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The exocrine-endocrine multipart organization of the pancreas makes it an exceedingly
challenging organ to analyze, quantitatively and spatially. Both in rodents and humans,
estimates of the pancreatic cellular composition, including beta-cell mass, has been
largely relying on the extrapolation of 2D stereological data originating from limited sample
volumes. Alternatively, they have been obtained by low resolution non-invasive imaging
techniques providing little detail regarding the anatomical organization of the pancreas
and its cellular and/or molecular make up. In this mini-review, the state of the art and the
future potential of currently existing and emerging high-resolution optical imaging
techniques working in the mm-cm range with mm resolution, here referred to as
mesoscopic imaging approaches, will be discussed regarding their contribution toward
a better understanding of pancreatic anatomy both in normal conditions and in the
diabetic setting. In particular, optical projection tomography (OPT) and light sheet
fluorescence microscopy (LSFM) imaging of the pancreas and their associated tissue
processing and computational analysis protocols will be discussed in the light of their
current capabilities and future potential to obtain more detailed 3D-spatial, quantitative,
and molecular information of the pancreas.

Keywords: mesoscopic imaging, optical projection tomography, light sheet fluorescence microscopy,
pancreas, diabetes
INTRODUCTION

Both in rodents and humans, the compound organization of the pancreas renders analyses of its
cellular and molecular make up exceedingly challenging. Until recently, studies of pancreatic
anatomy/pathophysiology have largely relied on traditional immunohistochemical analyses.
However, these usually only cover a very limited tissue volume and their results inevitably
represent extrapolations of a limited amount of 2-dimensional (2D) data. This not only entails
challenges for putting the resultant data into a 3-dimensional (3D) context, but it may also involve a
wide range of assumptions regarding structural shapes (e.g., islets) or organ homogeneity of the
object to study. Albeit stereological assessments obviously are of great importance; the development
of modern optical imaging techniques provides a whole new set of tools to better assess and
understand cellular and molecular pancreatic features in both a 3D spatial and quantitative context.
By high resolution mesoscopic imaging techniques working in the mm-cm range, such as: optical
projection tomography (OPT) (1) and light sheet fluorescence microscopy (LSFM) (2–4), highly
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detailed images of the pancreatic cellular composition can be
obtained in a broader anatomical context, even within the
framework of the entire gland. Furthermore, they offer
powerful possibilities to assess various and specific quantitative
and spatial pancreatic features in the diabetic setting, including
ß-cell mass (BCM), distribution and plasticity, organ
heterogeneities, rare event screening, cellular ratios, immune-
cell infiltration, vascularization, innervation, and many more.
When using advanced image analysis software, they also offer
new ways to display the obtained data and perform advanced
statistical assessments. In this mini-review, we will give a brief
overview of how these techniques have been applied in basic
diabetes research, elaborate on recent developments in the field
and propose how they may be implemented in the future.
OPT AND LSFM: COMPLEMENTARY
APPROACHES FOR EX VIVO 3D IMAGING
OF THE PANCREAS

