
Frontiers in Endocrinology | www.frontiersi

Edited by:
Aldo Eugenio Calogero,

University of Catania, Italy

Reviewed by:
Settimio D’Andrea,

University of L’Aquila, Italy
Winnie Shum,

ShanghaiTech University, China

*Correspondence:
Carlo Foresta

carlo.foresta@unipd.it

Specialty section:
This article was submitted to

Reproduction,
a section of the journal

Frontiers in Endocrinology

Received: 26 November 2020
Accepted: 19 January 2021
Published: 09 March 2021

Citation:
Franzago M, Sabovic I, Franchi S,
De Santo M, Di Nisio A, Luddi A,

Piomboni P, Vitacolonna E, Stuppia L
and Foresta C (2021) Sperm DNA
Methylation at Metabolism-Related

Genes in Vegan Subjects.
Front. Endocrinol. 12:633943.

doi: 10.3389/fendo.2021.633943

ORIGINAL RESEARCH
published: 09 March 2021

doi: 10.3389/fendo.2021.633943
Sperm DNA Methylation at
Metabolism-Related Genes in Vegan
Subjects
Marica Franzago1,2, Iva Sabovic3,4, Sara Franchi2,5, Maria De Santo6, Andrea Di Nisio3,
Alice Luddi7, Paola Piomboni7, Ester Vitacolonna1,2, Liborio Stuppia2,5

and Carlo Foresta3*

1 Department of Medicine and Aging, School of Medicine and Health Sciences, “G. D’Annunzio” University, Chieti-Pescara,
Chieti, Italy, 2 Center for Advanced Studies and Technology (CAST), “G. D’Annunzio” University, Chieti-Pescara, Chieti, Italy,
3 Unit of Andrology and Reproductive Medicine, Department of Medicine, University of Padova, Padova, Italy, 4 Department of
Clinical and Experimental Sciences, University of Brescia, Brescia, Italy, 5 Department of Psychological, Health and Territorial
Sciences, School of Medicine and Health Sciences, “G. D’Annunzio” University, Chieti-Pescara, Chieti, Italy, 6 Casa di Cura
Privata Spatocco, Chieti, Italy, 7 Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy

Objective: To investigate ifepigenomeofspermcellscouldbedynamicallyaffectedbynutrition.

Design and Methods: We assessed 40 healthy volunteers with different dietary habits
and collected their demographic characteristics, as well as clinical and anthropometric
parameters. We compared methylation profiles in sperm quantified by bisulfite
pyrosequencing, at promoter-associated CpG sites of genes involved in metabolism
including fat mass and obesity-associated (FTO) and melanocortin-4 receptor (MC4R)
from six vegans and 34 omnivores. In addition, the FTO rs9939609 (T>A) was genotyped.

Results: Higher DNA methylation levels were detected in the sperm of vegan at FTO gene
CpG1 (p=0.02), CpG2 (p=0.001), CpG3 (p=0.004), and CpG4 (p=0.003) sites and at
MC4R-CpG2 site [p=0.016] as compared to sperm of omnivores. This association was
not related to FTO genotype.

Conclusions: Although limited by the small number of investigated cases, our data provide
insight into the role of diet on sperm DNA methylation in genes involved in metabolism.

Keywords: sperm, vegan, epigenetic, reproduction, nutrition
INTRODUCTION

Epigenetic modifications, including DNA methylation, histone marks and small non-coding RNAs,
are stable and mitotically heritable changes that modulate normal and disease-related phenotypic
differences. Among environmental factors able to induce epigenetic modifications, a key role is
played by diet. Dietary habits can result in epigenetic modifications by acting directly on metabolism
genes to up- or downregulate pathways involved in the bioavailability of nutrients (1). In addition, it
has been also suggested that nutrition induced epigenetic modifications of gene expression can
influence metabolism and susceptibility to non-communicable diseases (NCDs) (2–4).
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To date, growing evidence suggests that the sperm epigenome
can be dynamically affected by lifestyle (nutrient supply, physical
exercise, alcohol and tobacco consumption) influencing not only
male individual health status, but also his reproductive fitness
and even the future offspring’s health (5–9). Several studies have
demonstrated that the spermatozoa from obese humans as well
as from rats exposed to different models of diet, such as high-fat
or low-protein diet, show an altered epigenetic signature, raising
the question of a possible epigenetic inheritance of metabolic
dysfunction (8, 10). Therefore, the possible role of diet in
improving the quality of human sperm is becoming widely
explored in the context of male infertility focusing on sperm
epigenetic modifications (11).

