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The genetic alterations that cause the development of glucocorticoid and/or
mineralocorticoid producing benign adrenocortical tumors and hyperplasias have
largely been elucidated over the past two decades through advances in genomics. In
benign aldosterone-producing adrenocortical tumors and hyperplasias, alteration of
intracellular calcium signaling has been found to be significant in aldosterone
hypersecretion, with causative defects including those in KCNJ5, ATP1A1, ATP2B3,
CACNA1D, CACNA1H, and CLCN2. In benign cortisol-producing adrenocortical tumors
and hyperplasias abnormal cyclic adenosine monophosphate-protein kinase A signaling
has been found to play a central role in tumorigenesis, with pathogenic variants in GNAS,
PRKAR1A, PRKACA, PRKACB, PDE11A, and PDE8B being implicated. The role of this
signaling pathway in the development of Cushing’s syndrome and adrenocortical tumors
was initially discovered through the study of the underlying genetic defects causing the
rare multiple endocrine neoplasia syndromes McCune-Albright syndrome and Carney
complex with subsequent identification of defects in genes affecting the cyclic adenosine
monophosphate-protein kinase A pathway in sporadic tumors. Additionally, germline
pathogenic variants in ARMC5, a putative tumor suppressor, were found to be a cause of
cortisol-producing primary bilateral macronodular adrenal hyperplasia. This review
describes the genetic causes of benign cortisol- and aldosterone-producing
adrenocortical tumors.

Keywords: Cushing’s syndrome, genetics, primary aldosteronism, adrenocortical hyperplasia, adrenocortical adenoma
INTRODUCTION

The discovery of the genetic drivers of adrenocortical tumorigenesis has been facilitated by advances in
genomics over recent years and has provided new insights on the molecular pathogenesis of
adrenocortical disease. The identification of disease-causing germline and somatic pathogenic
variants in primary aldosteronism (PA) and Cushing’s syndrome (CS) is ushering in a new era of
“precision-medicine,” though the challenge in future years is to translate these discoveries into new
diagnostic and therapeutic modalities. Furthermore, these discoveries have allowed for a more specific
classification of adrenocortical hyperplasias, that goes beyond pathology and is gene-based, allowing
for more patient-specific genetic screening and counseling. In PA, these discoveries include the
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identification of the crucial role of aberrant intracellular calcium
signaling in aldosterone hypersecretion, with defects in genes that
encode ion channels, including KCNJ5, CLCN2, CACNA1H and
CACNA1D, and ATPases, such as ATP1A1 and ATP2B3, being
implicated in this pathogenesis. In CS abnormal cyclic adenosine
monophosphate (cAMP)-protein kinase A (PKA) signaling has
been implicated in the development of most benign cortisol-
producing adrenocortical tumors and hyperplasias (1–4).
Aberrant cAMP-PKA signaling was first associated with the
development CS due to primary bimorphic adrenocortical
disease (PBAD) in the rare tumor disorder McCune-Albright
syndrome (MAS), which is caused by early embryonic
postzygotic somatic activating defects in GNAS, the gene that
encodes the a-subunit of the stimulatory G protein (Gsa) (2, 4).
This pathway was further implicated in the development of CS due
to primary pigmented nodular adrenocortical disease (PPNAD)
through the study of another rare familial tumor syndrome,
Carney complex (CNC), that is predominantly due to germline
inactivating defects in PRKAR1A, which encodes the regulatory
subunit type 1a (R1a) of PKA (3). Subsequently aberrant cAMP-
PKA signaling was identified as a significant cause of cortisol-
producing adrenocortical adenomas (CPAs) through activating
somatic defects in PRKACA, the gene that encodes the catalytic
subunit Ca of PKA (1). In bilateral macronodular adrenal
hyperplasia (PBMAH), another form of adrenocortical
hyperplasia, germline defects in the tumor suppressor gene
ARMC5 were found to be the most common underlying genetic
defect (5).

Primary adrenocortical tumors (ACTs) are primarily
comprised of benign adenomas and/or hyperplasias and less
frequently carcinoma. These tumors may be sporadic or familial,
unilateral or bilateral, and secreting or non-secreting. In a
retrospective population-based cohort study that evaluated the
standardized incidence rate of adrenal tumors in all patients with
tumors who lived in Olmsted County, Minnesota, USA from
1995 to 2017, the overall mean sex-standardized and age-
standardized incidence rates of adrenal tumors diagnosed from
1995 to 2017 was 47 (95% CI 45–50) per 100,000 person-years,
with the incidence of adrenal tumors increasing ten times from
1995 to 2017 paralleling the increased use of abdominal imaging
(6). The prevalence of adrenal tumors in 2017 was 0.53%. Of the
1287 patients identified as having adrenal tumors, 93.7% had
adrenocortical adenoma and nodular hyperplasia, 8.6% had
malignant masses, 6.6% had other benign masses, and 1.1%
had pheochromocytoma, with 4.1% having overt adrenocortical
hormone excess. This review focuses on the reported causative
genomic alterations in benign cortisol- and/or aldosterone-
producing ACTs.
ALDOSTERONE-PRODUCING
ADRENOCORTICAL TUMORS

PA is the most common cause of secondary hypertension, and is
responsible for approximately 8% of cases. It is characterized by
aldosterone secretion that is relatively autonomous of the major
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regulators of secretion and inappropriately high for sodium status,
and is not suppressed by sodium loading. This results in sodium
retention, suppression of plasma renin, hypertension, and increased
potassium excretion (7–9). Bilateral adrenocortical hyperplasia
(BAH) and aldosterone-producing adenomas (APAs) account for
65% and 35% of cases of PA, respectively, with less common causes
including unilateral hyperplasia (2%), pure aldosterone-producing
ACC (<1%), familial hyperaldosteronism (FH) (FH type 1 <1%),
and ectopic aldosterone-producing adenoma or carcinoma (<0.1%)
(9). Intravascular volume depletion and elevation in plasma
potassium are the main stimuli for aldosterone synthesis.
Intravascular volume depletion causes activation of the renin-
angiotensin system with release of angiotensin II (AT-II) which
binds to a G-protein coupled receptor (GPCR) on the
adrenocortical zona glomerulosa cells, while increased potassium
directly raises the production of aldosterone in adrenocortical zona
glomerulosa cells, whose resting potential is set by potassium
channel activity (10). These physiologic stimuli exert their effects
through the generation of a cytoplasmic calcium signal through
membrane depolarization with activation of voltage-gated
calcium channels and increased intracellular calcium. This leads
to increased expression of aldosterone synthase (CYP11B2),
increased aldosterone production, and glomerulosa cell
proliferation. Aldosterone acts on the mineralocorticoid receptor
in the renal distal convoluted tubule, connecting tubule, and cortical
collecting duct, amongst other tissues, with resulting increased renal
sodium reabsorption and potassium excretion.

