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Helicobacter pylori (H. pylori) is a gram-negative bacterium that infects approximately 4.4
billion individuals worldwide. Although the majority of infected individuals remain
asymptomatic, this bacterium colonizes the gastric mucosa causing the development
of various clinical conditions as peptic ulcers, chronic gastritis and gastric
adenocarcinomas and mucosa-associated lymphoid tissue lymphomas, but
complications are not limited to gastric ones. Extradigestive pathologies, including
metabolic disturbances such as diabetes, obesity and nonalcoholic fatty liver disease,
have also been associated with H. pylori infection. However, the underlying mechanisms
connecting H. pylori with extragastric metabolic diseases needs to be clarified. Notably,
the latest studies on the topic have confirmed that H. pylori infection modulates gut
microbiota in humans. Damage in the gut bacterial community (dysbiosis) has been widely
related to metabolic dysregulation by affecting adiposity, host energy balance,
carbohydrate metabolism, and hormonal modulation, among others. Taking into
account that Type 2 diabetic patients are more prone to be H. pylori positive, gut
microbiota emerges as putative key factor responsible for this interaction. In this regard,
the therapy of choice for H. pylori eradication, based on proton pump inhibitor combined
with two or more antibiotics, also alters gut microbiota composition, but consequences on
metabolic health of the patients has been scarcely explored. Recent studies from our
group showed that, despite decreasing gut bacterial diversity, conventional H. pylori
eradication therapy is related to positive changes in glucose and lipid profiles. The
mechanistic insights explaining these effects should also be addressed in future
research. This review will deal with the role of gut microbiota as the linking factor
between H. pylori infection and metabolic diseases, and discussed the impact that gut
bacterial modulation by H. pylori eradication treatment can also have in host’s
metabolism. For this purpose, new evidence from the latest human studies published in
more recent years will be analyzed.

Keywords: Helicobacter pylori, gut microbiota, metabolism, eradication therapy for Helicobacter pylori, metabolic
diseases, diabetes
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INTRODUCTION

Helicobacter pylori (H. pylori) is a microaerophilic spiral-shaped
Gram-negative bacterium that can colonizes the stomach. This
bacterium is able to generate an alkaline microenvironment that
allows its survival in the acid gastric environment (1). The
prevalence of H. pylori infection is more than 50% worldwide, but
ranges from 19 to 88% depending on geographical area localization,
with a higher prevalence in developing than in developed countries
(2), which has been related to socioeconomic status and hygiene
levels, including level of urbanization, sanitation, and access to clean
water (2). However, other factors such as racial group could also be
related to H. pylori prevalence (2, 3). The high prevalence of this
infectious disease is a matter of concern due to the high number of
H. pylori-associated clinical conditions.

H. pylori infection disturbs gastric homeostasis and, although
most of the infected individuals remain asymptomatic, serious
gastrointestinal complications are attributed to this bacterium
such as peptic ulcer or chronic gastritis and promotes other life-
threatening complications such as gastric cancer and mucosa-
associated lymphoid tissue lymphomas (4). H. pylori-related
diseases are not only restricted to the gastrointestinal tract, but
H. pylori infection has also been associated with a number of
extra-gastroduodenal disorders. In fact, there are solid evidence
on its relationship with hematological disorders such as
idiopathic thrombocytopenic purpura, iron deficiency anemia
and vitamin B12 deficiency (5), but there is also a growing body
of evidence that supports a linkwith neurological (e.g. Parkinson or
Alzheimer disease, age-related cognitive decline), cardiovascular,
liver, metabolic (e.g. diabetes, obesity, metabolic syndrome) and
autoimmune and inflammatory (e.g. autoimmune gastritis,
immune thrombocytopenia purpura, autoimmune thyroid
diseases, inflammatory bowel diseases) disorders (6).

The precise mechanisms underlying the connection between
gastric H. pylori infection and extra-gastroduodenal diseases
remain unclear. The most accepted hypothesis to date is the
generation of an inflammatory milieu due to the H. pylori insults
to gastric mucosa and the consequent activation of innate and
adaptive responses (1, 4). It has been hypothesized that this local
inflammation at the stomach can spread systematically by the
release of proinflammatory cytokines. This would favor the
establishment of a low-grade and chronic inflammation, that is
a common feature of H. pylori-associated extra-gastroduodenal
disorders including cardiometabolic diseases such as diabetes,
atherosclerosis or dyslipidemia (7, 8). However, this hypothesis
has not been formally confirmed as yet, and knowledge about
how inflammation actually links H. pylori with metabolic
disorders is still insufficient.

Within this context, recent evidence showing that H. pylori
infection not only disturbs the equilibrium of commensal
bacterium species in the gastric mucosa, but it also leads to
microbial changes in the human gut (9–18), has brought gut
microbiota into the limelight (7, 9). Gut microbiota participates
in host’s immune and metabolic homeostasis. In fact, dysbiosis of
the gut bacterial community has been widely associated with
obesity, diabetes and metabolic syndrome (19–21). Then,
modulation of the gut microbiota during H. pylori infection
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could be triggering the onset and the impairment of metabolic
disorders. Nevertheless, human studies addressing this issue are
still scarce (10, 22–24).

Prophylactic recommendations to prevent H. pylori infection
such as good household hygienic practices and the use of safe
supplies of clean water are not always feasible, and while awaiting
for an efficient H. pylori vaccine, the antibiotic therapy is the
strategy of choice to fight against H. pylori infection at present
(25, 26). Therapies for H. pylori eradication are based on the use
of different antibiotic combinations (27–29) which are well
known to have profound effects on the composition and
diversity of the gut microbiota (30) and might also be related
to adiposity and insulin resistance (31–34). Although an
increasing number of studies have emerged analyzing the
effects of the various antibiotic eradication therapies for
H. pylori eradication on the composition of the gut microbiota
(10, 11, 16, 17, 24, 35–44), few of them have related these changes
with patients’ metabolic traits (10, 22–24). Within this context,
our group has recently focused on analyzing how gut microbial
changes promoted by H. pylori and its treatment can relate to
metabolic traits.

In this review, we discuss the latest evidence from human
studies on the influence of H. pylori infection and different
eradication therapies on the composition of the gut microbiota,
with particular focus on the relationship between H. pylori-
induced gut microbiota modifications and host’s metabolic health.
H. PYLORI INFECTION AND
METABOLIC DISEASES

Among theH.pylori infection-derived extra-gastricmanifestations,
the link with energy management, weight gain and metabolic
homeostasis is still up for debate (6).

On the one hand, alterations in the gastrointestinal
microenvironment due to H. pylori infection have been suggested
to impair nutrient absorption and causes micronutrient deficiency.
Malabsorption of iron and vitamins such as vitamin B12, vitamin A,
vitamin C, vitamin E or folic acid have been related to H. pylori
infection. Concordantly, associations between micronutrient
deficiency complications and H. pylori infection have been found.
For instance, the incidence of iron and B12 deficiency anemias is
higher in H. pylori positive patients than in non-infected subjects
(45, 46). Other disorders related to micronutrient deficiencies have
been suggested to be associated with H. pylori infection, although
further evidence would be necessary to confirm this hypothesis
(45, 47, 48).

Moreover, lower levels of the orexigenic gastric hormone
ghrelin (49), and higher levels of the anorexigenic adipokine
leptin (50) have been reported in H. pylori infected patients. All
together, these data led to propose that H. pylori infection can
cause growth retardation and malnutrition in children. However,
studies found that growth delay was also dependent on
socioeconomic factors (8). Findings on weight management in
adults during H. pylori infection are controversial with studies
having reported positive (51–53), negative (54, 55) or non
June 2021 | Volume 12 | Article 639856
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correlation (56, 57) between H. pylori infection and increased
body mass index (BMI).

H. pylori eradication has been associated with weight gain
likely due to the improvement of postprandial dyspeptic
symptoms. In addition, changes in ghrelin and leptin levels
after H. pylori treatment could be also acting on weight
increase (58–60). An intervention study carried out in H.
pylori positive children with previous growth retardation and
low ghrelin levels, showed restoration of normal ghrelin levels
and increased weight gain upon H. pylori eradication (61). By
contrast, other studies reported significant weight loss, decrease
in fat mass percentage and increase in fat-free mass after
H. pylori eradication treatment (62, 63) or no effect on body
weight (64) in adults. These contradictory results can be due to
the different populations analyzed including different age groups.
The influence of H. pylori treatment on body weight seems to
differ in adults and children which could be due to age-related
phenomena on body growth. In addition, other factors, such as
gut microbiota, could be determining these discrepant results as
discussed below.

