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Objective: The intestinal flora of gut microbiota in obese Chinese children and
adolescents with and without insulin resistance (IR) was analyzed, as well as
associations between the gut microbiota and two serum cytokines related to glucose
metabolism, adropin and angiopoietin-like 4 (ANGPTL4).

Methods: Clinical data, fecal bacterial composition, glucose-related hormones, and serum
adipokines (adropin and ANGPTL4) were analyzed in 65 Chinese children with exogenous
obesity. The composition of the gut microbiota was determined by 16S rRNA-based
metagenomics and IR was calculated using the homeostasis model assessment (HOMA).

Results: The 65 obese subjects were divided into two groups: insulin sensitive (IS) (n=40,
57.5% males) or IR (=25, 60% males). Principal coordinates analysis revealed that the
gut microbiota samples from the IS group clustered together and separated partly from
the IR group (p=0.008). By Mann-Whitney U-test, at a phylum level, a reduction of
Firmicutes and an increase of Bacteroidetes in the IR subjects was observed. LEfSe
analysis revealed that IS subject, when compared to their IR counterparts, harbored
members of the order Coriobacteriales, Turicibacterales, Pasteurellales and family
Turicibacteraceae, that were significantly more abundant. In contrast, the IR subjects
had members of family Peptococcaceae that were significantly more prevalent than the IS
subjects (all p<0.05). Spearman’s correlation analysis revealed that serum ANGPTL4 was
positively associated with genus Bacteroides, Butyricimonas, and Alistipes, and adropin
was positively associated with genus Anaerostipes and Alistipes, and negatively
associated with genus Blautia (all p<0.05).

Conclusion: In obese children, the gut microbiome in IR subjects was significantly
discordant from the IS subjects, and the abundance of some metabolism-related bacteria
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correlated with the serum concentrations of adropin and ANGPTL4. These observations infer
that the gut microbiota may be involved in the regulation of glucose metabolism in obesity.

Keywords: insulin resistance, gut microbiota, obesity, children, ANGPTL4

INTRODUCTION

The worrisome prevalence of obesity among children, adolescents,
and adults is arguably one of the most serious public health
concerns worldwide given the proclivity for cardiovascular
diseases and type 2 diabetes (T2DM) (1). Insulin resistance (IR) is
a cardinal metabolic feature of T2DM, and it is also the
pathophysiological underpinning of various metabolic diseases in
obesity, such as polycystic ovarian disease and hyperlipidemia.
According to some studies, the major cause of IR in obesity is
aberrant cellular lipid partitioning pattern characterized by
increased deposition of lipids within insulin-responsive tissues,
such as the liver and skeletal muscle. This divergent lipid
accumulation is also associated with infiltration of intra-
abdominal cells of the immune system, which induces a systemic,
low-grade inflammation (2).

In adults, gut microbiota dysbiosis has been proposed as an
etiologic factor underlying metabolic disease associated with IR,
such as obesity and T2DM (3-6). To illustrate, following fecal
microbiota transplantation from lean human donors to obese
recipients with metabolic syndrome, a significant improvement
in insulin sensitivity resulted (7, 8). Furthermore, metagenomic
analysis revealed that the gut microflora of T2DM patients versus
healthy individuals are disparate- for example, a diminution in
butyrate-producing bacteria may impair glucose metabolism in
T2DM (9, 10). Gut microbiome can influence host insulin
sensitivity by interacting with dietary components and habits
(11), and by fermentation production, or lack thereof, of relevant
carbohydrate intermediary metabolites (12). Moreover, gut
microbiota dysbiosis may beget a pathophysiological
mechanism for systemic inflammation in IR (13, 14).
Notwithstanding the recent scrutiny of the intestinal flora in
numerous disorders, little is known about the characteristics of
the gut microbiota in children, let alone those who are obese (15).

Adipokines are critical signaling molecules involved in
controlling whole-body energy homeostasis. Angiopoietin-like
protein 4 (ANGPTL4), a multifunctional adipokine signal
protein expressed in many tissues, may be involved in the
regulation of multiple physiological processes, including energy
metabolism, glucose homeostasis, fat storage, and lipid
metabolism (16). Another adipokine assessed was adropin,
which in humans may be associated with energy homeostasis,
glucose and lipid metabolism, and insulin sensitivity (17). Our
previous research found that serum adropin level was associated
with serum insulin level and homeostasis model assessment of
insulin resistance (HOMA-IR). Recent studies suggest that the
gut microbiota can participate in the regulation of energy
metabolism by regulating the levels of adipokines (18). This
study determined the characteristics of gut microbiota in obese
Chinese children and adolescents with/without IR, and analyzed

the association between gut microbiota and circulating cytokines
which impact glucose metabolism.