Familial Hyperaldosteronism
FH is inherited in an autosomal dominant manner. Four major
types of FH, type I through IV, have been described, with FH
comprising 1% to 5% of PA cases. FH type I (FH-I) or
glucocorticoid remediable hyperaldosteronism (GRA) is the result
of aldosterone overproduction due to ACTH-dependent activation
of aldosterone synthase and was initially described in 1966 in a
single family, with identification of the causative chimeric gene 26
years later (11, 12). GRA is the result of the formation of a chimeric
gene from unequal crossing over between 2 highly homologous
genes that encode isozymes of 11-beta-hydroxylase on chromosome
8: CYP11B1, which encodes 11b-hydroxylase (catalyzes conversion
of 11-deoxycortisol to cortisol), and CYP11B2, which encodes
aldosterone synthase (converts deoxycorticosterone to
corticosterone and 18-hydroxycorticosterone to aldosterone). The
fusion of the promoter region of CYP11B1 with CYP11B2, leads to
ectopic expression of CYP11B2 in the zona fasciculata with ACTH-
dependent activation of the aldosterone synthase. This condition
can be treated with intermediate-acting glucocorticoids
administered at bedtime at the smallest effective dose, with or
without mineralocorticoid antagonist therapy (13).
Glucocorticoids diminish ACTH release and can reverse the
hypersecretion of aldosterone. FH type II (FH-II) was first
described in 1992 as familial PA due to APA and/or BAH
without response to glucocorticoid administration and did not
have a known genetic etiology until recently. Initially, in the year
2000, a locus for FH-II was identified on the short arm of
chromosome 7 corresponding to the band 7p22 (14).
Subsequently it was discovered that gain-of-function defects in the
March 2021 | Volume 12 | Article 632543
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CLCN2 gene, which encodes the chloride channel ClC-2, were the
causative pathogenic variants in a subset of patients (15). These
CLCN2 defects cause voltage-gated calcium influx due to increased
chloride permeability and depolarization (15, 16). A study that
included a family with FH-II and 80 additional probands with
unsolved early-onset PA initially identified defects in CLCN2 as the
cause of FH-II, with eight probands carrying heterozygous variants
in CLCN2, including two de novo defects and all relatives with early-
onset PA harboring the CLCN2 variant found in the probands (16).
FH type III (FH-III) is the result of germline defects in the KCNJ5
gene, and was first described in 2008 in a family presenting with a
novel form of glucocorticoid-refractory PA (17). KCNJ5 encodes
GIRK4 (G-protein–activated inward rectifier potassium channel 4),
an inwardly rectifying potassium channel. Defects in this gene result
in altered channel selectivity that causes increased sodium
conductance and cell depolarization, ultimately leading to
increased intracellular calcium and calcium signaling (17). A case
of early-onset PA with BAH caused by mosaicism for a KCNJ5
defect was also recently described (18). Somatic defects in KCNJ5
are the most common genetic defect associated with APAs, with
APA-causing somatic pathogenic KCNJ5 variants leading to a more
severe phenotype when found in the germline, as opposed toKCNJ5
defects identified only in the germline, which tend to lead to a
milder phenotype, though there are some exceptions. FH type IV is
the result of germline defects in the CACNA1H gene and was first
described in 2015 (19). CACNA1H encodes a T-type calcium
channel, with pathogenic variants in this gene causing increased
intracellular calcium through impaired channel inactivation and
activation at more hyperpolarized potentials (19). Germline
CACNA1H defects were initially identified in five unrelated
individuals with early-onset PA with family analysis being
suggestive of incomplete penetrance and showing de novo
occurrence in two kindreds. Germline defects in CACNA1D,
which encodes an L-type calcium channel, cause early-onset PA,
seizures, and neurologic abnormalities, referred to as PA with
seizures and neurological abnormalities or PASNA syndrome
(20). Mutant channels are activated at less depolarized membrane
potentials and show impaired inactivation, with resulting increased
calcium influx. Due to the severity of the associated disease, these
Frontiers in Endocrinology | www.frontiersin.org 3
variants occur exclusively de novo and are not inherited (20).
Germline ARMC5 pathogenic variants have also been associated
with PA and germline variants in the phosphodiesterase 2A
(PDE2A) and 3B (PDE3B) genes, were recently associated with
PA caused by BAH, however these genetic defects have not yet been
designated as causes of FH (21, 22). In one study that included 56
subjects with PA, some of whom had BAH, six subjects (10.7%)
harbored a germline ARMC5 variant that was predicted to be
pathogenic by in silico analysis, with all six of these subjects being
African American (22). However, this was not confirmed in a
subsequent study of 39 primarily Caucasian patients (37 Caucasian
and 2 African American subjects) with PA and BAH, where no
germline pathogenic ARMC5 variants were identified (23).