On the other hand, imbalance of the aforementioned and
other hormones such as glucagon-like peptide 1 (GLP-1), and
the generation of a proinflammatory milieu might negatively
affect metabolic homeostasis and weight in the adulthood (8). In
fact, low-grade inflammation is a common feature of obesity,
diabetes, insulin resistance, dyslipidemia and cardiovascular
diseases (65).

Patients suffering of H. pylori infection are prone to display an
unfavorable pro-atherogenic lipid profile featured by high
triglycerides, total cholesterol and LDL-C and decreased HDL-C
levels (22, 66–69). Zhao et al., found that, in addition to the
dyslipidemic profile, bilirubin levels were also diminished in H.
pylori infected patients (70). Bilirubin exhibits powerful
antioxidant properties and has been inversely related to the risk
of cardiovascular diseases and metabolic syndrome (71, 72).
However, some studies did not find correlations between
H. pylori infection and some of these lipid variables (73, 74). A
recent meta-analysis of 27 previous studies concluded that most of
the evidence tends towards an unfavorable lipid profile inH. pylori
infected patients, although this is still casting doubt on the precise
relationship with triglyceride levels (75). The causes of the altered
lipid profile have not been elucidated, but impaired intestinal
absorption and altered bile acid dynamics might be contributing to
this condition (76). Notably, as discussed below, gut microbiota
modulates these processes and could be acting as mediators in the
establishment of the dyslipidemic profile in H. pylori patients.
Supporting this hypothesis, antibiotic treatment for H. pylori
eradication resulted in total and LDL cholesterol reduction and
increase in HDL-C levels (77). Other studies described an
elevation in total cholesterol levels at the expense of increasing
HDL-C after H. pylori eradication (22, 78). However, the lipid
improvement after H. pylori eradication was not confirmed by
other authors (74, 78, 79). If considered the gut microbiome
hypothesis, factors that can differentially modulate the gut
microbial composition such as diet or the precise antibiotic
combination used, might account for these discrepant results.
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Associations between H. pylori infection and glucose
homeostasis have been also explored (10, 23, 80, 81). Evidence
suggests that H. pylori may be involved in both diabetes onset
and impaired glycemic control in diabetic patients, but
contradictory trends or lack of association between H. pylori
infection and type 2 Diabetes have been also reported (80, 81).
One of the mechanisms proposed for this relationship is the
proinflammatory milieu induced by H. pylori infection that
promotes gastric inflammation and cytokine secretion. In fact,
H. pylori infection has been associated with increased levels of
C-reactive protein (CRP) and interleukin 6 (IL6) (82, 83).

The link between H. pylori and Type 2 Diabetes was first
analyzed in 1989 by Simon et al., who found that the prevalence
of H. pylori infection was higher in patients with Type 2 Diabetes
compared to asymptomatic volunteers (84). Thenceforth, most of
the studies have corroborated this finding reporting a higher
prevalence of H. pylori in patients with Type 2 Diabetes (usually
greater than 50%) in diabetic patients than in non-diabetic subjects
(85–88). Recently published meta-analyses this year aimed at
elucidating the direction of the relationship between H. pylori and
Type 2 Diabetes (81). Pooled H. pylori prevalence in diabetic
patients was 54%, but there were high (even contradictory)
regional variability as the highest prevalence of H. pylori infection
in patients with T2DMwas 66% inAfrica and the lowest was 15% in
USA (81). Moreover, it was found that patients with H. pylori
infection had a higher risk of Type 2 Diabetes, but results again
differed depending on geographical regions with a direct
relationship in Europe, Asian and Africa, but a negative
relationship in USA (80). In subgroup analysis, the relationship
betweenH. pylori and the risk of diabetes was different according to
age, level of glycated hemoglobin A (HbA1c), duration of diabetes
and methods forH. pylori detection. This suggests that these factors
could be an important source of heterogeneity in the studies
included in the meta-analyses (80, 81).

Furthermore, there are evidence suggesting that H. pylori
infection is related to worse outcomes in diabetic patients. For
instance, HbA1c levels were higher in diabetic patients with
H. pylori infection in comparison with diabetic subjects negative
for H. pylori (89). On the other hand, Yang et al. concluded that
diabetic patients with H. pylori infection showed higher risk of
cardiovascular diseases and more severe peripheral arterial
stiffness than diabetic patients without H. pylori infection (90).
Reciprocally, diabetic H. pylori positive patients showed worse
symptomatology related to the infection (91, 92). A higher degree
of insulin resistance was also reported in H. pylori infected
patients from different populations (8), an association that was
confirmed in every studies included in a systematic review but
one (88).

Therefore, although the link between H. pylori infection and
Type 2 Diabetes has been controversial in some studies, the
general trend suggests a higher susceptibility to H. pylori
infection in diabetic patients. Likewise, H. pylori infection would
promote the development of Type 2 Diabetes, as well as worse
glycemic control and insulin responsiveness, likely due in part to
the enhanced inflammation. In this line, gut microbiota could be a
contributing factor as a modulator of the inflammatory response
June 2021 | Volume 12 | Article 639856
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as well as of the secretion of incretins involved in glucose
homeostasis as detailed in next section. In this regards, some
clues have been given from intervention studies based on the use
of a cocktail of antibiotics for H. pylori eradication and found that
non-diabetic patients withH. pylori infection subjected to antibiotic
treatment, experienced an improvement in insulin resistance index,
HbA1c and insulin levels concomitant to a reduction of low-grade
inflammation (10, 87, 93). Of note, efficiency on eradication rates of
infection was lower in diabetic patients than in non-diabetic (8).
Higher rates of antibiotic resistance in diabetic patients than in non-
diabetic ones might account for these differences (94). Furthermore,
the improvement in glucose homeostasis, i.e. HbA1c and glucose
levels, in diabetic patients after successful eradication of H. pylori,
were not statistically significant in comparison with non-diabetic
controls or baseline values (95). Notably, gut microbiota
composition varies in diabetic patients as compared to non-
diabetic subjects (96–98).
GUT MICROBIOTA, ANTIBIOTIC
THERAPY, AND METABOLIC DISEASES

The human gut is colonized by a myriad of microorganisms that
encompass bacteria, fungi, archaea, protozoa and viruses. This
complex ecological community comprises symbiotic, commensal
and pathogenic microbes that physiologically interact with the
host at different levels and functions. Locally, gut microbiota
contributes to the maintenance of gut barrier function and
integrity, fermentation of indigestible dietary substrates,
vitamin synthesis and immune system regulation. However,
the activity of these microorganisms goes beyond the
gastrointestinal tract, affecting the function of distant organs
including brain, liver, pancreas, muscle or adipose tissue (99).

The impact that gut microbiota has on host’s metabolism is
perhaps one of the most evident interrelations between the two
systems. Besides harvesting energy from indigestible dietary fibers
and modulating enterocyte function, gut bacterial community can
also indirectly affect metabolic homeostasis by regulating immune
system, local hormone secretion or bile acid synthesis. The
efficiency of these actions depends on the specific and prevailing
bacterial species that reside in the intestine (20, 100).

Several reports described differential bacterial profile in the gut
from both obese and diabetic subjects (96–98). Although there are
some controversial studies, in general terms, obesity-associated
microbiota is depicted by an increase in Actinobacteria and
Firmicutes and decline in Bacteroidetes phyla (97) as well as by
diminished microbial richness and diversity (19, 32, 96, 101–103).
Low microbial gene richness was associated with more adiposity,
dyslipidemia and insulin resistance (101). In the same vein,
diminished microbial gene richness has been related to low-
grade inflammation and marked dysmetabolism (102) and, even
among individuals with severe obesity, those patients with lower
microbial gene richness had worse metabolic conditions (104).
Among microbial genes associated with obesity, 75% belongs to
Actinobacteria and 25% to Firmicutes, whereas 42% of lean-
associated microbial genes belong to Bacteroidetes (96, 105, 106).
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Gut microbiota composition from diabetic patients also differs
from healthy subjects (107–109). Munukka et al., analyzed gut
microbiota from women with and without metabolic disorders
and concluded that the differences in some bacteria belonging to
Eubacterium rectal-Clostridium coccoides group were more
associated with obesity-related metabolic disorders than with
obesity per se (110). Evidence also suggest that the amount of
specific gut bacterial groups might also influence lipid metabolism.
To be more precise, Lachnospiraceae was related to low LDL-C
levels and both Pasteurellaceae and Collinsella associated with low
triglyceride levels. Tenericutes and Butyricimonas were also related
to a favorable lipid profile with low triglyceride and high HDL-C
levels (111). Therefore, gut microbiota has been related to the
different hallmarks of the metabolic syndrome.