PATIENTS AND METHODS
Study Population

The cross-sectional study consisted of participants managed at
Fuzhou Children’s Hospital of Fujian Medical University from
September 2017 to March 2018. The study was limited to
children who met the following criteria: (a) 5 to 15 year-old,
(b) diagnosed as obese according to Chinese criteria (19), and
(c) residence of Fujian province.

The exclusion criteria were as follows: any endocrine disease
associated with obesity (Cushing syndrome, hypothyroidism,
corticosteroid usage, etc.), antibiotic therapy history, gastro-
intestinal-related medication, probiotics, or any chronic
gastrointestinal or recent diarrheal disease (World Health
Organization definition) within 1 month prior to the study.

Dietary Assessment

In order to appraise dietary habits during the preceding month, a
semi-quantitative food frequency questionnaire was developed
according to the dietary habits of South China, and this was
completed by all participants (20).

Clinical Assessment

Height and weight were measured by trained nurses. BMI-Z
scores were calculated based on Li Hui et al’s reference values
(19). Waist and hip circumference were measured as previously
described (20). A waist-to-hip ratio (WHR) was calculated by
waist circumference (cm) divide by hip circumference (cm), and
waist-to-height ratio (WHtR) was calculated by waist
circumference (cm) divide by height (cm).

Laboratory Evaluation

All participants maintained their usual dietary intake at least 3 days,
and then fasted for 12 h before a blood sample was obtained. After
centrifugation of the blood, serum was stored at —80°C and analyzed
within 2 weeks Fasting plasma glucose (FPG) was measured by
standard methods (Beckman Coulter AU5800, USA) and fasting
insulin (INS) by a chemiluminescent immunoassay (IMMULITE
2000, Siemens Healthcare Diagnostics Products Limited, Germany)
using specific reagents. The serum adropin level was assayed using a
commercial ELISA kit (Phoenix Pharmaceuticals Inc. USA), with
inter-assay and intra-assay coefficients of variation (CV) less than
10% and 15%, respectively. Serum ANGPT4 levels was measured
using a commercial ELISA kit (Item number: ab99974, Abcam,
UK), with detection limit <20 pg/ml. Fecal samples were collected
and processed as previously described (20).
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Definition of IR

HOMA-IR was calculated using the following formula: INS
(mIU/L) xFPG (mmol/L)/22.5. A HOMA-IR value >4 is
considered IR, and values <4 deemed insulin sensitive (IS)
(21, 22).

Genomic DNA Extraction and Library
Construction

The microbial community DNA was extracted and quantified as
previously described (20). Variable regions V3-V4 of bacterial
16s rRNA libraries was prepared and library construction was
performed as previously described (20). The operational
taxonomic units (OTUs), defined by a 99% similarity
threshold, were chosen and the representative sequences were
submitted to GreenGenes (v 13.8) for the sequence alignment.

Statistical Analysis

Statistical analyses of clinical data were performed using the
Statistical Package for the Social Sciences software version 23.0
(SPSS Inc. Chicago, IL, USA). The normality of the data was
tested using the Kolmogorov-Smirnov test. Depending on the
data distribution, data are expressed as mean + SD or median
(25th-75th percentiles), and comparisons of the results were
assessed using independent samples t test, Mann-Whitney U test
and Kruskal-Wallis test. Comparison of rates between two
groups was by chi-square test. Spearman’s correlation was used
to analyze the relationship between relative abundance of gut
microbiota and serum cytokine levels, and partial correlation
analysis corrected for potential confounders. A value of P < 0.05
was considered statistically significant.