Aldosterone-Producing Adrenocortical
Adenomas
Approximately 90% of APAs are caused by somatic pathogenic
variants in genes encoding ion channels or transporters, such as
those in KCNJ5, CACNA1D, ATP1A1 and ATP2B3 (20, 24–26)
(Figure 1). Somatic variants in KCNJ5 are associated with 40% of
APAs, with two hotspots, p.G151R and p.L168R, in and near the
selectivity filter of KCNJ5 being responsible for the majority of
KCNJ5 defects in APAs. Defects in KCNJ5 lead to more severe PA
at a younger age, with larger APAs, and are more common in
females than in males (53–63% vs. 22–31%), with a higher
frequency in some Asian cohorts (60–70% of APAs) compared
to European cohorts (26–31) (Figure 1). Somatic defects in
CACNA1D account for 21% to 42% of APAs, making this the
second most common defect in these tumors (32). In contrast to
patients of European and Asian decent where somatic KCNJ5
defects are the most prevalent APA-causing genetic alterations, in
Blacks, somatic CACNA1D defects were found to be the most
prevalent genetic defect in APAs (Figure 1) (29–31, 33). Defects in
CACNA1D were more frequent in APAs from Black males as
opposed to Black females, who unlike males still have a high rate of
KCNJ5 pathogenic variants (33). Forty-two percent of APAs in
Blacks harbored CACNA1D defects, followed by KCNJ5 in 34%,
ATP1A1 in 8%, and ATP2B3 in 4% (33). Three to 17% of APAs
result from gain of function somatic pathogenic variants in the
FIGURE 1 | Prevalence of somatic driver pathogenic variants in aldosterone-producing adenomas. KCNJ5, potassium channel, inwardly rectifying, subfamily J,
member 5; CACNA1D, calcium channel, voltage dependent, L-type, alpha-1D subunit; ATP1A1 ATPase, NA+/K+ transporting, alpha-1 polypeptide,; ATP2B3,
ATPase, Ca(2+)-transporting, plasma membrane, 3; CACNA1H, calcium channel, voltage dependent, T-type, alpha-1H subunit; CTNNBI, catenin, beta-1.
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ATPase genes ATP1A1 and ATP2B3 (25, 32). Defects in these
genes result in abnormal Na+ or H+ permeability and increased
aldosterone production. The wingless-type (Wnt)–b-catenin
pathway has also been associated with APA formation, with 2%
to 5% of APAs harboring activating somatic pathogenic variants in
the b-catenin gene CTNNB1 and a significant proportion of APAs
demonstrating constitutive activation of the Wnt-b-catenin
pathway (20, 34–37). The cytoplasmic protein b-catenin is the
main player in this pathway. Its stability is regulated by the Axin
complex which is comprised of the scaffolding protein Axin, the
tumor suppressor adenomatous polyposis coli (APC) gene product,
casein kinase 1 (CK1) and glycogen synthase kinase 3 (GSK3).
When Wnt is absent, b-catenin is continually degraded by the
action of the Axin complex. This does not allow b-catenin to
translocate to the nucleus, with resulting repression of Wnt target
genes by the DNA-bound T cell factor/lymphoid enhancer factor
(TCF/LEF) family of proteins. Binding of Wnt ligands to a
receptor complex including a member of the frizzled family of
seven-transmembrane receptors and a member of the LDL
receptor family (LRP 5 or 6) activates the Wnt-b-catenin
pathway, with subsequent inhibition of the Axin complex, and
stabilization and accumulation of b-catenin. Beta-catenin then
translocates to the nucleus where it activates TCF/LEF
transcription factors thereby activating Wnt target gene
expression (38). Two women with APAs that presented in
pregnancy were also found to have somatic pathogenic variants
in CTNNB1 and had significantly upregulated adrenocortical
expression of the LH/hCG receptor and gonadotropin releasing
hormone (GnRH) receptor (39). However, a subsequent study that
genotyped subjects with PA and evaluated in vivo for GnRH/LH
responsive aldosterone secretion, found that aberrant aldosterone
regulation occurred frequently in PA, but was not often associated
with CTNNB1 pathogenic variants (40). Recently somatic
CACNA1H pathogenic variants were identified as a cause of
APAs, however the prevalence of these pathogenic variants in
APAs is low (41). Somatic pathogenic variants inCLCN2were also
recently described in APAs with a prevalence of 1.74% in one
small study (42). The histologic classification of PA is a spectrum,
ranging from BAH to PBMAH, as shown in Figure 2 (43).
CORTISOL-PRODUCING
ADRENOCORTICAL TUMORS

CS has an incidence of two to three cases per one million
inhabitants per year, and is comprised of signs and symptoms
that develop due to prolonged tissue exposure to excess
glucocorticoids, with approximately 20% of cases of endogenous
CS being caused by primary adrenocortical hyperfunction (10–
22% CPAs, 1–2% adrenocortical hyperplasia which is mostly
bilateral, and 5–7% adrenocortical carcinoma [ACC]) (44–46).
Specifically, BAH is characterized by multiple adrenocortical
nodules and is classified as micronodular or macronodular
depending on whether the radiological size of most of the
nodules is less than or greater than 1 cm in diameter,
respectively. BAH is further subclassified histologically
Frontiers in Endocrinology | www.frontiersin.org 4
according to the histological presence of pigment (lipofuscin)
inside the nodules or in the surrounding adrenal cortex and/or the
presence of atrophy or hyperplasia of the internodular cortex. The
bilateral nature of the ACTs in BAH suggests an underlying
genetic predisposition which has been confirmed in many cases,
and a gene-based subclassification was recently proposed (Table 1
and Figure 3) (47, 48).