These data point out the gut microbiota as a crucial player in
the regulation of host’s energy homeostasis, though the
mechanism by which the different bacterial species contribute
to the regulation of metabolic functions are not fully understood.
Current evidence point at low-grade inflammation and
microbiota-derived metabolites as the possible links in the
interplay of the gut microbiota and host’s metabolism. These
topics have been extensively reviewed elsewhere (19–21, 112)
and will only be briefly mentioned in this review.

As above mentioned, low-grade inflammation is a hallmark of
obesity and its related metabolic complications. Inflammatory
mediators interfere insulin signaling promoting insulin resistance.
Immune cell infiltration in metabolic tissues impair its function and
is enhanced in metabolic diseases. Concordantly, inflammation is
related to diabetes, unhealthy lipid profile and favors the
development of atherosclerotic lesions (113). However, the precise
factors triggering the inflammatory response in metabolic diseases
remains unclear. Within this context, it has been hypothesized that
bacterial products, such as the Gram-negative bacteria cell wall
component, lipopolysaccharide (LPS), can translocate from the gut
to the circulation (114). LPS translocation would be enhanced by
the consumption of fatty meals as these molecules are packed into
chylomicrons in the enterocytes and delivered into the circulation
(115). In addition, a “leaky” gut due to compromised gut barrier
integrity would also favor LPS translocation (114). Circulating gut-
derived LPS, that activate the inflammatory response by binding to
its receptor TLR-4, can reach metabolic tissues such as adipose
tissue and induce inflammation, insulin resistance and impaired
lipid accumulation (116). The inability of adipose tissue to store
excess energy results in increased blood lipids and toxic lipid
accumulation into non-fatty organs such as liver or muscle (117,
118). In agreement with this hypothesis, circulating LPS levels are
closely related to triglyceride levels and blood pressure, augment
upon high-fat meal intake (115, 116, 119, 120) and its increase is
associated with inflammation and lower expression of lipogenic
markers in the adipose tissue of obese patients, as recently
confirmed by our group (116).

During the fermentation of indigestible dietary substrates,
intestinal bacteria produces different by-products such as short-
chain fatty acids (SCFAs). SCFAs, such as butyrate, acetate and
propionate, take part in a variety of physiological functions.
SCFAs have been shown to regulate adiposity, to improve insulin
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sensitivity, to exert anti-inflammatory action by modulating
immune cells and to regulate incretin secretion. In addition, these
metabolites also participate in the maintenance of the gut barrier
integrity, decreasing the risk of bacterial product translocation from
the gut to the circulation (19, 21, 121–123). Butyrate represents a
relevant energy source for colonocytes, contributes to epithelial cell
health and consequently, to the integrity of intestinal epithelia. In
addition, anti-inflammatory properties have been attributed to this
SCFA (20, 124). Propionate stimulates the release of the satiety-
inducing incretinsGLP-1 andpeptideYY, resulting in reduced food
intake and concomitant weight, visceral adipose tissue and hepatic
fat reduction, andpreserved insulin sensitivity (125).Acetate is used
by adipocytes, muscle or liver as energy substrate. It has been
suggested that elevated levels of acetate and propionate associates
with satiety, weight loss, and decreased inflammatory markers and
blood lipids (126). However, some controversial results indicate
that, when highly produced by gut microbiota, acetate could
activates several pathways stimulating insulin secretion,
hyperphagia and obesity in animal models (127). Then, the
harmful or beneficial effects of SCFAs might be dependent on
their levels as well as on the interaction with other factors (20).
Notwithstanding this, human studies showed that obese and
diabetic patients had diminished SCFA-producing bacteria and
SCFAs (128). Therefore, SCFAs canmediate themultiple effect that
gut microbiota exert on host´s metabolism.

Modulation of bile acid dynamics by gut microbiota has been
also related tometabolic regulation (21). Bile acids participates in fat
emulsification and absorption of lipids and liposoluble vitamins in
the intestine. Primary bile acids are produced by hepatocytes,
released in the proximal intestine, reabsorbed in distal ileum and
recycled by the liver. Besides facilitating fat digestion and
absorption, bile acids exerts metabolic functions by means of
their receptors farnesoid X receptor (FXR) and Takeda G- protein
receptor-5 (TGR5). FXR and TGR5 signaling promotes hepatic
glycogen synthesis and insulin sensitivity, insulin secretion, energy
expenditure in liver brown adipose tissue and muscle,
thermogenesis and satiety (76). Gut microbiota metabolizes and
deconjugates primary bile acids to transform them into secondary
bile acids (129). Therefore, gut microbiota play a relevant role in
determining the composition of bile acid pool which is relevant to
the final biological actions of these molecules (130). In fact, it has
been suggested that secondary bile acids can differentially interact
with FXR and TGR5 than primary bile acid which would result in
distinct metabolic actions (112, 131).

Obviously, bacterium by-products generated by the gut
microbiota is highly determined by the diet. Bacteria are highly
specific on the kind of nutrient they metabolize. Then, the effect of a
certain typeof diet on adiposity andmetabolismactivationnot only is
determined by calorie amount or energy harvesting by gut bacteria,
but it is also defined by the specific kind of nutrient that enhances the
growth of specific bacterial species damaging to coexisting
microorganism by bacterial competition (99). For instance, some
gut bacterial groups metabolized choline and L-Carnitine from
dietary source (e.g. red meat or eggs) into trimethylamine (TMA).
TMA is absorbed and oxidized by hepatic flavin monooxygenase 3
(FMO3) to produce trimethylamine N-oxide (TMAO) (132).
Frontiers in Endocrinology | www.frontiersin.org 5
Elevated levels of this metabolite have been described in diabetic
(132) and obese (133) individuals and correlates with cardiovascular
disease (134).

The production of these metabolites, the integrity of gut
mucosa and consequently the actions that gut bacteria would
exert as a whole, would depend on the abundance and
proportion of each bacterial taxa inhabiting our intestine.
Determinants of gut microbiota composition include dietary
intake or antibiotic treatment, among other exogenous and
endogenous factors (20, 30, 135, 136). Disruption of the gut
bacterial equilibrium results in the deregulation of host
metabolic functions and triggers the onset of obesity and
obesity-related metabolic diseases (100, 112).

In this line, several studies aimed at assessing whether the
modulation of the gut microbiota by antibiotic administration
was related to obesity and other metabolic variables (31–34, 137,
138). Associations of diverse antibiotic treatments in early life
with increased risk of childhood obesity has been reported (33,
34). A recent study focused on analyzing the gut microbiota
profiles associated with the increased risk of childhood obesity
due to early antibiotic exposure. This study showed that boys
were at higher risk of increased abdominal adiposity than girls
exposed to several courses of antibiotics and that changes in
specific bacterial groups were related to both repeated antibiotic
exposure and childhood adiposity (31). By contrast, Ajslev et al.,
described that, when mothers were overweight, early antibiotic
exposure were related to decreased risk of developing childhood
obesity. Unfortunately, gut microbiota was not analyzed in this
study so it cannot be determined whether specific modifications
in gut bacterial groups could account for the differential risk of
developing obesity depending on maternal weight (137).

In the adult population, the association between antibiotic
treatment, gut microbiota and insulin sensitivity is still
controversial (32, 138). Vrieze et al., found that 1-week
vancomycin treatment increased and decreased primary and
secondary bile acids, respectively, and decreased insulin
sensitivity evaluated 2-3 days after treatment cessation. However,
amoxicillin administration had no effects on the study variables
(32). Despite significant changes in gut microbiota diversity and
composition aswell as in SCFA and bile acids levels, Reijnders et al.,
did not find significant effects after 1-week vancomycin or
amoxicillin exposure on different markers of insulin sensitivity,
metabolic, hormonal or inflammatory parameters evaluated 8-
weeks after treatment (138).