Statistical analyses of 16s rDNA sequencing data were
performed on alpha- (reflecting intra-individual bacterial
diversity) and beta- (reflecting inter-individual dissimilarity)
diversity measurements by software QIIME2(v2019.7) (23).
Alpha-diversity indices contained the Shannon diversity index
(calculates richness and diversity using a natural logarithm),
observed OTUs, Faith’s Phylogenetic Diversity (measures of
biodiversity that incorporates phylogenetic difference between
species) and Pielou’s evenness (measure of relative evenness of
species richness). Beta-diversity indices contained Jaccard distance,
Bray-Curtis distance, unweighted Unifrac and weighted Unifrac
using principal coordinates analysis (PCoA). Kruskal-Wallis Test
was used for two group comparison. The Firmicutes/Bacteroidetes
(F/B) ratio was also calculated. Linear discriminant analyses Effect
Size (LEfSe) were determined by software LEFSE (24). To predict
metagenome functional content from 16S rRNA gene surveys,
Picrust2 (25) was applied to obtain the KEGG (Kyoto
Encyclopedia of Genes and Genomes) pathways and STAMP (26)
was availed to analyze the differential pathway.

Statistical Power Analysis

We performed post-hoc power calculation for the comparison of
the microbiome between IS and IR subjects, focusing on the
power of differential abundance analysis. We used the web-based
microbiome power calculator to conduct power analysis (http://
fedematt.shinyapps.io/shinyMB/), which was based on Monte

Carlo simulations and Wilcoxon-Mann-Whitney test (27, 28).
We used a false discovery rate of 5% to correct for multiple
testing. In this calculator, the WMW test is applied to each OTU
individually and the resulting P-values are multiplicity adjusted
with the Benjamini and Hochberg (1995) method (29), to control
for False Discovery Rate. Assuming that we are testing 62 genera
with the abundance of five genera decreasing by 67% in the IR
group compared to the IS group, we had an average power of
85% to detect these five differential genera at current sample size.
Therefore, the study was reasonably powered to detect a
moderate taxa difference when comparing the IS and IR subjects.

RESULTS

Study Participants

The age of the 65 participates ranged from 6 to 14.2 years with a
mean of 10.0 + 1.8 years. There were 40 children with IS and 25
children with IR. The age of the IR group was significantly higher
than the IS group (p = 0.004). There were no differences in
gender, dietary habits, BMI-Z, WHR, WHItR, FPG, fasting INS,
serum adropin and ANGPLT4 between the two cohorts (all
p>0.05, Table 1).

Microbiota Profiles in IS and IR Subjects

A total of 918,578 sequencing reads were obtained from 65 fecal
samples, with an average value of 14,217 counts per sample. We
identified an overall of 146 OTUs, among which 136 OTU with
>2 counts, and they were grouped in 10 phylum and 38 families.

Abundance Profiling in IS and IR Subjects

Grouping OTUs at phylum level, and applying the Mann-
Whitney U test on the relative abundances of phyla for the
two groups, a reduction of Firmicutes and an increase of
Bacteroidetes in the IR subjects was observed compared to the
IS subjects (both p <0.05, Table 2 and Figure 1A). Thus, the

TABLE 1 | Anthropometric profiles and laboratory measurements in IS and
IR subjects.

IS (n = 40) IR (n = 25) t (Z)value p value
Age (yr) 9.80 (7.83, 11.12)  10.50 (9.85, 11.99) -2.387 0.017
Male (%) 57.5 60 (0.040) 1.000
BMI (kg/m?) 24.71 £ 3.16 26.73 + 3.89 -2.578 0.012
BMI-Z 2.61(2.25,3.15) 2.62 (2.44, 3.19) -0.701 0.483
WHR 0.88 + 0.05 0.89 + 0.05 -0.751 0.455
WHIR 0.53 £ 0.04 0.54 +0.04 -0.656 0.514
FPG (mmol/l) 4.89 (4.67,5.13) 4.90 (4.55, 5.33) -0.007 0.995
Fasting INS 11.48 (9.02, 14.00) 25.70 (23.80, 31.95) -6.742  <0.001
(Wu/mi)
HOMA-IR 2.59 (1.92, 3.13) 5.48 (5.28, 7.10) -6.742  <0.001
adropin (ng/mi) 243 +£0.45 2.58 + 0.66 -0.962 0.342
ANGPTL4 0.007 3.32 (1.22, 7.49) -1.628 0.104
(pg/mi) (0.001,1.861)

BMI, body mass index; BMI-Z, BMI standard deviation Z score; WHR, waist-to-hip ratios;
FPG, fasting plasma glucose; INS, insulin; HOMA-IR, homeostasis model assessment of
insulin resistance; ANGPTL4, angiopoietin-like protein 4. Data are expressed either as
mean + SD or median (25th-75th centiles).
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TABLE 2 | The mean relative abundance of gut microbiota in IS and IR subjects
at phylum level.

