-deficient KBM cells
in immunocompromised mice resulted in increased tumor
growth compared to the mice co-injected with unirradiated
TC-1 cells with TC-1 fluc+ or KBM cells with irradiated KBM
cells (64). In another report, the same group investigated the
involvement of PAFR in tumor cell survival following radiation
therapy (65). They observed a dose-dependent increased
expression of the PAFR, increased generation of PAF agonists,
and secretion of PGE2 after radiation therapy in keratinocytes
(HaCaT), cervical cancer (C33, SiHa, HeLa), and squamous
carcinoma (SSC78 and SSC90) cell lines compared to their
respective unirradiated controls (65). Treatment with PAFR
antagonist CV3988 pre-radiation therapy reduced PGE2
secretion and increased tumor cell death compared to
untreated controls, indicating the tumor cells generate PAF
agonists to protect themselves from cell death (65).

Importantly, our studies have also detected an increased level
of PAFR activity in the perfusates collected post-chemotherapy
compared to pre-chemotherapy in melanoma patients using the
isolated limb chemoperfusion (42). Higher concentrations of
tumoral PAF were measured in post-radiation compared to pre-
radiation therapy treated basal cell carcinoma (BCC), bladder
cancer, or pseudo lymphoma patients (41). Increased tumoral
PAFR expression was detected in post-radiation therapy treated
compared to untreated cervical invasive carcinoma patients (64).
These studies suggest that PAF agonists generated via these
therapeutic agents impede treatment efficacies in a PAFR
dependent manner, and that PAFR serves to mediate pro-
survival responses to these agents.
Potential Pharmacologic Strategies
Several groups including ours have proposed PAFR as a
promising target to not only inhibit tumor growth but also to
increase the efficacy of therapeutic agents. This hypothesis has
been tested in multiple experimental models demonstrating that
genetic blockade of the PAFR (via studies in PAFR KO mice or
PAFR shRNAs) or pharmacologic PAFR antagonists significantly
reduced tumor burden, increased murine host survival, as well as
augmented the effectiveness of therapeutic agents compared to
their respective control groups (39, 41–44, 49, 50, 58, 64, 65).
While multiple structurally different but specific PAFR antagonists
Frontiers in Endocrinology | www.frontiersin.org 5
have been shown to exert promising effects against various
experimental tumor models (39, 58, 64, 65), none of these
agents have been explored in clinical settings of cancer patients.
Importantly, the structural analysis as well as anti-inflammatory
effects of several organic compounds (natural and synthetic) and
different classes of metal-based inhibitors of PAF have been tested
with the focus if these agents could exert anti-cancer properties
(66). The authors observed that while these metal-based inorganic
compounds possess a very promising class of anti-PAF and anti-
inflammatory drugs, the rhodium(III) PAF inhibitor Rh-1
exhibited the moderate cytotoxicity in HEK 293 cell lines, which
corroborates with its increased anti-inflammatory action (66).
Overall, these studies provided the rationale of designing and
exploring a new class of metal-based inhibitors of PAF. Another
recent review has summarized the effects and outcomes of major
synthetic PAF antagonists tested in clinical trials against several
disease pathologies (67). The overall outcomes of these clinical
studies are that majority of the synthetic PAF antagonists exerted
no significant effects in reducing the clinical symptoms in patients,
indicating the exploration of other compounds for their effects as
potent inhibitors of PAF or PAFR (67). Thus, other strategies such
as the inhibition of ox-GPC formation using antioxidants or the
PAFR-mediated immunomodulatory effects using COX-2
inhibitors could be alternative strategies. Finally, the role of
MVPs released from tumor cells as the potential source of
PAFR agonists could provide an alternative pathway which
could be amenable to aSMase inhibitors.
PAF IN CNS FUNCTION AND PATHOLOGY

Evidence for PAF System in CNS
Pathologies
At present, it is unclear whether the PAF system plays an
important functional role in the nervous system. Though PAF
injection into the skin has been reported to be painful (68–71),
much of the evidence linking the PAF system and
neuropathology is derived from studies of the central nervous
system (CNS). Previous work reported that PAFR agonists can
increase intracellular calcium concentration (72), inhibit
acetylcholine release in hippocampal slices (73), enhance
catecholamine release from cultured chromaffin cells (74),
inhibit ionotrophic GABA receptor activity in hippocampal
neurons (75), and enhance glutamate release from primary
hippocampal cultures (76). There is conflicting evidence with
regard to PAF’s role in long term potentiation (LTP), an example
of synaptic plasticity in which a synapse enhances its strength
typically resulting from high frequency stimulation. One study
reported PAF treatment can induce LTP in hippocampal slices at
similar potentiation level as that induced by high frequency
stimulation (77). However, these data could not be replicated in a
later study, in which they demonstrated that PAF alone could not
induce LTP in hippocampal slices (78).