These findings point out the fact that factors such as age,
gender, previous obesity degree, the type of antibiotic or post-
therapy evaluation time could influence the effects on host’s
metabolism. Therefore, further studies are required to elucidate
how specific gut microbiota modulation exerted by each kind of
antibiotic therapy affects metabolic homeostasis according to
host’s characteristics. In view of the multiple therapeutic options
for H. pylori eradication, this perspective become particularly
relevant in the management of H. pylori infection. In addition, it
is of interest to elucidate whether gut microbiota modulation by
antibiotic eradication therapy improves or worsens the previous
impaired metabolic status of H. pylori patients.
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GUT MICROBIOTA IN
H. PYLORI INFECTION

H. pylori colonizes gastric mucosa leading to modification in the
gastric microenvironment and disturbing gastric microbiota
composition (139). These changes has serious local effects on
stomach, but it also affects the function of other regions of the
gastrointestinal tract which likely results in altered absorption of
nutrients and drugs aswell as on the production of incretins involved
in metabolic homeostasis. Furthermore, few years ago, it was also
proposed that H. pylori infection might also trigger large intestinal
microbiota changes (140). Although close attention has been paid to
the effect of H. pylori eradication treatment on gut microbiota, very
recent human studies have also confirmed thatH. pylori infection per
se is linked to gut dysbiosis including alterations in bacterial diversity
and abundance (9–18). A summary of bacterial shifts reported in
individuals infected byH. pylori is displayed in Table 1.

Within this context, our group and others have reported that
humanH. pylori infection is related to changes in bacterial diversity,
but findings still controversial (10–14, 16). Some studies observed
less diversity in H. pylori positive than in H. pylori negative subjects
(10, 11). In view of the fact that H. pylori infection is usually related
to unhealthy profile, these results are congruent with the general
idea that high gut microbial diversity is an indicator of a healthy gut
microbiome (101). In fact, low bacterial richness has been related to
insulin resistance, dyslipidemia and higher overall adiposity (32).
Nevertheless, other authors intriguingly found that several alpha
diversity estimators exhibited higher scores, which indicate higher
level of gut microbiota complexity in H. pylori cases (12–14, 16).
Different study population, calculation of different diversity indexes
or techniques for quantifying gut microbiota might underlie this
opposite findings. In addition, other factors such diet or disease
severity could be also influencing gut diversity. Therefore, controlled
trials with homogenous designs are required to elucidate the actual
effect of H. pylori infection and diversity of gut microbiota.

Regarding the specific groups of gut bacteria, some human
studies have shown that the relative abundances of dominant
phyla Bacteroidetes, Firmicutes and Proteobacteria significantly
differ in the gut of H. pylori positive individuals compared to
negative controls, although trends towards the increase, decrease
or no differences have been reported (10, 14–16). Similarly, some
studies found that H. pylori infection decreases the abundance of
Actinobacteria (10, 11), but He et al., reported an increase in this
Phylum (16). Similar to bacterial diversity, variability in study
population including age or geographical region and different
exclusion and inclusion criteria might underlie the heterogeneity
in major phyla proportion inH. pylori infected patients. In fact, it
has been reported that gut microbiota can differ between
Japanese and other populations (142). Differences in these phyla
have been also related to obesity and Type 2 Diabetes (19).
Microbial pattern with low Bacteroidetes and high Actinobacteria
and Firmicutes proportions characterized the gut microbiota from
obese patients (19, 96, 103). Therefore, further studies onH. pylori
positive patients with more homogenous population might be
helpful to establish consistent trends among predominant phyla
in relation to metabolic diseases.
Frontiers in Endocrinology | www.frontiersin.org 6
Despite not having found consistent results in the main phyla
related toH. pylori infection, in general terms and taking into account
the diversity of bacterial functions included in each phylum, bacterial
changes at the level of the different taxonomic categories belonging to
each phylummay have both positive and negative effects on the host.
In this line, Frost et al., found that H. pylori infected individuals
displayed elevated levels of the facultative pathogen Haemophilus but
decreased levels of Pseudoflavonifractor and Parasutterella (13).
Pseudoflavonifractor encompasses butyrate-producing bacteria and
Parasutterella are succinate-producing bacteria (143). Thus, the
decrease of Pseudoflavonifractor might partly explain the negative
impact of H. pylori infection on metabolic profile as the result of
reduced SCFA production. Notwithstanding this, the genus
Parasutterella is increased in Crohn’s disease (144), so authors
hypothesized that H. pylori might be exerting a protective role
against pathogens related to other gastrointestinal diseases (13). In
fact, succinate has been described as a virulence factor that might
exacerbate enteric infections (145). In addition, this bacterium
together with other taxa increased by H. pylori (e.g. Alistipes), have
been proposed as potential predictor biomarkers of obesity-related
metabolic abnormalities (146). In the same vein, succinate-producing
bacteria and elevated levels of succinate have also been associated with
Type 2 Diabetes and obesity (147).

By using shotgun metagenomic sequencing, Wang et al., found
variation in other bacterial species according to the presence or
absence ofH.pylori infection (141). They specifically found increased
proportions of Prevotella copri, a proinflammatory bacterium (148)
as well as Klebsiella pneumoniae and Enterobacter cloacae, two
infectious bacteria (149). These results suggest that H. pylori
infection may promote growth of harmful bacteria in the gut.
Conversely, Sutterella wadsworthensis, B. vulgatus, and E. coli
amounts were lower in the H. pylori‐positive compared to non-
infected individuals (141).Members of the genus Sutterella are highly
prevalent commensals with the ability to adhere to intestinal
epithelial cells indicating a possible immunomodulatory role (150).
In addition, the pathobiont Bacteroides vulgatus has been implicated
in the etiology of both Crohn’s disease and ulcerative colitis, but little
is known about how its functional activity might drive the host
inflammatory response (151).

A study carried out in a Japanese population specifically focused
on analyzing how H. pylori modulates the proportion of each
Lactobacillus species in the gut and found higher relative
abundance of Lactobacillus in H. pylori infected patients than in
non-infected individuals (18). Lactobacilli endows gastrointestinal
tract with “colonization resistance” serving as a defense mechanism
which protects the host from potentially pathogenic microbials.
Probiotic effects have widely been attributed to different
Lactobacillus species such as L. casei or L. rhamnosus that
prevented antibiotic-related diarrhea (152), which may be due to
the role of these bacteria in gut barrier preservation (153).
Furthermore, certain Lactobacillus species have been also related to
positive metabolic outcomes. While Lactobacilli relative abundance
in the gut microbiota in obesity and after weight loss is controversial,
it has been described that specific Lactobacillus strains (e.g.
L. rhamnosus, L. gasseri, L. plantarum or L. paracasei) relates with
a reduction of obesity-associated metabolic disorders and even an
June 2021 | Volume 12 | Article 639856
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improvement on insulin sensitivity.However, other species suchasL.
reuteri has positively been associated with adiposity, which suggests
Lactobacillus strain-dependent physiological effects on metabolism
and weight regulation (19, 154–156). Iino et al., found thatH. pylori
positive patients displayed reduced amounts of L. acidophilus and
increased proportion of L. salivarius in comparison with non-
infected subjects. Authors suggested that alterations in
Lactobacillus proportions could be related to the suppression of
gastric acid secretion by H. pylori infection, but putative
physiological effects that these changes can have on host’s
metabolism and health have not yet been addressed (18).

In the same way that gastric colonization by H. pylori can
affect the composition of gut microbiota, some gut bacteria
might be also influencing the bacterial colonization of other
gastrointestinal regions, including H. pylori in the stomach. In this
regard, Chen et al., found that, despite not having noticing significant
Frontiers in Endocrinology | www.frontiersin.org 7
differences in the abundance of several putative beneficial taxa
including Bifidobacterium, Lactobacillus, Clostridium butyricum,
Faecalibacterium prausnitzii and Akkermansia muciniphila, the
phylum Nitrospirae exclusively appeared in H. pylori-negative
subjects (17). Similarly, in the study by Wu et al., this phylum
presented low values in patients with duodenal ulcer and H. pylori
infection (11). Nitrospirae are the most abundant and diverse nitrite-
oxidizing bacteria which convert nitrite to nitrate (157). Of note,
nitrite was shown to have bactericidal effects against H. pylori (158).