IR ] z P value
p_Actinobacteria 0.010 0.017 -1.423 0.155
9g_Adlercreutzia 0.000 0.000 -2.394 0.017
p_Bacteroidetes 0.357 0.252 -1.996 0.046
p_Cyanobacteria 0.000 0.000 -1.391 0.164
p_Firmicutes 0.446 0.643 -4.194 <0.001
g_Anaerostipes 0.001 0.002 -2.007 0.045
9g_Dialister 0.011 0.039 -2.085 0.037
g_Turicibacter 0.000 0.001 -2.402 0.016
p_Fusobacteria 0.017 0.004 -0.032 0.974
p_Proteobacteria 0.168 0.083 —-0.081 0.936
9_Haemophilus 0.003 0.006 -2.262 0.024
p_Synergistetes 0.000 0.000 -0.78 0.436
p_Tenericutes 0.002 0.000 -1.83 0.067
p_TM7 0.000 0.000 -0.846 0.397
p_Verrucomicrobia 0.000 0.001 -1.312 0.189

Assuming that the total amount of all gut microbiota in each individual is 1, the mean
relative abundances of gut microbiota in each group is reported in columns. p_: at phylum
level; g_: at genera level. Only the genera whose relative abundance was significantly
different in IS and IR subjects are shown in the table. Bold values: p < 0.05.

ratio of Firmicutes to Bacteroidetes (F/B ratio) was significantly
higher in the IS group compared with the IR group (p=0.007).
On OTUs at the genera level, by Mann-Whitney U-test,
including all the genera (merging small taxa with counts<10),
we found that genera Adlercreutzia, Anaerostipes, Dialister,
Haemophilus, and Turicibacter were more prevalent in IS obese
than those who were IR (all p < 0.05; Figure 1B, Table 2).

Alpha- and Beta-Diversity in IS and IR Subjects

To assess the overall differences of microbial community
structures in IS and IR subjects, we measured ecological
parameters based on alpha-diversity. There was no difference
of alpha-diversity between IR and IS groups (all p>0.05,
Table S1).

To determine the differences between microbial community
structures in IS and IR subjects, we calculated B-diversity. By
Distance method Bray-Curtis and PCoA analysis, the gut
microbiota samples from the IS group were clustered together
and separated partly from the IR group, and insulin sensitivity
status explained 28% of the variance in microbiota composition
(P = 0.008, Figure 2).

Bacterial Taxa Differences in IS and IR Subjects

We next used LEfSe analysis to identify bacteria where the
relative abundance was significantly increased or decreased in
each phenotypic obese category. IS obese children harbored
members of the order Coriobacteriales, Turicibacterales,
Pasteurellales, family Turicibacteraceae, that were significantly
more prevalent than IR subjects. In contract, the IR subjects had
members of the family Peptococcaceae that were significantly
more prevalent than the IS subjects (all p<0.05, Figure 3).

Detecting Microbial Biomarkers

in Both Groups

Discriminant analysis (DA) based on univariate ANOVAs,
Fisher’s coefficient and leave-one-out classification were

A
IS« }
IR*
0.00 0.25 0.50 Ui 1.00
Relative Abundance
Firmicutes M Fusobacteria T™7
Phylum Bacteroidetes Tenericutes M Cyanobacteria
Proteobacteria Verrucomicrobia
Actinobacteria Synergistetes
B
IS’
IR,
0.00 0.25 0.50 075 1.00
Relative Abundance
Not_Assigned Coprococcus Megasphaera
Bacteroides Bifidobacterium Fusobacterium
Prevotella Gemmiger Bilophila
Faecalibacterium | Parabacteroides Desulfovibrio
Megamonas ' Dorea Citrobacter
Roseburia M Oscillospira Anaerostipes
Ruminococcus W Klebsiella Paraprevotella
Blautia = Clostridium gdgrlbacﬁef
Genus - phascolarctobacterium M Streptococcus ubacterium
e : Akkermansia
Dialister M Veillonella Lactobacillus
Lachnospira Enterobacter Cetoba ctérium
Sutterella Haemophilus Turicibacter
Alistipes Acidaminococcus Aggregatibacter
SMBS33 Oxalobacter N cillus
Butyricimonas Pyramidobacter WAL 1855D
Lactococcus Eggerthella Leuconostoc
Rothia Lachnobacterium ' Granulicatella
Holdemania Catenibacterium Abiotrophia
Anaerotruncus M Morganella Comamonas
Actinomyces m Weissella Coprobacillus
Adlercreutzia

Pseudoramibacter Eubacterium

FIGURE 1 | Bar chart representing Mann-Whitney U-test results on
operational taxonomic units (OTUs) grouped in phyla (A) and in genus
(B) of the IR and IS groups. Each column in the plot represents a group,
and each color in the column represents the percentage of relative
abundance for each OTU.

performed to define a model based on the capability of OTUs
to discriminate the two groups of study participants (IR and
IS subjects).