Unlike omnivore diet, defined as a diet consuming all types of
foods, the vegan diet is characterized by total exclusion of any
animal derived substance, being thus very rich in fibres, but poor
in proteins and fats (12). To date, this kind of diet is increasingly
widespread in western societies, but its prevalence remains low
(13). Although few studies described vegan diet as healthy, no
conclusive data have been obtained yet (14–16), and vegan diet
often requires supplementation of additional nutrients, at least
during pregnancy (17).

To the best of our knowledge, the association between vegan
diet and sperm DNA methylation patterns in human has not
been investigated yet. In order to fill this gap, therefore, in the
present study we investigated the effects of vegan diet as
compared to omnivore diet on DNA methylation profiles in
sperm at promoter-associated CpG sites of genes involved in
metabolism, namely fat mass and obesity-associated (FTO) and
melanocortin-4 receptor (MC4R).

FTO gene encodes for an AlkB-like 2-oxoglutarate-dependent
nucleic acid demethylase, a potential regulator of RNA
modification. It is highly expressed in the hypothalamus, visceral
fat and liver but its function remains undefined. Recent studies
reported that FTO seems to influence the Iroquois homeobox 3
(IRX3) expression with effects on body weight (18).

MC4R protein is a membrane-bound G-protein-coupled
receptor found in brain regions, including the paraventricular
nucleus in the hypothalamus (19) and common genetic variations
near MC4R are involved in food intake by participating in appetite
control and energy balance regulation (20–26).

Polymorphisms in these genes have been associated with
body weight and composition, obesity, Type 2 Diabetes
Mellitus (T2DM) and eating behavior (27–37).

The aim of this study is to evaluate the effect of vegan diet on
sperm DNA methylation as a model to understanding the
epigenetic effect of nutrition on male gametes and provide
information for possible diet-based therapeutic strategies for
improve male reproductive fitness.
MATERIALS AND METHODS

Study Participants
This is a multicentric study involving the Unit of Andrology and
Reproductive Medicine of the Department of Medicine of the
University of Padua (Italy), the Laboratory of Molecular
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Genetics, School of Medicine and Health Sciences, “G.
D’Annunzio” University of Chieti (Italy), the Center for
Diagnosis and Cure of Couple infertility, University of Siena
(Italy) and the Spatocco Clinic, Chieti (Italy). Forty healthy
subjects with different dietary habits were recruited. In
particular, six cases have been following a vegan diet for at
least 2 years, and the remaining 34 an omnivore diet. Exclusion
criteria were obstructive azoospermia and known causes of
infertility (previous or concomitant testicular cancer, orchitis,
testicular torsion and trauma, use of gonadotoxic drugs,
oncological diseases, karyotype anomalies, Y chromosome long
arm microdeletions, mutations in the androgen receptor
and varicocele).

The study of sperm DNA methylation was conducted at the
Laboratory of Molecular Genetics, School of Medicine and
Health Sciences, “G. D’Annunzio” University of Chieti, Italy.

Patients
During the visit, data on demographic characteristics,
anthropometric, and clinical parameters were collected. In
addition, smoking habits and supplement intake were reported.
Finally, physical activity (PA) was assessed registering the
different levels of intensity (low, moderate, and high PA). All
subjects underwent semen donation by masturbation into sterile
containers after 2–5 days of sexual abstinence. Samples were
allowed to liquefy for 30 min and were examined for sperm
count, viability, motility and morphology according to the WHO
criteria (38).

Sperm were isolated by using Percoll gradient centrifugation.
After decondensation with proteinase K for total of 4 h DNA was
extracted using the QIAamp® DNA Mini Kit according to
manufacturer’s recommendations.

The study was approved by the Ethics Committee of the
University of Padua, Italy (protocol number #2208). In
accordance with the Declaration of Helsinki, all participants
gave their written informed consent prior to their inclusion in
the study.

DNA Methylation Analysis
The promoter associated CpG sites were tested in FTO gene
(16q12.2, 4 CpGs sites),MC4R gene (18q21.32, 2 CpGs sites) and
the imprinted gene H19 (11p15.5, 5 CpGs sites). FTO andMC4R
genes were selected due to their correlation with obesity,
metabolism and appetite control. H19 gene was included as a
control, being maternally expressed only and thus expected to
show a full methylation in male gametes. After bisulfite
treatment, DNA (~20 ng) was amplified by PCR using the
Kapa Hifi Hotstart Uracil+ HotStart Ready mix (Roche
Diagnostics), according to manufacturer’s recommendations.