Differences between the gut microbiota from asymptomatic
H. pylori infected patients vs. non-infected subjects have been also
reported(12,15,16). In fact,H.pylori infectionalters thegutmicrobiota
in this asymptomatic patients by increasing Proteobacteria,
Clostridium, Firmicutes and Prevotella in a paediatric population (15)
and members belonging to Succinivibrio, Coriobacteriaceae,
Enterococcaceae, and Rikenellaceae in adults (12) compared to non-
TABLE 1 | Human studies analyzing the impact of H. pylori infection on the gut microbiota determined by bacterial DNA sequencing.

Study (Reference) Design Methodology Shifts in gut bacterial groups in HP+

Benavides-Ward et al.
(15)

Paediatric Asymptomatic Peruvian population (Age=6-12 y).
Study groups:
HP+ (n=28) vs non-infected (n=28) children

Targeted sequencing ↑Proteobacteria, ↑Firmicutes,
↑Clostridium,
↑Prevotella

Chen et al. (17) Adult Chinese population (age = 18-70 y).
Study groups:
HP+ (n=70) vs. H. pylori‐negative (n=35) subjects

16S rRNA V3-V4 region
sequencing (MiSeq Platform)

↑Sphingomonas sp., ↑Turicibacter sp.
↓Nitrospirae
↓Bacteroides plebeius

Dash et al. (12) Pooled Young and Adult Arabic population (Age=15.5-59 y).
Study groups:
Asymptomatic HP+ (n=12) vs. H. pylori‐negative (n=48)
subjects

16S rRNA V4 region sequencing
(MiSeq Platform)

↑Diversity
↑Succinivibrio, ↑Turicibacter
↑Coriobacteriaceae, ↑Rikenellaceae
↑Desulfovibrio, ↑Enterococcaceae

Frost et al. (13) Adult Caucasian population (SHIP cohorts; Age= 43-63 y).
Study groups:
HP+ (n=212) vs. H. pylori‐negative (n=212) subjects

16S rRNA V1-V2 region
sequencing (MiSeq Platform)

↑ Diversity
↑ Haemophilus
↓Parasutterella, ↓Pseudoflavonifractor

Gao et al. (14) Adult Chinese population (Age=40-69 y).
Study groups:
HP+ (n=24) vs. H. pylori‐negative (n=15) subjects

16S rRNA V4 region sequencing
(MiSeq Platform)

↑Diversity
↑Bacteroidetes, ↑Firmicutes,
↑Proteobacteria

He et al. (16) Young Chinese population (Age=21-30 y).
Study groups:
Asymptomatic HP+ (n=17) vs. H. pylori‐negative (n=7) subjects

16S rRNA V3-V4 region
sequencing (MiSeq Platform)

↑Diversity
↑Proteobacteria, ↑Actinobacteria,
↑Acidobacteria, ↑Alistipes
↓Subdoligranulum, ↓Lachnoclostridium

Iino et al. (18) Adult Japanese population.
Study groups:
HP+ (n= 226) vs. H. pylori‐negative (n=524) subjects

16S rRNA V3-V4 region
sequencing (MiSeq Platform)

↑L. salivarius, ↓L. acidophilus

Martin-Nunez et al. (10) Adult Caucasian population (Age=18-65 y).
Study groups:
HP+ (n=40) vs. H. pylori‐negative (n=20) subjects.

16S rRNA V3-V4 region
sequencing (MiSeq Platform)

↓Diversity
↑Bacteroidetes, ↓Firmicutes
↓Actinobacteria
↑Bacteroidetes/Firmicutes ratio

Wang et al. (141) Adult Chinese population (Age=20-66 y).
Study groups:
HP+ (n=128) vs. H. pylori‐negative (n=185) subjects.

Shotgun metagenomic
sequencing (BGISEQ-500
platform)

↑Prevotella copri
↑Enterobacter cloacae
↑Klebsiella pneumoniae
↓Sutterella wadsworthensis
↓B. vulgatus
↓E. coli

Wu et al. (11) Adult Chinese population (Age=18-65 y).
Study population:
HP+ (n= 40) vs. H. pylori‐negative (n=20) subjects

16S rRNA V4 region sequencing
(MiSeq Platform)

↓Diversity
↓Actinobacteria, ↓Gemmatimonadetes,
↓Nitrospirae, ↓Chlorobi,
↓Thermi, WS3, ↓Caldithrix.
J

The most significant bacterial groups showing differential proportions in H. pylori patients compared to non-infected patients are shown. HP+, H. pylori positive patients.
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infected subjects. The study by He et al., identified their study
participants as asymptomatic although they also stated that subjects
were diagnosed with superficial gastritis (16). To the best of our
knowledge, it has not yet been evaluated whether the gut microbiota
from asymptomatic H. pylori-infected patients also differs from that
from symptomaticH. pylori-infected patients. This information could
be of great interest to shed light on the possible role of the gut
microbiota composition as player and/or biomarker of the severity of
H. pylori infectionwhich ranges from asymptomatic to serious clinical
manifestation such as gastric cancers.

In this line of thought, Gao et al. investigated the association
between the gut microbiota andH. pylori-related gastric lesions. To
this end, they compared the intestinal microbiota of subjects
without gastric injury, with gastritis or with intestinal metaplasia,
and concluded that indeed the alterations of the fecal microbiota,
particularly the phyla Bacteroidetes, Firmicutes and Proteobacteria,
are likely involved in theprocess of progressionof the gastric disease
associated withH. pylori (14).

In addition, Frost et al., found that there were bacterial significant
variations even within the H. pylori positive patient group that was
dependent on the individual H. pylori antigen load. To be more
precise, a negative association was reported between antigen load and
Bacteroides, Fusicatenibacter, Barnesiella, andAlistipes, taxa exhibiting
putative healthy characteristics at first sight. Fusicatenibacter and
Alistipes are butyrate and lactate producing bacteria that could exert
anti-inflammatory and other beneficial actions (159, 160). However,
opposite results regarding different species belonging to Alistipes taxa
and its relationship with dysfunction of several organs such as liver or
cardiovascular system has been described (161). In fact, He et al., who
also found that H. pylori infected patients had elevated levels of
Alistipes compared to non-infected patients, referred to an animal
study which found that this taxa was positively correlated with weight,
fat mass, LPS and inflammatory cytokines (16, 162). On the other
hand, Barnesiella is associated with more efficient eradication of
antibiotic-resistant bacteria (163). By contrast, authors stated that
non-significant results were retrieved from analyses taking into
account H. pylori serology level (13). In the same vein, Iino et al.,
found that the relative abundance of Lactobacillus was significantly
higher in H. pylori positive patients with severe atrophic gastritis as
compared with infected patients with mild atrophy gastritis or
without gastritis (18) supporting the hypothesis that gut microbiota
could also differ depending on symptoms severity. Of note, no
differences according to the degree of atrophic gastritis was found
in the specific Lactobacillus species studied (L. acidophilus and
L. salivarius) (18) which remarks the necessity to find the specific
bacterial groups that can be related to infectious severity.
MODULATION OF THE GUT MICROBIOTA
BY ANTIBIOTIC-BASED H. PYLORI
ERADICATION THERAPIES

According to the Kyoto consensus report, H. pylori gastritis has to
be regarded as an infectious disease and the resulting
recommendation is the treatment of all H. pylori infected patients
regardless the clinical manifestations (164). Antibiotic therapies are
Frontiers in Endocrinology | www.frontiersin.org 8
the first-line treatment for H. pylori eradication, but the increasing
antibiotic resistance rates make necessary the adaptation of the
treatment regimen. In general terms, the standard triple therapy
based on the combination of one proton pump inhibitor (PPI),
clarithromycin and amoxicillin or metronidazole is recommended
whenH. pylori clarithromycin resistance is low (<15%). By contrast,
quadruple therapy based on bismuth administration together two
antibiotics and one PPI is the first-line treatment for H. pylori
eradication in regions with high antibiotic resistance rates (27, 28).
However, recent reports highlight how the increasing resistance to
antibiotics compromises the efficacy of these recommended
therapies and salvage regimens have to be used (28, 29). This lead
to high variability on the type and amount of specific antibiotics that
can have different impact on the patient’s health.