By DA, at the phyla level, 73.8% of the original grouped
subjects were correctly classified by the relative abundance of
Firmicutes (Table S2), and at the genus level, 86.2% of the
original grouped subjects were correctly classified, with the
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FIGURE 2 | Principal coordinates analysis (PCoA) plot of IR and IS subjects.
The plots show the first two principal coordinates (axes) for PCoA using the
Bray-Curtis Distance method.
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FIGURE 3 | Differential biomarkers associated with genders in IR and IS
groups. A linear discriminant effect size (LeFse) analysis were performed
(o value = 0.05, logarithmic LDA score threshold = 2.0).

genus Abiotrophia, Adlercreutzia, Aggregatibacter, Anaerostipes,
Dialister, Megamonas, Odoribacter, Roseburia, and Veillonella
enter the function (from a Wilks’ Lambda test, all P < 0.05).
Furthermore, applying a cross-validation test, we found that

81.5% of cases were correctly classified, confirming a high
capability of the entire OTUs set to discriminate the two
groups (Table S3).

Correlations Between Novel Cytokine
Related to Glucose Metabolism and
Bacterial Abundance
To evaluate correlations between bacteria and serum cytokine
related to glucose metabolism (adropin and ANGPTL4),
Spearman’s rho cut-off values were adopted taking into account
r>04,r<-04 (p <0.05, Table $4). Spearman’s correlation analysis
revealed that adropin positively correlated with genus Anaerostipes
and Alistipes, and negatively associated with genus Blautia, and
ANGPTL4 negatively correlated with the F/B ratio and genus
Bacteroides, Butyricimonas and Alistipes (all p<0.05, Table 3).
After partial correlation analysis to adjust the impact of BMI,
WHR, and ANGPTL4 was still positively associated with genus
Bacteroides, Butyricimonas and Alistipes (r=0.268,0.600 and 0.361,
p=0.040,<0.001 and 0.005, respectively), and adropin remained
positively associated with genus Anaerostipes and Alistipes
(r=0.384 and 0.290, p=0.007 and 0.026, respectively), and
negatively associated with genus Blautia (r = —0.273 and p=0.037).

Metabolic Pathway Predictions

A total of 70 KEGG pathways were generated using the
composition of the gut microbiota based on PICRUSt2 in IR
versus IS subjects (Figure 4, Table S4).Importantly, the glucose
metabolism pathways including Calvin-Benson-Bassham cycle,
coenzyme A biosynthesis I, peptidoglycan biosynthesis I (meso-
diaminopimelate containing), peptidoglycan biosynthesis III
(mycobacteria), peptidoglycan biosynthesis IV (Enterococcus

TABLE 3 | Spearman’s correlation table on OTUs and cytokine.

ANGPTL4 adropin
R P value R P value

Bacteroides B4T** <0.001

Blautia -0.415* 0.001 —412* 0.001
Actinomyces —-0.360** 0.004

Turicibacter -0.355" 0.004

Parabacteroides 0.340* 0.006

Eggerthella -0.334** 0.007 -.276* 0.028
SMB53 —0.336™* 0.007

Bifidobacterium -0.325" 0.009 -.300" 0.017
Butyricimonas 0.328* 0.009

Streptococcus -0.315* 0.012

Dorea -0.312* 0.013

Faecalibacterium 0.305* 0.015 259" 0.041
Weissella -0.289* 0.022

Leuconostoc -0.273* 0.03

Adlercreutzia -0.273* 0.031

Bilophila 0.271* 0.032

Abiotrophia -0.251* 0.048

WAL _1855D —0.249* 0.049

Anaerostipes 313 0.012
Eubacterium —-.261* 0.039
Alistipes .251* 0.048
F/B ratio —0.432* <0.001