Although the role of PAF in CNS function is unknown, the
PAF system has been implicated in multiple CNS pathological
states. Elevated PAF levels have been detected in and appear to
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correlate with severity of several CNS diseases. The association of
elevated PAF with Alzheimer’s Disease (AD), multiple sclerosis
(MS), cerebral infarction, cerebral ischemia-reperfusion injury,
and spinal cord injury has been recently reviewed (79). Moderate
increases of 20% in PAF were measured in healthy subjects as
they age over a 7.5 year period, whereas a greater than 60% average
increase in blood PAF levels was detected in AD patients (80).
Similarly, patients suffering from MS have elevated CSF as well as
plasma PAF levels as compared to healthy subjects (81). Increase
in hippocampal PAF levels was observed after evoked seizures in a
mouse model of temporal lobe epilepsy (82). Ischemia and
traumatic brain injury (TBI) have also been shown to result in
significant production of PAF contributing to the
pathophysiological events following ischemia or TBI (83–86).

In addition to increases in PAF levels, a reduction in PAF-AH
activity was observed in PD (87) and MS patients (88). PAF-AH
is an enzyme that degrades PAF and has been shown to be
upregulated in stroke patients likely as a response to elevated
blood PAF and PAFR agonist levels (86, 89). There is no clear
explanation for the reduction in PAF-AH measured in PD and
MS patients that were previously reported. The authors suggest
that there may additional lipid oxidation products during PD
andMS progression that may act to inhibit the PAF-AH and thus
inducing and/or augmenting the elevated PAF levels (87).
PAFR Activation and CNS Toxicity
Relevant to CNS pathologies, PAFR-mediated increases in
intracellular calcium levels and glutamate release can result in
excitotoxicity and apoptosis (82, 90, 91). On a tissue level, PAFR
are expressed in different regions of the brain including
hypothalamus, cerebral cortex, olfactory bulb, hippocampus,
brainstem and spinal cord (72). At the cellular level, PAFR is
expressed predominantly in microglia, the brain resident
immune cells (92, 93), but also found in neurons and other
glial cells such as astrocytes and oligodendrocyte progenitor cells
(72, 94–96). Though high (micromolar) levels of PAF can
certainly induce cell toxicity, PAF acts primarily through
PAFR. Indeed, its reported effects can be suppressed in the
presence of PAFR antagonists or no longer detected in a PAFR
knock-out mouse model. PAF-mediated increase in intracellular
calcium concentration (72) and neurotransmitter release (73, 74,
76) are no longer detected in the presence of PAFR antagonists.
In vivo administration of a PAFR antagonist (LAU-0901) in a
mouse model of temporal lobe epilepsy attenuated seizure
susceptibility and neuronal hyper-excitability as well as
reduced hippocampal damage (82, 96). The adverse CNS
effects following TBI were alleviated in mice deficient in PAFR
expression (97). Ischemic damage can be attenuated by
treatment with PAFR antagonist in rabbits (98). Preclinical
studies also showed that PAF signaling through PAFR is
involved in the dopaminergic neurodegeneration induced by 1-
methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) as PAFR
knockout mice and mice treated with a PAFR antagonist did
not suffer neurological deficits from MPTP (99). Furthermore,
amyloid beta-induced neurotoxicity can be suppressed by
antagonizing PAFR (100, 101).
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Although the precise mechanistic steps by which PAF and
PAFR play a role in these CNS dysfunction are not yet clearly
defined, strong evidence indicates that PAF can induce or
enhance neuroinflammation by promoting microglia activation
thereby exacerbating disease states and neuronal injury in a
PAFR-dependent manner (92, 93). Exogenous application of
PAF was shown to induce a microglial chemotactic response that
was dependent on PAFR, as chemotaxis was not observed in the
presence of PAFR antagonist (WEB2086) or in PAFR deficient
mice (102). PAF-mediated activation of microglia is thought to
occur through an increase in intracellular calcium concentration
(103, 104). The source of the PAF-mediated calcium increase has
been reported to be primarily from endoplasmic reticulum stores
which in turn induce a more sustained increase in calcium by
activation of the store-operated calcium channels (SOCs)
(103, 104).