Once NaBis-DNA amplified, the pyrosequencing was carried
out using the PyroMark Q96 MD pyrosequencing instrument
(Qiagen) with PCR and sequencing primers for the region of
interest in the FTO and MC4R genes selected according to
previous studies (39). In addition, PCR and sequencing
primers for analysis of the H19 CpGs were designed with
PyroMark Assay Design (version 2.0.1.15; Qiagen). Primers
information for these genes can be found in Table 1.
March 2021 | Volume 12 | Article 633943
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Genotyping
The rs9939609 (T>A) SNP in FTO was genotyped in twenty-five
subjects by PCR amplification (95°C for 10 min, followed by 35
cycles of 95°C for 30 s, 60°C for 30 s, 72°C for 30 s and a final
extension at 72°C for 10 min) and direct sequencing procedure
using BigDye Term v3.1 CycleSeq Kit (Life Technologies, Monza,
Italy) followed by automatic sequencing analysis.

Statistical Analysis
The subjects were stratified according to dietary habits and
differences between the two groups were tested by the Mann-
Whitney U for continuous variables or the Chi-square test for
categorical variables. Shapiro-Wilk test showed a non-normal
distribution of methylation levels. Thus, non-parametric analysis
was conducted.

Moreover, to test the effect of genotypes on body mass index
(BMI) as well as the effect of genotypes on methylation levels, a
Nonparametric Kruskal-Wallis test was performed.

The quantitative variables were summarized as means and
standard deviation (SD). Qualitative variables were summarized as
percentage.All testswere 2-sided, and a level of statistical significance
was set at p < 0.05.All analyseswere performedwith SPSS version 20.
RESULTS

The demographic and clinical characteristics of study
participants are summarised in Table 2. No difference was
Frontiers in Endocrinology | www.frontiersin.org 3
present in mean age and in BMI between vegan and
omnivorous men.

The vegans reported no assumption of any type of dietary
supplement. In addition, no significant difference was reported in
physical activity and smoking between the subjects in the two
groups. Sperm count parameters showed no significant
difference in the two groups. All subjects had a normal sperm
count, except one subject in the omnivore group and one in the
vegan group who had mild oligozoospermia (<15 million/ml)
and severe oligozoospermia (<5 million/ml), respectively.

Methylation profiles of sperm DNA from all men recruited
are reported in Table 3. Vegan subjects showed higher sperm
DNA methylation levels as compared to omnivorous men at
FTO gene CpG1 (p=0.02), CpG2 (p=0.001), CpG3 (p=0.004),
and CpG4 (p=0.003) sites. In addition, the mean DNA
methylation percentages for the overall CpGs at FTO gene in
sperm of vegan men were higher than in sperm of omnivorous
men (p=0.001).

DNA methylation levels at MC4R-CpG1 site were not
significantly different between vegan and omnivorous men,
whereas DNA methylation levels at MC4R-CpG2 site were
significantly different between the two groups (p=0.016). On
the other hand, all the analyzed CpG sites of the H19 gene were
close to 100% of methylation in all the samples, consistently with
their maternal imprinting. However, DNA methylation levels at
H19 gene CpG sites were slightly lower in sperm DNA of
omnivores than in vegan men, although only CpG3 value did
reach significance (p=0.007).
TABLE 1 | Primers for bisulfite PCR and pyrosequencing.

Gene Primers Product size
(pb)

Number of CpGs
analyzed

FTO F: TTTGGAGTTATTTTTTTTTTGAGTAGAAAR: [Btn]ATTCTCCTTAAACTCTAACCTATTTACTS:
TTTTAGGTTAGATAGTTGGAAGA

168 4

MC4R F: AGGGTGATATAGATTTAGATGTAGAAGTR: [Btn]AAACAATATACTTTCCATTTCATTTTACACS:
GTAGAAGTTTTTGAAGTTTG

220 2

H19 F: GGTTTTGGAGGTTAGTGTTTTR: [Btn]CTCAACCCCTAAAACTAACTTAACAS: TTGTATTATTTTTTTTTTTGAGAGT 322 5
Ma
rch 2021 | Volume
TABLE 2 | Demographic and clinical characteristics of healthy vegans and omnivore.