AntibioticH.pylori therapies arenot exempt fromsideeffects.The
extensively reported gastrointestinal adverse events associated to
antibiotic administration such as nausea, vomiting or diarrhea
among others, are linked to quantitative and qualitative changes in
the gut microbiota (165). Antibiotic-induced changes in the gut
microbiota has become a matter of concern in the treatment of H.
pylori as the essential role of intestinal-residing bacteria in
maintaining human health beyond gut function is increasingly
accepted (27).

There is growing evidence that antibiotic-based therapies forH.
pylori eradication promote alterations in the gutmicrobiota (10, 11,
16, 17, 24, 35–44), but different antibiotic combinations can exert
differential effects on microbial community (166) (Table 2). In
addition, proton pump inhibitors (PPI) which is usually
administered together antibiotics for H. pylori eradication also
contributes to bacterial shifts in the intestine (167).

In general terms, antibiotic administration has been related to
a decrease in bacterial diversity (30, 138). Regarding the various
H. pylori eradication therapies it has been reported a decrease in
bacterial diversity after triple therapy consisting of PPI,
amoxicillin and clarithromycin for 7 days (39, 40, 43), 10 days
(10) or 14 days (11, 36). Nevertheless, most of these studies
found that bacterial diversity was restored in the short and the
long-term after treatment cessation (11, 36, 40, 43). However,
other studies did not reported an improvement of bacterial
diversity after cessation of triple therapy (10, 39).

Quadruple therapywith bismuth during 10or 14 days also led to
decreased bacterial diversity but not all the studies found a total
recovery of bacterial diversity evaluated from6weeks to1 year post-
treatment (16, 36, 38, 44). By contrast, concomitant therapyof three
antibiotics (amoxicillin, clarithromycin, metronidazole) without
bismuth for 14 days decreased bacterial diversity, but it was fully
(35) or partly restored (36) at 2 months or 1 year post-
treatment, respectively.

Liou et al., compared the effect of triple, quadruple and
concomitant therapies on bacterial diversity and found that the two
latter treatments were related to lower alpha diversity in comparison
with triple therapy at 1 year post-eradication treatment (36).

Notably, few studies have contrasted eradication therapy-
induced bacterial diversity changes with bacterial diversity in
the gut of non-infected patients (controls) which would drop
hint at the similarity of bacterial diversity scores before and after
June 2021 | Volume 12 | Article 639856
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TABLE 2 | Effect of antibiotic H. pylori eradication therapies on gut microbiota composition in human studies.
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Jakobsson et al.
(40)

Adult European population
(Age =50-75 y).
Comparison groups:
HP+ vs post- eradication therapy (n=3).

PPI, amoxicillin,
clarithromycin for 7 days.

8-13 days ↓ Alpha diversity, ↓Actinobacteria, ↑Enterococ
↓Clostridia, ↓Bifidobacteria.

1 - 4 years Alpha diversity restored, but microbiota composition

Oh et al. (41) Adult Asian population
(Average age = 49.3 y).
Comparison groups:
HP+ vs post- eradication therapy (n=10).

PPI, Clarithromycin,
Amoxicillin for 14 days.

2 weeks ↓Bacteroidetes, ↓Firmicutes, ↓Prevotella copri

Yap et al. (42) Young adult Asian population
(Age= 18-30 y).
Comparison groups:
HP+ vs post- eradication therapy (n=17).

PPI, amoxicillin,
clarithromycin for 7 days.

6 months ↓Actinobacteria, ↓Proteobacteria ↑Verrucomic

6 and 12 months ↑ Firmicutes, ↓Bacteroidetes

12 and 18 months ↑Proteobacteria, ↑Actinobacteria, ↑Verrucomic

Yanagi et al. (24) Adult Asian population (Age= 42-80 y).
Comparison groups:
HP+ vs post- eradication therapy (n=20).

PPI, amoxicillin,
clarithromycin for 7 days.

1 week ↑Bacteroidetes, ↑Archaea, ↓Actinobacteria, ↓P

3 months ↑B:F ratio, ↓Actinobacteria, ↓Bifidobacterium, ↑Fae

Chen et al. (17) Adult Asian population
(Age= 18-70 y).
Comparison groups:
HP+ vs post- eradication therapy (n=35).

PPI, amoxicillin,
furazolidone, colloidal
bismuth pectin for 14 days.

14 days ↓Firmicutes,↓Bacteroidetes,↓Verrucomicrobia
↓Lentisphaerae, ↓B:F ratio, ↓Lachnospiraceae
↑Proteobacteria, ↑Cyanobacteria ↑Klebsiella.

14 and 56 days ↑Enterobacteriaceae, ↑Leuconostocaceae,
↓Rikenellaceae, ↓Christensenellaceae, ↓Pepto
XI, ↓Victivallaceae

Gotoda et al. (43) Adolescent Asian population (Age=14-15 y).
Comparison groups:
HP+ vs post- eradication therapy (n=8).

PPI, amoxicillin,
clarithromycin for 7 days.

1 week ↓Alpha diversity, ↓Actinobacteria, ↓Bifidobacte

2 months Microbiota returned to baseline.

Hsu et al. (44) Adult Asian population (Average age=48.8 y).
Comparison groups:
HP+ vs post- eradication therapy (n=11).

PPI, bismuth,
metronidazole,
tetracycline for 14 days.

2 weeks ↓Alpha Diversity, ↓Bacteroidetes,↓Actinobacte
↑Proteobacteria, ↑Klebsiella, ↑Morganella, ↑Pr
↑Cyanobacteria, ↑Enterococcus, ↑Streptococ

8 and 48 weeks Microbiota returned to baseline.
Alpha diversity restored at 48 weeks.

Hsu et al. (35) Adult Asian population (Average age=53 y).
Comparison groups:
HP+ vs post- eradication therapy (n=12)

PPI, amoxicillin,
clarithromycin,
metronidazole for 14 days.

2 weeks ↓ Alpha diversity, ↓Bacteroidetes, ↓Firmicutes
↓Actinobacteria, ↑Proteobacteria, ↑Escherichia
↑Klebsiella, ↑Morganella.

8 and 48 weeks Microbiota composition and Alpha diversity re

He et al. (16) Asymptomatic Young Asian population
(Age=21-30 y).
Comparison groups:
a) HP+ vs post- eradication therapy (n=10).

PPI, bismuth, amoxicillin,
furazolidone for 14 days.

6 weeks a) ↓Alpha Diversity. No significant differences
b) No significant differences in Alpha diversity

26 weeks a) ↓Alpha Diversity, ↓Proteobacteria, ↓Bactero
↑Lachnoclostridium, ↑Blautia.
b) Gut microbiota acquired a negative control
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b) Post- eradication therapy (n=10) vs
controls (n=7).

Liou et al. (36) Adult Asian population (Age>20 y).
Comparison groups:
HP+ vs post- eradication therapy (n=408).

PPI, amoxicillin,
clarithromycin for 14 days.

2 weeks ↓Alpha diversity, ↓Fusobacteria

8 weeks and 1 year Alpha diversity returned to baseline
Microbiota returned to baseline.

Adult Asian population (Age>20 y).
Comparison groups:
HP+ vs post- eradication therapy (n=410)

PPI, amoxicillin,
clarithromycin,
Metronidazole for 10 days.

2 weeks ↓Alpha diversity, ↓Beta diversity, ↓Bacteroidetes,
↑Proteobacteria.

8 week and 1 year ↓Alpha diversity,
Beta diversity restored at year 1.
Microbiota returned to baseline.

Adult Asian population (Age>20 y).
Comparison groups:
HP+ vs post- eradication therapy (n=396).

PPI, bismuth,
metronidazole,
Tetracycline for 10 days.

2 weeks ↓Alpha diversity, ↓Beta diversity, ↓Bacteroidetes,
↓ Fusobacteria, ↑Proteobacteria.

8 weeks and 1 year ↓Alpha diversity, ↓Beta diversity.
Microbiota returned to baseline.

Martin-Nunez et al.
(10)

Adult European population (Age=18-65 y).
Comparison groups:
a) HP+ vs post- eradication therapy (n=40).
b) Post- eradication therapy (n=40) vs
controls (n=20).

PPI, clarithromycin,
amoxicillin for 10 days.