Although 3D imaging techniques, such as: micro-computed
tomography (µCT) and micro-magnetic resonance imaging
(µMRI), provide high resolution images of tissue morphology
in complete organs, or even entire animals, they cannot take
advantage of the molecule-specific labeling techniques available
for fluorescence microscopy imaging. OPT and LSFM are optical
3D imaging techniques for mesoscopic sized samples (i.e., on the
mm-cm scale), enabling assessments on the mm-scale. In
principle, OPT could simply be described as the optical
analogue of X-ray CT, using light instead of X-rays. Hence, by
acquiring a series of 2D projections, obtained from different
angles, the 3D structure of the investigated tissue is generated as
a stack of cross-sectional image slices using a reconstruction
algorithm, commonly a filtered-back projection. In contrast to
OPT, wherein sample illumination and detection are performed
in one direction (for each projection), LSFM acquires data by
performing these processes in two distinct optical paths,
orthogonally to each other. Most commonly, a light sheet is
generated by a (Gaussian) laser and the specimen is scanned
either by moving the light sheet or by moving the specimen in
relation to a static light sheet in order to produce optical sections
through the specimen. For both techniques, registration is
performed by a digital camera. Whereas OPT and LSFM have
several common features, including labeling techniques and the
need for tissue clearing, allowing light propagation through the
tissue sample, they also have a number of distinct features,
rendering both of them optimal for different imaging tasks.
Most importantly, LSFM provides a higher lateral but lower
axial resolution as compared to OPT (5), resulting in non-
isotropic voxels, which may result in ambiguities for 3D
analysis. Nonetheless, it should be noted that both hardware
and software development is advancing rapidly in this field. A
recent significant example is cleared-tissue axially swept light-
sheet microscopy (ctASLM), which enables imaging with
significantly increased z-axial resolution in mm-sized specimen
(6), thereby approaching isotropic voxels. However, due to its
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respective detection principle, OPT does provide true isotropic
spatial resolution (i.e., voxels with identical dimensions along the
x, y, and z axes). For imaging of murine and human pancreatic
tissue, it is our experience that OPT ismore suited for larger samples
at lower magnification and for larger tissue cohorts, in relation to
scan times and data volumes, while LSFM is preferred for higher
resolution images of specific regions of interest (ROIs), or smaller
sample cohorts. Still, both techniques are often interchangeable and
can in many cases substitute or complement each other (5).

Methods for rendering tissues transparent were already
described as early as in 1914 (7) F and represent a key feature
in mesoscopic 3D imaging to allow the propagation of light
through the investigated specimen. Another very important
aspect is to assure penetration of labeling agents, commonly
antibodies. For certain tissues, quenching of autofluorescence
(AF) is also required to increase the signal to noise ratio.
Due to the limited available methods to overcome these
obstacles, fluorescent immunohistochemistry has remained,
for a long period of time, restricted to thin tissue sections
or embryonic scale specimen. In 2007, Alanentalo et al.,
developed an approach enabling clearing and whole-mount
immunohistochemistry for OPT-based assessments of the
BCM distribution in the complete mouse pancreas (8).
Afterward, the protocol was successfully applied to other
organs, such as livers containing islet grafts (9). Ever since,
there has been an explosion in this particular field and at
present, numerous powerful clearing, and whole-mount
immunohistochemistry protocols exist [for review see (10–
12)]. Clearing methods are commonly divided into organic-,
aqueous-, and hydrogel-based clearing techniques (13).
These have in common that they use liquids to match the
refractive index (RI) of the cellular constituents to reduce light
scattering within the sample. Organic clearing methods usually
dehydrate and delipidate the tissue before homogenization
of the RI. The choice of the optimal clearing agent for a
specific tissue should be based on the sample size, the need to
prevent fluorescence quenching of the labeling reagent (like
transgenically expressed proteins), and its potential tissue
shrinkage or expansion effects.
MESOSCOPIC IMAGING OF THE
PANCREAS—SO FAR