OTU, operational taxonomic unit. *P < 0.05; *p < 0.01.
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FIGURE 4 | KEGGs biomarkers of IR and IS children.

faecium) and UDP-N-acetyl-p-glucosamine biosynthesis I were
increased in IS subjects and, conversely, the superpathway of
fucose and rhamnose degradation, superpathway of hexitol
degradation (bacteria), superpathway of hexuronide and
hexuronate degradation, and superpathway of UDP-glucose-

derived O-antigen building blocks biosynthesis were decreased
in the IS subjects (all p<0.05). Furthermore, some nucleotide
metabolism pathways (e.g., 5-aminoimidazole ribonucleotide
biosynthesis, pyrimidine nucleobases salvage), and amino acid
metabolism (e.g., L-arginine biosynthesis, histidine biosynthesis,
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ornithine biosynthesis) were increased in IS subjects. Finally, in
the IR children, some pathways associated with carbohydrate
metabolism (p-galacturonate degradation I, hexuronide and
hexuronate degradation), amino acid metabolism (e.g.,
L-arginine biosynthesis III) and lipid metabolism (lipid IVA
biosynthesis) were increased (P<0.05).

DISCUSSION

The gold standard technique to evaluate IR is the hyperinsulinemic
euglycemic clamp, however, it is costly and impractical to perform
in the clinical setting. Therefore, the HOMA-IR calculation was
applied to evaluate IR in the present study given that it correlates
favorably with the hyperinsulinemic-euglycemic clamp and it has
been validated in children (30). Innumerable studies have
confirmed that obese individuals are prone to developing IR and
T2DM (31). Herein, we delineated obese subjects according to their
insulin sensitivity status, yet there were no significant differences in
BMI-Z scores between the two cohorts.

Recent studies of the human microbiome have corroborated
the interplay of gut microbiome and disturbed metabolism, and
perhaps playing a causative role in the development of obesity, IR
and T2DM (32-34). Altering the human gut microbiota may
prove useful in developing safe and inexpensive promising
therapeutic interventions (35). A plethora of microbiota animal
studies notwithstanding, information on intestinal bacterial
composition and function in children is limited (36, 37).

Our results confirmed the gut microbiota dysbiosis in obese
children with IR, and also characterized bacteria specific to IR.
Although no significant difference of alpha-diversity was
observed between the two groups, a difference in beta-diversity
bacterial communities prevails in obese children with IR.

Bacteroidetes and Firmicutes occupy the dominant position in
human intestine and serve essential roles in nutrient absorption,
mucosal barrier fortification, xenobiotic metabolism, angiogenesis,
and postnatal intestinal maturation (38). Relevantly, we report a
bacterial profile associated with IR in which there was a reduction
of Firmicutes and an increase of Bacteroidetes at phylum level.
Furthermore, phylum Firmicutes appears to be a microbial marker
for IR subjects. Analogous results in relation to these phyla have
been found in both humans (9, 39, 40) and mice (41) with T2DM.
Compared with the colonization of “lean microbiota” in germ-free
mice, the relative abundance of Firmicutes was enhanced by the
colonization of “obese microbiota” that lead to an amassment in
body fat (42). This infers an increased capacity to extract energy
from nutrients if the gut is colonized by obesity-associated
microbiota. The greater metabolic diversity found in Firmicutes
with respect to Bacteroidetes (348 metabolic pathways versus 76,
respectively) also supports the likelihood that the above-
mentioned inference is indeed due to the phylum Firmicutes (43).

The intestinal F/B ratio is a commonly evaluated in metabolic
disorders, such as obesity (44). Interestingly, a recent study in
humans found a marked dysbiosis, characterized by an increased
F/B ratio, in obese metabolic syndrome compared with comparably
obese without metabolic syndrome and non-obese (45), suggesting
that the F/B ratio may be related to the presence or absence of

metabolic traits rather than to obesity itself. However, another study
reported that the F/B ratio was significantly lower in T2DM patients
than in non-diabetic patients, and negatively associated with plasma
glucose concentration (40), an observation which is corroborated in
our study. Overall, more studies are warranted which consider the
manifold cofounding factors, including geography, age, sex,
hormonal status, host genetics and diverse diets (46)- all of which
may potentially alter the composition of the gut microbiota- in
order to assess the relevance of the microbial F/B ratio in childhood
obesity. Lastly, given the potential impact of diet on the gut
microbiome, this study was limited insofar as the diverse dietary
habits across China could not be mirrored.