2 months a)↓ Richness, ↓Actinobacteria, ↓Bifidobacteriacea
longum, ↓B. adolescentis, ↓Streptococcaceae, ↓
b) ↓Alpha diversity, ↑Bacteroidetes, ↓Firmicutes,
↓Turicibacter, ↓Ruminococcaceae, ↓Oscillospira,
↓Oxalobacter, ↓O. Formigenes, ↓Enterobacteriac

Olekhnovich et al.
(37)

Adult European population (Average age=
47.7 y).
Comparison groups:
HP+ vs post- eradication therapy (n=40).

PPI, bismuth, amoxicillin,
clarithromycin + prebiotic
for 14 days.

16 days ↓Alpha Diversity, ↓ Actinobacteria, ↓Bifidobacteriu
↓Verrucomicrobia, ↑Enterococcus faecium, ↓Eub
↓Lachnospiraceae, ↓Ruminococcaceae

Wu et al. (11) Adult Asian population (Age= 18-65 y).
Comparison groups:
HP+ vs post- eradication therapy (n=20)

PPI, clarithromycin and
amoxicillin for 14 days.

2 weeks ↓Alpha diversity, ↓Tenericutes

4 weeks ↑Bacteroidetes

8 weeks Microbiota returned to baseline.

Kakiuchi et al. (39) Adolescent Asian population (Age=15 y).
Comparison groups:
HP+ vs post- eradication therapy (n=31)

PPI, amoxicillin,
clarithromycin for 7 days.

Therapy day 7
8-12 weeks after
treatment

↓Alpha diversity, ↓Collinsella, ↓Bifidobacterium.

Tang et al. (38) Adult Asian population (Age=18-65 y).
Comparison groups:
HP+ vs post- eradication therapy (n=74).

PPI, amoxicillin,
furazolidone, bismuth
potassium citrate for 14
days.

2 weeks ↓ Alpha diversity, ↑Proteobacteria, ↓Firmicutes, ↓
↓ B:F, ↑Shigella, ↑Klebsiella, ↑Streptococcus, ↑Ve
↓Faecalibacterium, ↓Roseburia, ↓Phascolarctoba

4 weeks ↓ Alpha diversity

6 and 8 weeks Alpha diversity restored.
No significant differences in phyla.

The most significant and consistent changes in gut microbiota after the various H. pylori eradication therapies among human studies are summarized in this table. B:F, Bacteroidetes/
terminal-restriction fragment length polymorphism.
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eradication treatment to those seen in healthy conditions.
However, opposite evidence has been found with no
differences in the gut bacterial diversity at 6 and 26 weeks
post-treatment with quadruple therapy compared to controls
(16) or lower bacterial diversity evaluated at 2 months after triple
therapy than in both controls and H. pylori infected patients
before undergoing eradication intervention (10).

Pooled together, these findings suggest that the effect on gut
bacterial diversity and its length are dependent on the
eradication therapy used. A recent meta-analysis stated that
alpha diversity was reduced immediately within the first week
after eradication, but no consistent conclusions were drawn from
studies evaluating bacterial diversity at longer evaluation times
(168). It is worth of mention that this meta-analysis pooled
different kinds of eradication therapies to analyze the effect on
bacterial diversity, which could limiting the conclusions by
adding variability to the results. This meta-analysis conclude
that further studies will be required to gain more evidence before
raising firm conclusions.

The effect of the diverse treatments used forH. pylori eradication
has been also assessed in terms of bacterial abundance. Many
studies have reported changes in specific bacterial taxa, but most
of these findings remains controversial (10, 11, 16, 17, 24, 35–44).
While some studies have observed a decrease in Firmicutes,
Bacteroidetes, and an increase in Proteobacteria 2 weeks after
triple (41), quadruple (17, 36, 38, 44) or concomitant (35)
therapies, other studies have shown an increase in Bacteroidetes
(11) and a decrease in Proteobacteria (11, 24) after triple therapy.
The phylum Actinobacteria (24, 40, 43, 44) and members belonging
to this phylum as Bifidobacteriales (43), Bifidobacterium (39),
Bifidobacteria (40), and Bifidobacterium adolescentis (37) also
remained decreased at 1 or 2 weeks post-treatment regardless of
the therapy used. Bifidibacterium are regarded as beneficial bacteria
for host’s health which promote gut barrier integrity, prevent gut
mucosa colonization by opportunistic pathogens and are also
involved in carbohydrate metabolism (169). SCFA producing
bacteria such as Lachnospiraceae, Ruminococcaceae, Eubacteriacea,
Bacteroides, Faecalibacterium, Roseburia, Phascolarctobacterium
were also compromised at the short-term of the antibiotic
treatment (Table 2). These bacteria might exert beneficial actions
for the health as a consequence of the SCFA production.
Concordantly, the decline of Eubacteriaceae, Lachnospiraceae and
Ruminococcaceae has been associated with a broad spectrum of
disorders (170).

On the contrary, the relative abundance of several putative
detrimental bacteria which can release harmful factors for host’s
health, such as Escherichia, Proteus,Morganella (35, 44), Serratia
(44), Klebsiella (17, 35, 38, 44) and Streptococcus (38, 44)
augmented upon antibiotic administration (quadruple or
concomitant therapy) (Table 2).

Most of the studies tested whether antibiotic-induced changes in
the abundance of bacterial groups were restored upon treatment
cessation. As summarized in Table 2, gut microbiota composition is
restored in most cases at 2 months post-treatment. Nevertheless, it
has been also reported that the imbalance of some bacterial groups
remains in the short- and the long-term after treatment cessation
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(10, 16, 24, 40, 42). Jakobsson et al., documented changes in the gut
microbiota that persisted for up to 4 years afterH. pylori eradication,
but formal statistical analysis was not done owing to small sample
size (40). In the same way, other studies also reported persistent
changes in gut microbiota i.e. a decrease in Proteobacteria,
Bacterioidetes, Actinobacteria and an increase in Firmicutes at 6
(16, 42) and 12 moths post-triple therapy (42), as well as an
enrichment in Proteobacteria, Actinobacteria, Verrucomicrobia
compared to baseline values at 18 months after treatment (42).
Elevated relative Bacteroidetes : Firmicutes ratio was observed at 2
and 3 months of treatment cessation (10, 24). At phylum level, the
meta-analysis made by Ye et al. showed a reduction in
Actinobacteria and Bacteroidetes during the follow-up. In
addition, Firmicutes was exclusively found to be augmented in the
long-term after H. pylori eradication while Poteobacteria increased
in short-term and returned to normality in the long-term (168).
Lasting alterations in the proportions of these phyla may result in an
altered production of bacterial metabolites which would affect host-
bacterial crosstalk. For instance, acetate and propionate are mainly
produced by Bacteroidetes members, while Firmicutes members
typically produce butyrate (171). Notably, reduced Bacteroidetes:
Firmicutes ratio and increased abundance of Proteobacteria, have
been associated with obesity and the metabolic syndrome (19, 172).

Persistent antibiotic-induced shifts on bacterial groups can be
associated with therapy adverse effects. In agreement with this,
the relative abundance of the phylum Proteobacteria and some of
its members including Aggregatibacter and Sutterella were higher
at 2 weeks after quadruple therapy in patients who suffered from
eradication intervention side effects compared with patients that
did not reported adverse symptoms (44). Proteobacteria phylum
includes many pathogens and it has been proposed that may be
partly responsible for the development of adverse effects during
eradication therapy (44).

Interestingly, some studies assessed the effect of probiotic
supplementation administered together the antibiotic combination
which attenuated the antibiotic-induced imbalance on gut
microbiota composition (11, 41). Furthermore, probiotic
supplementation have been associated with improved
gastrointestinal symptoms (17, 39) and increased Bacteroidetes:
Firmicutes ratio (17). All together, these effect might help to build
up a beneficial gut microbiota profile after eradication therapy (38).
This suggest that probiotic administration could attenuate
antibiotic-induced gut dysbiosis, but to the best of our knowledge,
it remains unexplored the consequences that this can have on host’s
metabolic health within the context of H. pylori infection.