Characteristics omnivorous men (n=34) Vegan (n=6) p-value*

Age (yr)a 35.5 ± 7.07 36.3 ± 7.58 0.86
BMI (kg/m2)a 24.5 ± 2.47 25.7 ± 2.8 0.19
Smokingb 0.34
No 63.0 83.3
Yes 37.0 16.7
Physical activityb 0.63
Low 51.9 66.7
Moderate 37.0 16.7
High 11.1 16.7
Sperm concentrationa (106/ml) 79.7 ± 56.9 44.3 ± 21.2 0.14
Progressive Sperm motilityb 57.2 ± 11.6 46.4 ± 22.4 0.29
Total Sperm motilityb 59.2 ± 11.8 59 ± 23.7 0.60
Sperm morphology (normal forms)b 9 ± 3.3 10.2 ± 4.9 0.64
12 | Articl
*Mann–Whitney U Test or Chi-square test.
aData are presented as means ± SD.
bData are presented as percent (%).
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No significant association was found for FTO genotype
neither with BMI (Supplementary Table 1) nor with DNA
methylation levels at FTO gene (Supplementary Table 2).
DISCUSSION

The epigenetics of human sperm currently represents a very
promising field of investigation in relation to the growing
evidence of the role played by epigenetic alterations in male
infertility. Very recently, the presence of sperm epigenomic
alterations has been used as a biomarker of the success rate of
ART protocols, since patients with specific pattern of sperm
DNA methylation are characterized by a poor outcome of these
protocols (40). Given the reversible nature of epigenetic
modifications, males with aberrant sperm DNA methylation
can be considered as excellent candidates to investigate
treatments aimed to induce a reversibility of epigenetic
alterations. It has been suggested that personalized nutrition
could prevent or reverse the detrimental epigenetic modifications
induced by unhealthy lifestyles. Since the spermatogenesis
process is completed in a few weeks, it could be suggested that
a few months period of personal lifestyle care could restore a
physiological epigenetic mark of the sperm (10, 41). In this view,
a crucial point is represented by the knowledge of the specific
effect of different diets on the epigenetic pattern of human sperm.

Despite the exact relationship between diet and the
epigenome remains unclear, several studies reported an
association between epigenetic modifications and dietary
depletion or supplementation (1, 42–48).

Recent study suggests substantial differences in methylation
of CpG sites and genes, particularly in regulatory regions,
between vegans and non-vegetarians, laying the foundation for
the identification of transcriptional alterations associated with
diet-influenced methylation patterns (49). In addition, genome-
Frontiers in Endocrinology | www.frontiersin.org 4
wide methylation analysis in the DNA of blood cells showed
epigenetic differences in methylation in vegans versus
pescatarians and in vegans versus nonvegetarians. In
particular, the authors found that vegans had a higher
methylation in the majority of the differentially methylated
sites, with DNA hypomethylation occurring in only 4% of all
DM probes in the nonvegetarian comparison; this value was 33%
for the pescatarian comparison (50).

Moreover, it has been demonstrated that the sperm
epigenome may be responsive to dietary factors (41, 51). In
this view, we investigated for the first time, to the best of our
knowledge, DNA methylation profiles of metabolism-related
genes and their associations with vegan diet in sperm of
healthy subjects. Our results showed that a vegan diet was
associated with higher sperm DNA methylation at the FTO
and MC4R genes.

These findings seem to confirm that a specific diet can induce
epigenetic modifications in human sperm. The mechanism
underlying this process and the possible consequences must be
analyzed in deta i l . A possible explanat ion is that
hypermethylation of FTO and MC4R genes is the result of the
increased number of dietary methyl donors available in vegan
diet. In fact, nutrients include molecules that constitute DNA
and histone methylation, such as methylfolate, choline, betaine,
methionine, vitamins B12, B6, and B2 (52). Several studies
showed the critical nutrients occurrence for each dietary
regime (53–56). In particular, on the micronutrient level, one
study carried out on the largest sample of vegan dieters
worldwide reported that the men following a vegan diet have
lower intake of saturated fatty acids (SFA), retinol, vitamin B12
and D, calcium, zinc than omnivorous diet. On the other hand,
higher levels of magnesium, iron, folic acid, vitamin B1, C, and a
higher intake of dietary fiber have been shown in vegan
compared to omnivore dieters (57). The risk of nutrient
deficiencies for specific micronutrients is the major criticism of
plant-based diets. In fact, 4% of vegans are more likely to need
supplements and food fortified compared to omnivores (13).
Noteworthy, in the present study the vegans reported no kind of
dietary supplement. Our findings suggest that the possible
imbalances in the metabolism of the methyl nutrients such as
vitamins (folate, riboflavin, vitamin B6, choline) and amino acids
(methionine, cysteine, serine, glycine) could potentially
modulate hypo- or hyper- methylation of DNA. An interesting
point is the comparison between our results and those reported
in the literature on obese subjects. In fact, it has been described
that FTO and MC4R genes show different levels on DNA
methylation in obese as compared to lean subjects (41).
However, these authors analyzed different CpG islands in these
genes and results of the different islands were not consistent.
Nevertheless, these results confirm that FTO and MC4R
methylation in human sperm can be affected by individual
lifestyle. In our study, surprisingly, the vegans had a higher
BMI than omnivores, although not statistically significant. This
is in contrast with previous studies reporting lower BMI as
compared to omnivores whose diet included more proteins
and less fibres (58, 59).
TABLE 3 | Methylation profiles in sperm from vegans and omnivore.