Excessive PAF can also disrupt the blood brain barrier (BBB)
via a PAFR-dependent mechanism (105–107). Rat brain
microvascular endothelial cells, an essential component of the
BBB, were shown to have increased PAF production when
exposed to hypoxia, consequently resulting in the breakdown
of BBB (105). There is evidence that similar to PAF effects on
microglia, this PAF-mediated BBB disruption occurs via an
increase in intracellular calcium (105, 107). However, unlike in
microglia, the source of PAF-mediated calcium increase in
microvascular endothelial cells is the influx of calcium ions
through L-type voltage-gated calcium channels, thereby
inducing depolarization, and ultimately resulting in increased
BBB permeability (107). Treatment with a PAFR antagonist
prevented the PAF-induced increase in calcium concentration
and prevented disruption in BBB permeability (105, 107).
MVP and CNS Pathologies
At present, there are no reports as to the identification of PAF-
containing MVP in the CNS. However, microglia release MVP
containing IL-1b within the CNS upon ATP stimulation (108).
Similar to the formation and release of MVP in other systems,
this process in microglia was found to be dependent on aSMase
(28). In the case of TBI, mice that were genetically deficient in
aSMase or pharmacologically treated with aSMase inhibitor
experienced significantly less adverse neurological effects at 1
month post injury (109). It is unclear whether these
microparticles also contain PAF or PAFR agonists in addition
to IL-1b.
Potential Pharmacologic Strategies
In summary, multiple studies have implicated the PAF system in
a number of neuroinflammatory and neurodegenerative
conditions. As these mechanisms are further elucidated, there
is potential for PAF and PAFR targeted therapeutics for various
CNS disorders. In particular, one area which has significant
promise as a therapeutic target relates to MVPs, which are likely
elevated in a broad range of CNS pathologies. It is presumed that
an enhanced understanding of the PAF system in CNS disorders
would be reflected upon the peripheral nervous system.
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PAF AND UVB RADIATION

Evidence Linking PAF System to UVB
There is accumulating data suggestive that the PAF system could
play a significant role in cutaneous pathophysiology, in
particular how the skin responds to exogenous environmental
stressors (110). Cell types in the skin such as the keratinocyte
(34), mast cell (111, 112), and multiple monocytic and
granulocytic cell types express PAFRs (113, 114). Of interest,
melanocytes, skin fibroblasts, and T cells do not, yet B cells
express PAFRs (34, 115, 116). Elevated PAFR agonist levels can
be detected following multiple pathophysiologic stressors
ranging from burn injury to X-radiation (41, 117, 118).
Moreover, PAF can be detected in cold urticaria (119),
immunobullous diseases such as bullous pemphigoid (120),
following sunburn (121), and in the skin disease psoriasis
(122). Consistent with the notion that PAF could exert
cutaneous effects, intradermal injection or topical application
of PAF onto skin results in an almost immediate painful
urticarial response (68–71).

Ultraviolet B radiation (290-320 nm; UVB) is a pro-oxidative
stressor which exerts profound cutaneous effects. Though only
appreciably absorbed in the epidermis, sunlight’s “burning rays”
are critical for vitamin Dmetabolism, yet, also generate sunburns
as well as both melanoma and non-melanoma skin cancer (8, 9,
123–126). Inasmuch as UVB generates anti-inflammatory effects
in skin, phototherapy is used clinically to treat a large number of
skin diseases including atopic dermatitis and psoriasis (9)..