The cAMP-PKA pathway is central to the regulation of
adrenocortical cell development, proliferation, and function, with
aberrant cAMP-PKA signaling playing a significant role in the
development of the majority of benign cortisol-producing ACTs.
The role of abnormal cAMP-PKA signaling in adrenocortical
tumorigenesis was first described in 1991 when early embryonic
postzygotic somatic activating defects of the GNAS gene were
implicated in the pathogenesis McCune-Albright syndrome
(MAS). MAS manifests as café-au-lait skin macules, skeletal
fibrous dysplasia, and multiple endocrinopathies including
precocious puberty, testicular and thyroid lesions, phosphate
wasting, growth hormone excess, and, rarely, neonatal
hypercortisolism primarily due to bilateral adrenocortical
hyperplasia. This form of BAH develops from adrenocortical cells
with fetal features and is termed PBAD (2, 49). GNAS encodes the
a-subunit of the stimulatory G protein (Gsa). Mosaic gain-of-
function pathogenic variants in GNAS cause constitutive activation
of the cAMP-PKA pathway (4).
FIGURE 2 | Histologic Classification of Primary Aldosteronism.
March 2021 | Volume 12 | Article 632543
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PKA plays a role in the control of a variety of cellular
processes including metabolism, transcription, cell cycle
progression, and apoptosis. It is a ubiquitous cAMP-dependent
serine-threonine kinase, with four isoforms for both its
regulatory subunits (R1a, R1b, R2a, and R2b) and catalytic
subunits (Ca, Cb, Cg, and PRKX), with each isoform having
individual localization and specificity. The cAMP-PKA pathway
is activated in the adrenocortical cell by the binding of ACTH to
the ACTH receptor, a G-protein coupled receptor (GPCR)
encoded by the MC2R gene. This leads to exchange of
guanosine triphosphate (GTP) for guanosine diphosphate
(GDP) on the a subunit of the associated heterotrimeric G
Frontiers in Endocrinology | www.frontiersin.org 5
protein and dissociation of the a subunit (encoded by GNAS)
from the bg dimer. The a subunit then binds to adenylyl cyclase
(AC) with activation of its enzymatic activity and subsequent
production of cAMP from adenosine triphosphate (ATP). cAMP
then binds to the regulatory subunits (R) of PKA, which allows
for the release of the catalytic subunits (C) of PKA. The catalytic
subunits of PKA then mediate serine-threonine phosphorylation
of target molecules, including the transcription factor CREB
(cAMP response element-binding protein). Phosphodiesterases
(PDEs) are the only known enzymes that degrade cyclic
nucleotides and regulate the cAMP-PKA pathway through the
regulation of cAMP levels (50) (Figure 4).
TABLE 1 | Classification and characteristics of primary cortisol-producing adrenocortical hyperplasia.*

Adrenocortical
lesions

Genes (locus) Histopathology Characteristics

PBMAH ARMC5 (16p11.2)

MEN1 (11q13)

FH (1q42.3-43)

APC (5q22.2)

PDE11A (2q31.2)

PDE8B (5q13.3)

GNAS (20q13)

PRKACA duplication (19p13.1)

-Nodules or macroadenomatous, > 1 cm,
with (type 1) or without (type 2)
internodular atrophy.

-Hyperplasia with dominant nodule.

-Middle age, mild hypercortisolism and/or mineralocorticoid
excess

-Associated with MEN-1, FAP, MAS, HLRCC, isolated (AD)

-Most lesions have aberrant GPCRs (vasopressin,
serotonin, catecholamines, GIP, luteinizing hormone)

-PBMAH carry the ability of intra-adrenal production of
ACTH with an autocrine/paracrine effect on
glucocorticoid or mineralocorticoid production

PBAD GNAS (20q13; mosaic) -Distinct adenomas (>1cm), with occasional
microadenomas and internodular atrophy

-Infants and very young children

-MAS
FDCS (GIP-dependent) GIPR gene (19q13.32)

duplication
-Large adenomas and/or macronodules -Aberrant GPCRs (GIPR)

-Low fasting cortisol, hypercortisolism post-meals
i-PPNAD PRKAR1A (17q22-24)

PRKACA duplications (19p13.1)
-Microadenomatous (<1cm) hyperplasia with

pigmentation
-Children and young adults

-Lentiginosis in few cases
c-PPNAD PRKAR1A (17q22-24, CNC1

locus)
2p16 (CNC2 locus, unknown
gene)

-Microadenomatous (<1cm) hyperplasia with
(mostly) internodular atrophy and
pigmentation

-Children, young and middle aged adults

-Disease at a younger age and a higher frequency of
myxomas, schwannomas, and thyroid and gonadal
tumors than patients without PRKAR1A variants.

-In-frame deletion of exon 3 and the c.708 +1G>T appears
to confer a more severe CNC phenotype, while the
splice variant c.709(-7-2)del6 and the initiation
alternating substitution c.1A>G/p.M1Vp has been
associated with incomplete penetrance of CNC, as
seen in i-PPNAD

-CNC1: The hot spot c.491-492delTG is most closely
associated with lentigines, cardiac myxoma, and thyroid
tumors when opposed to all other PRKAR1A variants

-Expressed RIa mutant protein present with more severe
and aggressive CNC-phenotype

-CNC2: Sporadic disease later in life with a lower frequency
of myxomas, schwannomas, thyroid tumors, and
LCCSCT

i-MAD PDE11A (2q31.2)
PDE8B (5q13)
PRKACA (19p13.1)
2p16 (unknown gene)

-Microadenomatous (<1cm) hyperplasia with
internodular hyperplasia and limited or
absent pigmentation

-Mostly children and young adults

-Cyclical hypercortisolism

-May be associated with a paradoxical rise of glucocorticoid
excretion during the Liddle’s test

-Isolated or AD
APC, adenomatous polyposis coli gene; c-PPNAD, CNC-associated primary pigmented nodular adrenocortical disease; CNC, Carney complex; FAP, familial adenomatous polyposis;
FDCS, food-dependent Cushing’s syndrome; GNAS, gene coding for the stimulatory subunit a of the G-protein (Gsa); GPCR, G-protein-coupled receptor; HLRCC, hereditary
leiomyomatosis and renal cancer syndrome; i-MAD, isolated micronodular adrenocortical disease; i-PPNAD, isolated PPNAD; LCCSCT, large cell calcifying Sertoli cell tumor; MAS,
McCune–Albright syndrome; MEN1, multiple endocrine neoplasia type 1; PBAD, primary bimorphic adrenocortical disease; PBMAH, primary bilateral macronodular adrenocortical
hyperplasia; PDE8B, phosphodiesterase 8B gene; PDE11A, phosphodiesterase 11A gene; PRKAR1A, protein kinase, cAMP-dependent, regulatory, type I, a gene.
*Adapted from Hannah-Shmouni F, Stratakis CA: A Gene-Based Classification of Primary Adrenocortical Hyperplasias. Hormone and Metabolic Research 2020, 52(3):133-141.
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Micronodoular Adrenocortical Hyperplasia
MicronodularBAHaccounts for <2%of cases of endogenousCS and
may be familial, and inherited in an autosomal dominantmanner, or
sporadic. It can be divided histologically into at least two subclasses:
PPNADand isolatedmicronodular adrenocortical disease (i-MAD).
PPNAD is characterized by pigmented adrenocortical nodules with
atrophic surrounding adrenocortical tissue and is more common
Frontiers in Endocrinology | www.frontiersin.org 6
than andmore frequently familial than i-MAD, whereas i-MADhas
limited or absent nodular pigment with hyperplasia in the
surrounding zona fasciculata (51). Ninety percent of cases of
PPNAD are associated with Carney complex (CNC) (c-PPNAD)
though PPNADmay be isolated (i-PPNAD) (52, 53).