CpG Sites omnivorous men (n=34) Vegan (n=6) p-value*

FTO gene
CpG1% 1.44 ± 1.11 2.83 ± 1.33 0.024
CpG2% 2.53 ± 2.11 7.0 ± 2.28 0.001
CpG3% 3.65 ± 2.45 7.83 ± 4.75 0.004
CpG4% 0.85 ± 1.02 2.33 ± 0.82 0.003
Mean all CpG sites % 2.06 ± 1.48 5.0 ± 2.19 0.001

MC4R gene
CPG1% 4.12 ± 1.53 4.17 ± 1.17 0.80
CpG2% 7.0 ± 2.26 10.17 ± 3.31 0.016
Mean all CpG sites % 5.65 ± 1.76 7.0 ± 2.28 0.17
H19 gene
CpG1% 91.5 ± 2.63 90.5 ± 1.38 0.23
CpG2% 94.41 ± 2.66 96.33 ± 3.14 0.17
CpG3% 92.26 ± 2.38 95.17 ± 1.60 0.007
CpG4% 92.38 ± 3.95 95.33 ± 4.08 0.11
CpG5% 98.32 ± 2.52 100 ± 0 0.05
Mean all CpG sites % 93.74 ± 2.06 95.33 ± 1.86 0.12
*Mann–Whitney U Test.
Data are presented as means ± SD.
Statistically significant values are in bold.
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Given the potential role of genotype of FTO on gene
expression (6, 60), we analyzed the effect of genotypes on
methylation levels. No significant association was found
between genetic variant and DNA methylation levels at FTO
gene. To note, rs9939609 was not evaluated in the studies of
Doaei et al. (60, 61), which pointed to another FTO SNP.

This study has some limitations. First of all, the cross-
sectional study design. Secondly, the main limit of the study is
the small sample size. In the last years, the number of subjects
who began to adopt a vegan dietary pattern has increased, but
still limited to a minority. To confirm these data, an increase in
the number of subjects enrolled and the representation of
different dietary groups are needed. The literature on the
effects of diet on epigenetic alterations in sperm is limited as
studies in this field are hardly available, largely due to difficulties
implied by the collection of samples. The possible role of a diet in
improving the quality of human sperm is underexplored in the
context of sperm epigenetic modifications. As matter of fact, the
connection between a vegan diet and sperm DNA methylation
patterns in human is widely unknown and needs further insight.

Thirdly, the assessment of diet was occurred by self-report.
Fourthly, the examined genes do not play a role in sperm
development and function.

A strength of this study is that, to our knowledge, this is the
first attempt to evaluate the effects of vegan diet on DNA
methylation level at genes involved in metabolism in sperm.

Interestingly, Soubry introduced the Paternal Origins of
Health and Disease (POHaD) paradigm emphasizing the
paternal transgenerational epigenetic inheritance of metabolic
disorders (62). Therefore, the epigenetic modifications of
spermatozoa can be transmitted to the offspring and
subsequent generations, thus influencing their lifetime health.
In this regard, it has been demonstrated that obesity is a factor
able to induce reversible sperm epigenetic modifications (8),
providing insight into a possible role of specific diets in
improving the human sperm quality. In accordance with these
observations, we suggest that genes related to metabolism could
be susceptible to germ cell epigenetic modulation in response to
nutritional status and diet. A greater understanding of epigenetic
Frontiers in Endocrinology | www.frontiersin.org 5
pattern as modifiable component in the periconceptional period
may provide new findings and propose a novel conceptualization
of susceptibility to metabolic disturbances. This domain of
research is solid, but the knowledge of the underlying
mechanism is currently still lacking.
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