Pancreatic development has been well studied (14), but given the
complex morphogenesis of the pancreatic buds in relation to one
another and to the surrounding tissues, several aspects of its
development are difficult to interpret by traditional 2D
stereological imaging techniques. Therefore, OPT was originally
used for 3D mapping of RNA and protein expression in
developmental biology studies. The possibility of OPT to produce
interactive 3D data, such as: blow-up views and tiltable section
planes, highlighting distinct tissue components, has contributed to
reveal new aspects of the interrelationship between the pancreatic
epithelium and the spleno-pancreatic mesenchyme (15–17). Indeed,
OPT imaging played an instrumental role in demonstrating that the
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gastric lobe of the murine pancreas forms by perpendicular growth
from the dorsal pancreatic bud and, that its morphogenesis is
dependent on formation of the spleen (18). Furthermore, these
particular studies prompted for a designated nomenclature of the
murine pancreatic regions, based on their developmental origins
(14). After optimization of the OPT hardware, tissue clearing/
labeling protocols and processing schemes for the murine
pancreas, the complete BCM distribution within the intact gland,
revealing significant heterogeneities in both islet size and number
throughout the pancreatic lobes was presented (19).By further
technical refinements (9, 20, 21), OPT has been proven a very
useful approach for ß-cell/islet mass distribution assessments in
murine diabetes models, by omitting the need for extrapolation of
2D data through direct assessments of the islet’s numbers, volumes,
and spatial coordinates throughout the entire gland. Noteworthy,
OPT analyses demonstrated significant heterogeneities in BCM
distribution and islet density between the primary pancreatic
lobes (21), emphasizing the need for careful considerations
regarding the origin of the investigated tissue for sampled
analyses (see Figures 1A–C). Working with tomographic data
provides the possibility to perform combined 3D-spatial,
quantitative, and statistical analyses of the BCM distribution (see
Figures 1D, E). As such, OPT has significantly contributed to a
range of studies investigating BCM dynamics, islet plasticity, and
ß-cell function in diverse rodent models (22, 23, 25–33). For
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example, by pseudocoloring islets of different size categories,
patterns of selective islet vulnerability of different sized islets
were revealed in models of ß-cell destruction. It was
demonstrated that smaller islets are more susceptible to
destruction in models of naturally induced diabetes (22, 28),
whereas in streptozotocin induced diabetes primarily larger islets
are affected (25). Furthermore, a global view of the pancreatic
constitution may reveal novel features, even in previously well
studied diabetes models. OPT analyses of the leptin deficient
Ob/Ob mouse, a model used in thousands of investigations,
demonstrated significant internal islet hemorrhaging, a feature
overlooked in previous stereological assessments (23). Of note,
in conjunction with this study, tomographic data of the
complete pancreatic islet distribution between 4 and 52 weeks
in cohorts of both lean and obese mice were made publicly
available (24). These studies exemplify how OPT imaging of
large animal cohorts can be employed to identify ROIs for
higher resolution imaging by LSFM, in order to study disturbed
islet morphology in more detail. Obviously mesoscopic imaging
techniques like OPT and LSFM are not limited to studies of
BCM. In particular LSFM techniques, taking advantage of its
normally higher resolution, have been recently applied to study
aspects of e.g., pancreatic innervation, immune cell infiltration,
and proliferation, in various mouse models of diabetes using
specific antibody markers for these features (34, 35).
FIGURE 1 | Optical projection tomography enables isotropic resolution imaging and quantification of antibody labeled features throughout the volume of the rodent
pancreas. Montage illustrating the variance in islet mass distribution between different disease models as determined by OPT. (A) Optical projection tomography
(OPT) generated 3D reconstruction of the isolated pancreas from a C57Bl/6 mouse (8 weeks) labeled for insulin. The islets of the splenic, gastric, and duodenal lobe
are pseudocolored; red, yellow, and red respectively. The lobular compartments (gray) are delineated based on their developmental origins [see Hörnblad et al. (14)].
(B, C) Graphs showing the lobar distribution of insulin+ islets per mm (3) (B) and ß-cell volume per total lobular volume (C), illustrating that the lobular compartments
of the rodent pancreas display significant different differences in islet ß-cell mass (BCM) densities. (D) Images depicting (from left to right) OPT based iso-surface
reconstructions of adult mouse pancreas (splenic lobe), from a healthy C57Bl/6 mouse (8 weeks), a non-obese diabetic (NOD) mouse (T1D model at 16 weeks),
streptozotocin (STZ) induced diabetic (C57Bl/6 mice at 9 weeks, 2 weeks post-single high dose STZ administration), and an ob/ob mouse (at 26 weeks),
respectively. The islet b-cell volumes (red) are reconstructed based on insulin specific antibody signal and the outline of the pancreas (gray) is based on the tissues
autofluorescence. (E) Graph depicting ß-cell volumes per islet size category of the models depicted in (D), illustrating the possibility to obtain detailed assessments of
BCM distribution in the pancreas by OPT. Data is obtained from Hörnblad et al. (21), Alanentalo et al. (22), Parween et al. (23, 24), and Hahn et al. (25).
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Ex vivo OPT or LSFM imaging of the pancreas also provides a
powerful complemental approach for studies of islet plasticity,
destruction etc., conducted by in vivo assessments of islets grafts
in the anterior chamber of the eye (ACE) (36) (see separate article
Ilegems et al.). Since islets transplanted to this site have been
reported to provide a mirror image of the endogenous islets,
phenotypical in vivo observations in the ACE may therefore be
confirmed on the pancreatic level by end point ex vivo mesoscopic
imaging (23, 25, 37, 38). Additionally, mesoscopic optical imaging
also offers the possibility to serve as an evaluating tool for other
in vivo imaging technologies. Since they offer an “absolute”
quantitative and spatial account of specifically labeled cells within
the entire volume, OPT or LSFM data sets could serve as a “gold”
standard against which other imaging modalities could be
compared and potentially provide additional complementary
information. In this respect, OPT has been demonstrated
advantageous for validating radiotracer uptake for ß-cell imaging
(39). Interestingly, this study demonstrated a superior linear
correlation between the single photon emission computed
tomography (SPECT) and OPT, as compared to SPECT versus
histology. Another example comes from studies of islets with a
technology diametrically different from SPECT. Ilegems et al.,
demonstrated that the transplanted islet volume to the ACE can
be measured in vivo based on the backscatter from the insulin
secretory granules. When the grafted eyes were examined by OPT
ex vivo, the islet volumes could be plotted against each other, islet by
islet, showing a nearly perfect correlation (40).
MESOSCOPIC IMAGING OF THE
PANCREAS—WHAT LIES AHEAD