CNC is a rare, autosomal dominant, multiple endocrine
neoplasia and lentiginosis syndrome comprised of abnormal
FIGURE 3 | Gene-based diagnostic algorithm for primary cortisol-producing adrenocortical hyperplasias. *APC, adenomatous polyposis coli gene; ARMC5,
armadillo repeat-containing protein 5; c-PPNAD, CNC-associated primary pigmented nodular adrenocortical disease; CNC, Carney complex; FH, fumarate
hydratase; GNAS, gene coding for the stimulatory subunit a of the G-protein (Gsa); i-MAD, isolated micronodular adrenocortical disease; i-PPNAD, isolated PPNAD;
MAS, McCune–Albright syndrome; MEN1, multiple endocrine neoplasia type 1; PBAD, primary bimorphic adrenocortical disease; PBMAH, primary bilateral
macronodular adrenocortical hyperplasia; PDE8B, phosphodiesterase 8B gene; PDE11A, phosphodiesterase 11A gene PPNAD, primary pigmented nodular
adrenocortical disease; PRKACA, protein kinase, cAMP-dependent, catalytic, alpha; PRKAR1A, protein kinase, cAMP-dependent, regulatory, type I, a gene.
*Adapted from Kamilaris CDC, Stratakis CA, Hannah-Shmouni F: Adrenocortical tumorigenesis: Lessons from genetics. Best Practice & Research Clinical
Endocrinology & Metabolism 2020,34(3):101428.
FIGURE 4 | Activation of cyclic AMP pathway through various genetic defects in adrenocortical tumors and hyperplasias. GNAS, gene coding for the stimulatory
subunit a of the G-protein (Gsa); PDE8B, phosphodiesterase 8B gene; PDE11A, phosphodiesterase 11A gene; PRKACA, protein kinase, cAMP-dependent,
catalytic, alpha; PRKAR1A, protein kinase, cAMP-dependent, regulatory, type I, a gene.
March 2021 | Volume 12 | Article 632543
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cutaneous and mucosal pigmentation, myxomas predominantly of
the heart, skin, and breast, psammomatous melanotic
schwannomas, breast ductal adenomas, osteochondromyxomas,
endocrine neoplasms, and other non-endocrine tumors. C-
PPNAD is diagnosed in 25% to 60% of patients with CNC and
is the most prevalent endocrine neoplasm in this syndrome,
identified in almost all patients on autopsy. Pituitary adenomas
or hyperplasia, thyroid tumors, and gonadal tumors make up the
remaining endocrine tumors associated with CNC (54–56). CNC
may be familial in up to 70% of cases and is predominantly caused
by inactivating defects PRKAR1A (17q24.2–24.3 locus [CNC1
locus] of the long arm of chromosome 17), which encodes the
regulatory subunit type 1a (R1a) of PKA. CNC was the first
disease found to be the result of a genetic defect in a gene encoding
a component of the PKA enzyme, with inactivating PRKAR1A
defects causing loss of regulation of the catalytic subunits of PKA
and constitutive activation of the cAMP-PKA pathway. Thirty-
seven percent of patients with sporadic CNC and more than 70%
of patients with familial CNC carry PRKAR1A pathogenic variants,
with almost 100% penetrance (3, 52, 57). Data initially suggested
that PRKAR1A functions as a “classic” tumor-suppressor gene,
with loss of heterozygosity at the PRKAR1A locus in tumor tissue,
however some data show that haploinsufficiency of PRKAR1Amay
be adequate for increased PKA activity and the early development
of certain tumors (58, 59). Most pathogenic PRKAR1A variants
lead to PRKAR1A haploinsufficiency due to mRNA nonsense-
mediated decay of the mutant sequence, that leads to predicted
absence of the mutant protein products in affected cells (52, 60). A
second affected locus on chromosome 2p16 (CNC2 locus) was
identified by genetic linkage analysis of tumors in most of the
remaining patients with CNC that do not carry a germline
PRKAR1A defect, though the responsible gene at this locus has
not yet been identified (61, 62). In addition, copy number gains of
the PRKACB gene locus, on chromosome 1, which encodes the
catalytic subunit b (Cb) of PKA, were identified in a patient with
CNC presenting with abnormal skin pigmentation, myxomas, and
acromegaly, though defects in this gene have not been associated
with c-PPNAD (63). Possibly pathogenic germline PRKACB
variants were also recently reported in two of 148 patients with
PPNAD and related disorders that did not have other PKA-related
defects. The first subject with the PRKACB gene variant
(c.858_860GAA [p.K286del]) presented with short stature,
multiple skeletal developmental malformations, and severe
developmental delay suggesting a role for PRKACB defects in
bone pathology, with functional studies demonstrating that this
variant affected PRKACB protein stability and led to increased
PKA signaling. The other subject carried the c.899C>T (p.T300M
or p.T347M in another isoform) PRKACB variant and presented
with a PPNAD-like phenotype without any other manifestations of
CNC though functional studies demonstrated that this variant did
not affect protein stability or response to cAMP and its
pathogenicity remains uncertain (64). PRKAR1A defects have
also been implicated in i-PPNAD, where there is a genotype-
phenotype correlation. A study that included 353 subjects with
germline PRKAR1A pathogenic variants or a diagnosis of CNC
and/or PPNAD showed that among subjects with i-PPNAD and
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PRKAR1A defects the germline c.709–7del6 defect was more
frequent whereas the remainder of these patients carried the
p.Met1Val defect, and subjects less than 8 years of age rarely had
PRKAR1A defects (52). Somatic defects in PRKAR1A have also
been described in cortisol-producing ACTs, though less frequently,
including CPAs and ACCs (65). ACC was also described in two
patients with c-PPNAD due to germline PRKAR1A pathogenic
variants (65, 66). ACTH-dependent CS due to an ACTH-
producing pituitary adenoma has rarely been described in CNC
(67, 68). Genetic alterations in PRKAR1B, which encodes the
regulatory subunit 1b of PKA have been described in ACTs,
with germline PRKAR1B variants identified in i-MAD and
somatic PRKAR1B copy number gains (CNGs) found in CPAs.
However, the contribution of genetic alterations in PRKAR1B to
adrenocortical tumorigenesis may be different than those from
defects affecting other subunits of PKA, as PRKAR1B variants
and PRKAR1B CNGs led to decreased (rather than increased)
overall PKA activity in vitro (69).