Multiple lines of evidence link UVB with the PAF system.
UVB generates the production of PAF and ox-GPC with PAFR
agonistic activity (14). PAFR signaling is involved in two distinct
aspects of photobiology. First, PAFR activation has been
implicated in the early acute responses of UVB. In a murine
model of photosensitivity from deficiency of the DNA repair
enzyme xeroderma pigmentosum type A (XPA), UVB treatment
results in dramatically increased levels of ROS, as well as PAF
and ox-GPC formation (127). Moreover, UVB-mediated
exaggerated pro-inflammatory responses in XPA-deficient mice
are blocked by PAFR antagonists (127). Of interest, PAFR-
deficient epithelial cells and mice exhibit diminished acute
inflammation as well as decreased production of multiple
cytokines including tumor necrosis factor in response to UVB (71,
127–129). Second, UVB-mediated systemic immunosuppression
involves PAFR signaling via ox-GPCs (6–9, 112). Of note, UVB
induces both local immunosuppression (where a UVB-treated site is
anergic) in addition to systemic immunosuppression (where a non-
UVB-treated UVB site is anergic). UVB-mediated local
immunosuppression appears to involve dendritic cells, whereas
systemic immunosuppression involves mast cells and Tregs. It has
been reported by several groups that exogenous PAF is
immunosuppressive, and UVB-induced systemic immunosuppression
is attenuated by PAFR antagonists and absent in PAFR deficient mice
(6–9, 112). However, local immunosuppression is normal in PAFRKO
mice (129). As noted elsewhere in this review, exogenous PAF agonists
augment experimental melanoma tumor progression (41–43). Finally,
systemic PAFR antagonists have been reported to inhibit tumor
formation in a murine model of UVB photocarcinogenesis (130).
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PAF and UVB and MVP
Environmental stressors which produce PAF such as thermal
burn injury or UVB also cause the production and release of
MVP (24, 52, 131, 132). Indeed, MVP generated in response to
UVB or thermal burn injury by keratinocytes in vitro, human
skin ex vivo, and murine skin in vivo is dependent upon the
PAFR (24, 25). Finally, MVP produced in response to UVB or
thermal burn injury contain PAFR agonistic activity (24).

The picture that is emerging (see Figure 1) fits with the
hypothesis that UVB generates ox-GPC PAFR agonists, which in
turn act upon the PAFR-positive keratinocyte resulting in PAFR
activation. This PAFR activation then results in additional PAF
enzymatically, as well as increased ROS and thus more ox-GPC.
PAFR activation also translocates aSMase which then triggers
MVP release. The MVP which contain PAF and ox-GPC then
travel from the epidermis. One of the critical PAFR cell types
these UVB-generated MVP (UVB-MVP) encounter is the
dermal mast cell, which contributes to both UVB acute
responses as well as delayed systemic immunosuppression.

Potential Pharmacologic Strategies
Knowledge gaps which need to be addressed include the role the
PAF system and UVB-MVP in photosensitivity, as well as in
photocarcinogenesis. Of note, a human study using the COX-2
inhibitor celecoxib demonstrated decreased numbers of skin cancers
(133), which could be in part related to the ability of these agents to
block UVB-mediated systemic immunosuppression (6–9). Since
MVP generation and release can be modulated pharmacologically
by aSMase inhibitors such as imipramine (25, 29), addressing these
FIGURE 1 | Hypothetical model by which UVB generates PAFR agonists via
ROS which then result in PAF-laden MVP release. In this model, ROS
generated by UVB result in ox-GPC as well as enzymatic PAF synthesis.
These PAFR agonists act upon the PAFR resulting in MVP generation release
via acid sphingomyelinase activation. These MVP contain bioactive agents,
especially PAFR agonists which then can mediate UVB effects.
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knowledge gaps could result in novel strategies for managing
photodermatology disorders and photocarcinogenesis.
DISCUSSION

Though much has been learned about this class of lipid mediators
first described almost 50 years ago, significant knowledge gaps
remain. Several major hurdles have limited our understanding of
the PAF system. First, there is a tremendous heterogeneity of GPC
species produced enzymatically and even more via non-enzymatic
processes which can exert PAFR agonistic effects (5, 15).
Moreover, some members of the PAF family of mediators
include the 1-acyl species which are in much greater abundance
than 1-alkyl GPC, yet have much lower binding affinities and have
been suggested to act as antagonists (120, 134, 135). PAF is rapidly
metabolized, with a half-life in biological fluids measured in
minutes. Hence, it is challenging to be able to accurately
measure PAFR activity in biologic systems. A second issue that
potentially limits the study of, and ability to use pharmacologic
tools is also that PAFR antagonists are of much lower affinity than
Frontiers in Endocrinology | www.frontiersin.org 8
the most active PAF species, and that inhibitors of the biosynthetic
and inactivation enzymatic pathways are not available.

A relatively new area which could result in an enhanced
understanding of the PAF system relates to how PAF is released
from a host cell. Extracellular vesicles such as MVP appear to be
a logical mechanism for the release of PAF and multiple bioactive
molecules. Recent findings from our group indicate that PAFR
activation is a potent mediator for MVP generation/release, and
that these MVP contain PAFR agonistic activity (24). Inasmuch
as MVP formation can be blocked by aSMase inhibitors, this
allows another potential level of pharmacologic intervention.
Future studies should provide new insights into the PAF system
which should result in novel targets for diseases of the skin as
well as for other systemic disorders.
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