In combination with a vast number of potent tissue-clearing
protocols, mesoscopic optical imaging technologies have
undergone dramatic developments during the past decade. We
anticipate that the next, and very important, technological/
methodological development for mesocopic imaging will involve
improved procedures for penetration of fluorescent labeling
reagents with high molecular binding specificity (e.g., antibodies).
Such optimizations will help addressing one of the greatest
limitations of these high-resolution 3D imaging approaches for
diabetes research by allowing the possibility to analyze larger
volumes of human pancreatic tissue. Albeit a small number of
studies have demonstrated the possibility to label human pancreatic
tissue by antibodies ex vivo, these studies are confined to relatively
small tissue preparations [see e.g. (34, 41)]. Furthermore, clearing
protocols, such as SHANEL (42), have been demonstrated to enable
clearing of intact human organs (and the pig pancreas). Still the
human pancreas presents significant challenges for antibody-based
labeling procedures caused by insufficient reagent penetration and
endogenous AF disturbances. The possibility to study any protein
expression pattern throughout the human pancreas, in mm
resolution, would have significant implications in this research
field. It is likely that a holistic view of the human pancreatic
anatomy, implementing high resolution optical 3D images, using
specific molecular markers, will contribute to a greatly enhanced
Frontiers in Endocrinology | www.frontiersin.org 4
understanding of the pancreatic constitution. As previously
exemplified in the mouse (8, 14, 18), it may not only contribute
to unravel novel features of its normal anatomical organization.
Such methodological advances may obviously also contribute to
address a wide range of pathological/mechanistical features, on a
molecular level, related to diabetes. For example, by offering the
possibility to screen for and to perform “absolute” quantifications of
e.g., islet mass distribution, immune-cell infiltration, amyloid
deposition, endocrine cell maturity/function, or cellular ratios etc.
Furthermore, they may provide a powerful approach to identify
ROI´s or rare cell niches which would be much more challenging
with the currently available technologies. Recently, Zhao et al. used
purpose-built LSFM setups to demonstrate that this type of
investigation would already be possible given that sufficient
labeling could be acquired (42). Probably, future labeling
protocols utilizing cameloid or shark nanobodies (43), which have
much lower molecular weight as compared to common antibodies
(approximately 12–15 vs. 150–160 kDa in size), will contribute to
such developments. In view of the above, it is likely that advances in
computational tools will be required for our possibilities to
statistically assess and to visualize the gradually increasing data
sets that are/will be possible to obtain by mesoscopic imaging
techniques. Powerful computers running specific programs using
algorithms for machine learning and/or deep learning may
significantly contribute to facilitate analyses of complicated
expression patterns and cellular distribution patterns in large
organs preparations analyzed by high resolution OPT or LSFM.
In this respect, these tools could enable greatly improved analyses of
e.g., vascularization and innervation (44, 45), cellular responses,
gene activation (46), automated and unbiased volumetric
quantification of labeled features, such as islets or infiltrating
immune-cells (47).