Genetic alterations in genes encoding cyclic nucleotide PDEs,
that lead to aberrant cAMP-PKA signaling, have also been
implicated in the development of micronodular BAH and
other cortisol-producing ACTs. A single-nucleotide
polymorphism-based genome-wide association study that
included patients with i-MAD or i-PPNAD not caused by
known genetic defects (defects in GNAS or PRKAR1A) showed
that abnormalities in genetic loci harboring PDE genes were
most likely to be associated with the disease. Inactivating defects
PDE11A, which encodes phosphodiesterase type 11A, were the
most frequently linked, followed by defects in PDE8B, which
encodes phosphodiesterase type 8B (70). A higher frequency of
PDE11A variants has also been found in patients with CNC, with
PDE11A defects being associated with increased development of
PPNAD and/or testicular large-cell calcifying Sertoli cell tumors
(LCCSCT) in those with PRKAR1A defects, possibly acting as a
genetic modifying factor in these patients (71). Heterozygous
germline defects in PDE11A were also found to be more
prevalent in patients with other ACTs, including ACC, CPAs,
and PBMAH, when compared to age and/or sex-matched
controls and were described in one patient with a non-
secreting adrenocortical adenoma (72). Inactivating defects in
PDE11A have also been implicated in the development of other
tumors including prostate cancer and testicular germ cell tumors
(71, 73, 74). A single germline PDE8B missense substitution was
first described in a pediatric patient with i-MAD and CS. The
patient’s father who harbored the same PDE8B defect, was not
diagnosed with CS but did have elevated serummidnight cortisol
(75). Subsequently in a case-control study of 216 unrelated
patients with adrenocortical tumors (including PPNAD,
PBMAH, CPAs, non-secreting adrenocortical tumors, and
ACC) and 192 controls, nine different PDE8B sequence
changes were found in the patients and controls with two
variants that were identified only in the patient group
demonstrating significant potential to impair protein function
in vitro and in silico (76).

Defects in genes encoding the catalytic subunits of PKA that
lead to increased PKA activity have also been found to play a role
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the pathogenesis of micronodular BAH. Germline copy number
gains resulting in amplification of PRKACA, the gene that
encodes the catalytic subunit (Ca) of PKA, have been
implicated in the development of i-MAD. Three patients with
sporadic i-MAD and 2 patients with familial PBMAH were the
first patients found to harbor such germline copy number gains
of the genomic region on chromosome 19p which includes the
entire PRKACA gene (1, 77).

Finally, micronodular BAH has also been associated with
abnormalities of theWnt–b-catenin pathway, which may act as a
genetic modifier. One study identified somatic defects in
CTNNB1 in 11% of patients with PPNAD (a germline
PRKAR1A defect was identified in 1 of the 2 patients with
somatic CTNNB1 defects). These CTNNB1 defects occurred in
relatively large adrenocortical adenomas that developed in the
background of PPNAD and were not found in the surrounding
hyperplastic adrenocortical tissue (78). In a second study that
included tissue from nine subjects with PPNAD (with eight of
the nine harboring PRKAR1A defects), including five with
macronodules, activating somatic CTNNB1 defects were
identified in two of the five macronodules but not in the
micronodules or in the contralateral adrenal gland, whereas all
PPNAD tissues had b-catenin accumulation including within the
macronodules, micronodules, and internodular tissue (79).

Macronodular Adrenocortical Hyperplasia
PBMAH is a rare cause of adrenal CS, accounting for <2% of cases,
and is mostly isolated or sporadic, and inherited in an autosomal
dominant fashion when hereditary. Adrenal cortisol secretion in
this disease was initially considered to be ACTH-independent and
thus this form of BAH was formerly called ACTH-independent
macronodular adrenal hyperplasia (AIMAH); however, studies have
since demonstrated that ACTH secretion from clusters of
adrenocortical cells in PBMAH may in part regulate cortisol
secretion by paracrine action (80). PBMAH has also previously
been termed bilateral macronodular adrenal hyperplasia (BMAH),
primary macronodular adrenal hyperplasia (PMAH), massive
macronodular adrenocortical disease (MMAD), autonomous
macronodular adrenal hyperplasia (AMAH), ACTH-independent
massive bilateral adrenal disease (AIMBAD), and “giant” or “huge”
macronodular adrenal disease. Histologically, PBMAH can be
subclassified into type I PBMAH which is characterized by
internodular atrophy, and the more common type II PBMAH,
which is diffusely hyperplastic without residual normal or atrophic
internodular tissue (81). Adrenocortical cells in PBMAH express
aberrant (ectopic or excessive) hormone receptors in 77% to 87% of
cases whereas such aberrant receptor expression has been found less
frequently in adrenocortical adenomas and ACC (81). These
aberrant receptors are members of the GPCR family and are
linked to steroidogenesis. Such receptors include those for
glucose-dependent insulinotropic peptide (GIP) (implicated in
food-dependent CS), vasopressin, b-adrenergic agonists,
luteinizing hormone/choriogonadotropin (LH/hCG), serotonin,
angiotensin II, and glucagon (82–92). The underlying genetic
changes leading to this ectopic receptor expression have not yet
fully been described. Food dependent CS is a rare subtype of
Frontiers in Endocrinology | www.frontiersin.org 8
macronodular BAH associated with ectopic expression of the GIP
receptor (GIPR). The molecular pathogenesis of ectopic GIPR
expression in this disease was investigated in a study that
included adrenal tissue from 15 ACTs including CPAs and
macronodular BAH. This study showed that GIPR expression
occurred due somatic duplications in chromosome region
19q13.32, that contains the GIPR locus, with resulting
transcriptional activation of a single allele of the GIPR gene in
three of the ACTs (2 CPAs and 1 macronodular BAH). In the
CPAs, the duplicated 19q13.32 region was rearranged with other
chromosome regions however these chromosome rearrangements
did not result in gene fusion but instead placed the GIPR gene in a
genomic environment near cis-acting regulatory regions favoring
transcriptional activation. In the macronodular BAH sample, a
duplication of 19q without chromosome rearrangement was
identified (93).