Ussar S et al. opined that members of the Firmicutes, such as the
genus Roseburia, correlated with components of the metabolic
syndrome (6). In this study, we found that genus Roseburia could
correctly classify 86.2% of the original grouped subjects. In humans,
gut members of the genus Roseburia negatively correlated with
plasma glucose (40) and are less gut abundant in individuals with
T2DM (47). The abundance of Roseburia increase in the feces of
obese individuals with metabolic syndrome who receive fecal
transplants from lean metabolically healthy donors, and this
strategy improved peripheral insulin sensitivity (12). Butyrate
produced by Roseburia fermentation provides a carbon source for
colonic epithelial cells and enhances mitochondrial function in
peripheral tissues, yet the exact biochemical mechanisms
underlying the salutary metabolic effects of butyrate are
uncertain (48).

Chronic, low-grade inflammation is a prevailing characteristic of
obesity and T2DM, and this systemic inflammatory response is also
thought to drive IR (12). ANGPTL4, an inflammation-related
adipokine, may be involved in the regulation of multiple
physiological processes including energy metabolism and glucose
homeostasis (16). Although circulating ANGPTL4 levels were
elevated in diabetes and correlated with glucose levels and
HOMA-IR, but not BMI (49), which was evidence for a role for
chronic, occult, low-grade inflammation (50), there was no
difference in the serum ANGPTL4 concentration in obese
children with IR compared with controls in this study.
Furthermore, we found the level of ANGPTL4 was positively
associated with genus Bacteroides, Butyricimonas, and Alistipes. It
has been reported that the relative abundance of genera Bacteroides
and Butyricimonas were increased with an improvement of insulin
signaling and decrease in blood glucose (51, 52) in animal and
human studies, our research provides evidence for the same in
children. Furthermore, our results showed that adropin was
positively associated with genus Anaerostipes and Alistipes, and
negatively associated with genus Blautia. As previously reported,
high levels of Alistipes and low levels of Blautia were also found in
patients with diabetes (53, 54). These results indicate that the
composition of the gut microbiota is closely related to the levels
of blood glucose as well as gluco-metabolic related cytokines, which
cause low grade inflammation. Insulin resistance may be a
consequence of dysregulation of bacterial production of butyrate,
short-chain fatty acids and other metabolites (53).

Compelling evidence has implicated a role for peptidoglycan
for the IR, metabolic inflammation and liver disorders (55). In
our study, several pathways associated with peptidoglycan

Frontiers in Endocrinology | www.frontiersin.org

March 2021 | Volume 12 | Article 636272


https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles

Yuan et al.

Gut Microbiota and Insulin Resistance

biosynthesis were attenuated in the IR subjects. And, in obese
subjects with hyperinsulinemia and dyslipidemia, the
translocation of peptidoglycan was linked to plasma lysozyme,
which was negatively correlated with HOMA-IR, HbAlc, and
cholesterol (56). Considering that HOMA-IR is a more rigorous
proxy for liver IR versus peripheral IR (57), studies using a
hyperinsulinemic euglycemic clamp could determine the role of
peptidoglycan in IR obese children.

This cross-sectional study revealed diverse gut microbiota in
obese children of different insulin sensitivity statuses. As
reported, the intake of artificial sweeteners did not investigate
in this study, which may cause IR and effect on the microbiota
(58). Furthermore, it is speculated that the gut microbiota may be
more sensitive and change earlier than cytokines such as
ANGPTL4 and adropin. The correlation between gut
microbiota and ANGPTL4/adropin suggests that ANGPTL4
and adropin may still be in a compensatory state and no
metabolic disturbance has yet to manifest. A longitudinal study
wherein the participants are followed over an extended period
(transition from IS to IR to T2DM) would confirm a dynamic
change in gut microbiome and cytokines with different glucose
metabolism statuses, and could establish causality.

CONCLUSION

This study provides evidence of a tripartite interaction between gut
microbiota, host immune system and glucometabolic pathways
and this could partake in the pathophysiology of obesity and IR.
The gut bacteria microsystem in obese IR subjects was significantly
different compared with obese IS children: the F/B ratio was
significantly higher in the IS group compared with the IR group.
The abundance of metabolism-related bacteria such as
Anaerostipes, Alistipes, and Blautia was related to the level of
ANGPTLA4 or adopin, which buttresses the notion that the gut
microbiota can moderate glucose metabolism.
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