As mentioned before, the AF properties of the pancreas, and
in particular the human pancreas, may significantly obstruct
fluorescent 3D imaging assessments when using OPT and LSFM.
However, the pancreatic AF properties differ significantly in
distinct parts of the spectrum. By using narrow wavelength
bands in a wide range of the spectrum (400–700nm), we could
recently demonstrate that e.g., blood vessels, islets and even
pancreatic malignancies could be visualized and segmented
individually based solely on their AF properties both by OPT
and LSFM (48) (see Figure 2). In this study, the far red to near
infrared spectrum provided sufficient signal to noise ratio to
enable quantitative 3D assessments of the islet mass distribution
in >cm (3) sized pancreatic biopsies, based on the AF signal
caused by the accumulation of, most likely, lipofuscin-like
pigments in the islets. It should be noted however, that the
accumulation of this lysosomal digestion product may differ
between individuals of various ages and disease history.
Therefore, specific molecular labeling would be advantageous
for standardized assessments of islet mass.

Like SPECT and PET, OPT, and LSFM represent functional
imaging techniques, designed to visualize specific cells or processes
in a certain target tissue, normally using specific antibodies. The
most important advantage of these functional techniques is that
they exert great sensitivity and specificity for their target. On the
March 2021 | Volume 12 | Article 633063
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other hand, however, they usually provide limited anatomical
information. Although some anatomical reference information
can be obtained from tissue autofluorescence in mesoscopic
imaging, the anatomical detail remains limited for certain tissues.
In nuclear images, this problem is often overcome by co-registering
them with CT or MR images to create so called fusion images,
providing an image that displays the specifically targeted signal onto
the detailed anatomy of the tissue of interest. In theory, creating
fusion images would also be possible for mesoscopic images of the
pancreas, when co-registering them to ex vivo CT or MRI images of
the target tissue, acquired after clearing. In the future, the possibility
of creating mesoscopic fusion images might significantly contribute
to the clinical significance of these imaging modalities in pancreatic
disease since it would allow to visualize their specific high-resolution
signal in its anatomical environment. Indeed, similar analyses with
LSFM imaging as a functional modality have already been created
for the brain (49).
CONCLUDING REMARKS

During the past decade, mesoscopic imaging technologies have
undergone dramatic developments. As such, they have opened
the door for a wide range of highly specific molecular 3D
analyses of the pancreatic anatomy and its constitution both in
health and disease. Already now, they provide the possibility to
Frontiers in Endocrinology | www.frontiersin.org 5
perform holistic µm-resolution 3D imaging and accurate
quantitative assessments of distinct cellular features of the
rodent pancreas, a possibility that may be enabled in the
human pancreas in the near future. It is our expectation that
these rapidly evolving imaging technologies will soon contribute
significantly to a better understanding of both the anatomical
and molecular features of the normal and diseased pancreas as
well as other tissues involved in endocrinological disorders.
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FIGURE 2 | Optical projection tomography (OPT) and light sheet fluorescence microscopy (LSFM) imaging of human islets of Langerhans based on islet
autofluorescence. (A, B) OPT (A) and LSFM (B) 3D reconstruction of human pancreatic tissue. The islets (red) are reconstructed based on their AF properties in the
near infrared part of the spectrum and the “anatomy” and vessels (gray) in the visible part of the spectrum (GFP-channel). (C, D) Tomographic slices of the specimen
seen in (A, B). (E) Hematoxylin/Eosin staining of a tissue section obtained post-mesoscopic imaging corresponding to (C, D). Islets are indicated by black
arrowheads. As outlined in the text, OPT and LSFM are complementary techniques with pros and cons for different imaging scenarios, and most usually applied
tissue processing protocols render them fully interchangeable. Data is obtained from Hahn et al. (48). Scale bar in (A, B) is 500µm and in (C–E) 400µm.
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