The bilateral nature PBMAH as well as the cases of familial
PBMAH and the association of PBMAH with familial tumor
syndromes suggested that this disease could be caused by
underlying germline genetic defect(s). In 2013, germline
inactivating defects in ARMC5 were linked to this disease when
genotyping of 33 patients with PBMAH showed defects in ARMC5
in 55% (18/33) of these patients (5). In subsequent studies, the
prevalence of ARMC5 defects in patients with PBMAH has been
estimated to be 21% to 26% (94–96) ARMC5 is a tumor suppressor
gene which encodes a cytosolic protein without enzymatic activity
that has an armadillo repeat domain, similar to the gene for b-
catenin that also contains armadillo repeats (97, 98). In this initial
study of 33 patients with PBMAH, functional studies showed that
inactivation of ARMC5 led to reduced expression of steroidogenic
enzymes and MC2R with abnormal cortisol production. A gradual
process of adrenocortical cell dedifferentiation and growth of
bilateral masses was evident in these patients, with the
hypercortisolemia being more likely a result of the increased
adrenocortical mass than cortisol overproduction. Enlargement of
the adrenal glands may be due to loss of the ability to induce
apoptosis in adrenocortical cells with ARMC5 defects, as shown
experimentally in human adrenocortical cell lines when compared
to wild-type cell lines (5, 94). Studies in Armc5 knockout mice have
shown that this gene may play a significant role in in fetal
development, T-cell function, and adrenal gland growth
homeostasis. Armc5 haploinsufficiency in these mice manifests as
CS later in life, with implication of both the cAMP-PKA and the
Wnt-b−catenin pathways (97, 99). ARMC5 variants may act as
genetic modifiers in PPNAD due to a PRKAR1A defect, and may
affect the presence and severity of hypercortisolemia in patients
harboring these variants (100). In addition, in 2015 an association
between ARMC5 defects and primary aldosteronism was first
described (22). ARMC5 defects have also been linked to the
development of meningiomas, as shown in one family with
meningioma and adrenal hyperplasia with ARMC5 loss of
heterozygosity in the meningioma DNA (101).

Rarely, PBMAH is a component of autosomal dominant
multiple tumor syndromes including familial adenomatous
polyposis (FAP), multiple endocrine neoplasia type 1 (MEN1),
or hereditary leiomyomatosis and renal cell carcinoma (HLRCC)
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(102–104). The causative genetic defects in these familial tumor
syndromes were the only genetic defects associated with PBMAH
until inactivating defects of ARMC5 were found to cause this
disease (5). Germline inactivating defects in the tumor
suppressor gene adenomatous polyposis coli (APC), which
encodes the APC protein, cause FAP. The APC protein is a
component of the b-catenin Axin degradation complex which
negatively regulates the Wnt-b-catenin signaling pathway, with
biallelic APC inactivation leading to transcriptional activation of
theWnt-signaling pathway. Classic FAP is comprised of multiple
colorectal adenomas (>100) that predispose to colorectal cancer,
fundic gland polyps, and duodenal adenomas that predispose to
duodenal cancer. FAP may also have extraintestinal
manifestations such as follicular or papillary thyroid cancer,
childhood hepatoblastoma, central nervous system tumors,
desmoid tumors, sebaceous or epidermoid cysts, lipomas,
osteomas, fibromas, supernumerary teeth, and juvenile
nasopharyngeal angiofibromas. FAP has also been associated
with ACTs including PBMAH, adrenocortical adenomas, and
ACC. In one cohort, 16% of patients had adrenal masses of which
97% were benign and 80% were adenomas, with 23% of the
adrenal masses being bilateral. At diagnosis, the median diameter
of these adrenal masses was 1.7 cm (interquartile range (IQR)
1.4–3.0) with median maximal diameter of 2.5 cm (IQR 1.7–
4.1) (105).

MEN1 is caused by inactivating defects in MEN1, a tumor
suppressor gene located at the 11q13 locus (106, 107). MEN1
encodes the protein menin, whose exact role in tumorigenesis is
yet to be identified, though it has been implicated in the regulation
of transcription, genome stability, cell division, and cell
proliferation (106–109). This syndrome leads to a predisposition
to a multitude of endocrine neoplasms predominantly of
parathyroid, enteropancreatic, and anterior pituitary origin with
other endocrine tumors including foregut carcinoid tumors,
ACTs, and rarely pheochromocytoma. Nonendocrine tumors
associated with MEN1 include meningiomas and ependymomas,
lipomas, angiofibromas, collagenomas, and leiomyomas (110). In
a retrospective cohort study of 715 patients with MEN1, 20.4%
had adrenal enlargement. Adrenal tumors greater than 1
centimeter were described in 58.1% of these cases with bilateral
tumors being present in 12.5% of cases. 15.3% of patients had
hormonal hypersecretion, which was found only in patients with
ACTs. When compared to controls with adrenal incidentalomas,
MEN1-related adrenal tumors exhibited more cases of primary
aldosteronism and ACC (102).

HLRCC is a syndrome caused by germline defects in fumarate
hydratase (FH), a possible tumor suppressor gene (111). FH
encodes fumarate hydratase, an enzyme that is a component of
the mitochondrial Krebs or tricarboxylic acid cycle. Defects in
FH may lead to HLRCC through increased cellular dependence
on glycolysis and pseudohypoxia, though the molecular
pathogenesis of HLRCC has not been completely elucidated
(112, 113). Patients with HLRCC develop cutaneous and
uterine leiomyomas (rarely leiomyosarcomas) and renal cell
carcinoma. Approximately 7.8% of patients with HLRCC
develop ACTs including PBMAH and adrenocortical
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adenomas that may be cortisol-producing or non-functional
(104, 114). Germline FH pathogenic variants have also been
implicated in the development of pheochromocytomas and
paragangliomas (115, 116).

The development of PBMAH has also been linked to
genetic defects that lead to aberrant cAMP-PKA signaling.
Such defects include inactivating germline PDE11A variants
that are found in 24% to 28%, of cases of PBMAH, as well as
inactivating germline PDE8B defects, activating somatic GNAS
defects without MAS, and PRKACA copy number gains (72,
76, 81, 117). Another subtype of macronodular BAH, PBAD,
has been described in patients with MAS and CS (2, 118).
PRKAR1A defects have not been identified in PBMAH,
however somatic losses of the 17q22–24 region in PBMAH
lead to PKA subunit and enzymatic activity changes and
altered PKA signaling that is similar to that of other adrenal
tumors with PRKAR1A defects or 17q losses (119). A single
case of PBMAH caused by two defects in the same allele of
MC2R which encodes the ACTH or melanocortin 2 receptor
has been described. The presence of both of these defects
(p.C21R and p.S247G defects) in the same molecule led to
constitutive activity of the receptor, with the co-expression of
the normal MC2R allele leading to retention of a normal
response to ACTH. These defects ultimately resulted in
abnormal activation of the cAMP-PKA pathway and clinical
hypersensitivity to ACTH, though either defect alone would
have produced an inactive receptor (120). Additionally, the
role of the cAMP-PKA pathway in the pathogenesis of
PBMAH is demonstrated in cases of PBMAH with aberrant
receptor expression as the majority of these receptors are
GPCRs that stimulate AC, with resulting increased cAMP-
PKA signaling.

Additional possible genetic alterations including somatic
defects in DOTIL, which encodes a histone H3 lysine
methyltransferase, and HDAC9, which encodes a histone
deacetylase, have been reported in a small number of patients
with PBMAH. Both of these genes play a role in histone
modification, chromatin organization and modification of gene
transcription. A defect in another gene, the Endothelin receptor
type A (EDNRA) gene, which encodes a G-coupled protein, was
found in adrenal tissue from two siblings from a family with
familial PBMAH (121), but its contribution to adrenocortical
tumor development remains questionable.
Cortisol-Producing Adrenocortical
Adenomas
As in BAH, the cAMP-PKA pathway also plays an important
role in the development of CPAs. However in contrast to BAH
where germline defects leading to aberrant cAMP-PKA signaling
are most prominent, somatic genetic alterations affecting this
pathway predominate in CPAs (122). In 2013, whole exome
sequencing of tumor-tissue specimens from patients with
unilateral CPAs identified somatic PRKACA in 8 out of 10
adenomas, with additional sequencing of another 129
adenomas demonstrating a p.Leu206Arg variant in 14 of these
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129 adrenocortical adenomas. Defects in PRKACA were
associated with a more severe phenotype and were found only
in patients with overt CS (1). Another 3 studies from China,
Japan, and the United States subsequently showed similar
findings, with PRKACA defects found in 42% of patients with
CPAs with overt CS (123). Activating PRKACA defects lead to
constitutive activation of PKA by abolishing the interaction
between the regulatory and catalytic subunits of PKA and may
also modify substrate specificity with hyperphosphorylation of
certain PKA substrates (124). Recently, an activating somatic
defect in PRKACB was also described in a patient with a CPA,
with increased sensitivity to cAMP demonstrated in in vitro
studies (125). PRKACA defects have also been found in cardiac
myxomas, and chromosomal PRKACA rearrangements were
identified in fibrolamellar hepatocellular carcinoma and in
intraductal oncocytic papillary neoplasms of the pancreas and
bile duct, along with PRKACB defects (126–128). Inactivating
somatic defects in PRKAR1A as well as activating somatic defects
in GNAS have also been described in CPAs with a prevalence of
5%, and 4.5% to 11%, respectively (60, 65). Both PRKAR1A and
GNAS defects can cause increased cAMP-PKA signaling,
however a whole genome expression profile study revealed that
not all cAMP activation is the same. In this study, overexpression
of the MAPK and p53 signaling pathways was demonstrated in
adrenal lesions with both PRKAR1A or GNAS defects, however
PRKAR1A-mutant tissues overexpressed genes related to the
Wnt-signaling pathway (CCND1, CTNNB1, LEF1, LRP5,
WISP1, and WNT3), whereas GNAS-mutant tissues showed
increased expression of genes involved in extracellular matrix
receptor interaction and focal adhesion pathways (NFKB,
NFKBIA, and TNFRSF1A). CPAs without defects in GNAS,
PRKAR1A, PDE11A, or PDE8B were also found to have
abnormalities in the cAMP-signaling pathway with variant-
negative CPAs having significantly decreased PDE activity (129).
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CONCLUSION

Significant advances have been made in understanding the
genomic underpinnings of PA and CS in recent years. The use
of genomic tools and next generation sequencing have allowed
for the discovery that aberrant intracellular calcium signaling
plays an integral role in the development of PA and that
abnormalities in the cAMP-PKA pathway and/or ARMC5 are
central in the development of benign cortisol-producing tumors.
The role of abnormal Wnt-b-catenin signaling in ACT
development has also been highlighted. These findings have
built a foundation for the discovery of more targeted
diagnostic, therapeutic, and prognostic tools that may lead to
less invasive diagnostic and therapeutic methods, as well as for
the development of future gene-based tumor classifications that
will allow improved genetic counseling and screening for familial
cases, and better prognosis.
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