The discrepant observations between studies could be due to
different eradication regimens, drug doses, treatment duration
and/or sample size. Furthermore, other factors such as dietary
habits, resistance to antibiotics and differences in the rate of
absorption of antibiotics can affect the influence of eradication
therapy on the intestinal microbiota and the time required to
restore original bacterial composition. On the other hand, it is
remarkable that most of the studies did not include controls
without H. pylori infection, and considered that the gut
microbiota was restored when no significant differences were
observed regarding baseline. In this sense, it should be taken into
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account that pre-treatment bacterial composition is already
influenced by H. pylori infection. This fact makes difficult to
determine whether bacterial communities post-therapy mirror a
healthy gut microbiota. All in all, further studies analyzing the
effect of each eradication therapy and including non-infected
controls, are necessary to clarify the effects that the various
therapies for H. pylori eradication have on gut microbiota in
the long-term and to elucidate the factors responsible for the
variability in antibiotic response.
RELATIONSHIP BETWEEN METABOLIC
TRAITS AND GUT MICROBIOTA
MODIFICATIONS INDUCED BY H. PYLORI
INFECTION AND THERAPY

As detailed above, evidence has shown that H. pylori infection as
well as its eradication treatment lead to gut dysbiosis. However,
despite the fact that gut microbiota is closely linked to metabolic
health, the role of gut microbiota in the relationship between H.
pylori infection and metabolic dysregulation has been scarcely
studied. Several studies from our group, which analyzed gut
microbiota from H. pylori infected patients before and after
eradication treatment (antibiotic triple therapy based on
omeprazole, clarithromycin, amoxicillin) as well as non-
infected control patients, addressed this issue (Table 3) (10, 22,
23). It was found that H. pylori eradication treatment produces
specific bacterial shifts associated with changes in glucose
homeostasis-related parameters [HbA1c, glucose area under
the curve (AUC) calculated upon an oral glucose tolerance test
(OGTT) (10)], GLP-1 (23), ghrelin (24) and HDL-C levels (22).

To be more specific, changes in the amount of Rikenellaceae,
Butyricimonas, E. biforme, B. fragilis, and Megamonas were
inversely associated with changes in glucose levels or glucose-
related parameters, i.e. HbA1c, in H. pylori subjects after
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eradication treatment (10). Several studies have shown that
these bacteria are involved in the fermentation of non-
digestible carbohydrates and the generation of SCFAs such as
acetate, propionate and butyrate (173–175). In addition,
Rikenellaceae and Butyricimonas members are also able to use
the environmental glucose to produce SCFAs, which could
contribute to glucose level regulation (175, 176).

It was not only analyzed glucose metabolism, but also the
dynamics of GLP-1 in the presence of H. pylori and upon
antibiotic therapy (23). GLP-1, mainly produced in the ileum
and colon by enteroendocrine L cells, regulates glucose
homeostasis by systemic effects on pancreatic b cells, reduction
of gastric acid secretion, delaying gastric emptying, regulating
appetite as well as adipose tissue physiology (177, 178). Taking
into account that some gut bacteria modulate intestinal
enteroendocrine L cell secretion of GLP-1 (122, 179), it is of
interest to explore whether both H. pylori-induced or antibiotic
treatment-induced modifications in gut microbiota could also
influence GLP-1 levels. In this way, GLP-1 levels at different time
point after an OGTT before and after eradication treatment in
H. pylori positive patients as well as in H. pylori negative controls
were evaluated. We found that changes in GLP-1 AUC after
eradication therapy positively and negatively correlated with the
changes in the genus Lachnobacterium and Bifidobacterium
adolescentis, respectively. Variation in GLP-1 at 60 min after
OGTT and the changes in the family Coriobacteriaceae also
positively correlated two months after the treatment (23). Species
from the genus Lachnobacterium and Bifidobacterium are able to
produce SCFAs (180). Among the beneficial effects attributed to
SCFAs, these metabolites have also been proposed to favor GLP-1
L cell secretion and to exert anti-inflammatory action which
may have beneficial effects on glucose homeostasis and
insulin sensitivity (181, 182). Studies analyzing the use of
Bifidobacterium as probiotic reported an increase in GLP-1
production and beneficial effects on carbohydrate metabolism
(183). Concordantly, type 2 diabetic patients harbored smaller
TABLE 3 | Relationships between H. pylori eradication therapy-induced bacterial changes and metabolic variables.

Study (Reference) Bacterial changes
associated with metabolic
variables post eradication

Putative bacterial functions Variables

Martin-Nunez et al. (10) (↓)Rikenellaceae
(↓)Megamonas
(↓)Butyricimonas

- Acetate, propionate and butyrate production.
- Ability to degrade carbohydrates.

(↑)Glucose (AUC)
(↑)HbA1c

Cornejo-Pareja et al. (23) (↑)Lachnobacterium
(↑)B.adolescentis
(↑)Coriobacteriaceae

- Butyrate, acetate, and propionate production.
- Ability to degrade carbohydrates.
- Regulation of bile acid synthesis.

(↓)GLP-1 secretion

Martin-Nunez et al. (22) (↓)Delsufovibrio
(↓)Rikenellaceae

- LPS release
- Acetate, propionate and butyrate production.
- Regulation of CD36 expression

(↓)HDL levels

Yanagi et al. (24) (↑) B:F - SCFAs production
- Bile acids
- LPS release

(↓)Ghrelin levels
June 2021 | Volume 1
Summary of studies which have explored the association of the changes in gut microbiota composition after the administration of H. Pylori eradication treatment with metabolic variables.
Arrows indicate the direction of the relationship between bacterial groups and clinical variables. AUC, Area Under the Curve; B:F, Bacteroidetes/Firmicutes ratio; GLP-1, glucagon-like
peptide 1; HbA1c, glycosylated hemoglobin; HDL, high-density lipoprotein cholesterol; LPS, lipopolysaccharide; SCFA, Short-Chain Fatty Acid.
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amounts of B. adolescentis (184). The cause and consequences of
these opposite correlations between these two groups of gut
bacteria and GLP-1 secretion in H. pylori positive patients after
eradication treatment should be further analyzed. Bacteria
belonging to the family Coriobacteriaceae, which has been
shown to be reduced in Type 2 diabetic women (185), might
also indirectly favors GLP-1 secretion by generating bile acids
that stimulates GLP-1 secretion in L cells (19, 186).

Relationships between microbial groups and GLP-1 levels
differed between H. pylori infected patients and non-infected
controls. Positive correlations between the genus Megamonas
[previously related to carbohydrate metabolism (187)] and GLP-1
levels were exclusively found in the control group. By contrast,
bacteria belonging to the phylum Proteobacteria correlated
positively with GLP-1 levels only in H. pylori-positive patients.
Notably, these correlations disappeared after the eradication
treatment and shifted to Bifidobacterium longun and the genus
Prevotella which correlated positively and negatively with GLP-1
levels, respectively (23).

Other authors also explored the influence of H. pylori
eradication therapy-related gut microbial changes on ghrelin
levels (24). Ghrelin is a multifunctional hormone mainly secreted
by gastric mucosa that regulates body weight by stimulating
appetite, growth hormone secretion, fat storage among other
relevant systemic functions in energy metabolism (188). Yanagi
et al., reported that changes in the Bacteroidetes:Firmicutes ratio
were inversely related to changes in plasma ghrelin levels after
the administration of triple therapy forH. pylori eradication (24).
Paradoxically, previous studies showed that modulation of the
gut microbiota by using prebiotic supplementation reduced
ghrelin secretion (123).

The relationship between specific profiles of gut bacteria in H.
pylori infected patients before and after eradication treatment and
metabolism are not restricted to carbohydrate metabolism but it
seems to extend to lipid metabolism. Major phyla Bacteroidetes
(increased inH. pylori positive patients) and Firmicutes (decreased
in H. pylori positive patients) were negatively and positively
correlated with HDL/LDL ratio, respectively. When analyzed in
more detail, several bacterium taxa (Eubacterium, Bacteroides
coprophilus, E. biforme), that were increased in H. pylori positive
patients, were related to HDL/LDL ratio (22). Specific associations
with lipid profile related to eradication treatment-induced gut
microbial modifications were also found. Positive and negative
changes in Delsufovibrio and Rikenellaceae, respectively, predicted
changes in HDL-C levels at month 2 after completing antibiotic
treatment (22). Delsufovibrio is a producer of LPS (189), but its
products can also up-regulate the expression of the critical
regulator of lipid absorption, CD36 (190), that has been
positively associated with HDL-C levels (191). On the other
hand, Rikenellaceae produces acetate that, besides the beneficial
SCFA effects, has been described to promote hepatic De novo
lipogenesis and cholesterol synthesis (192).

All in all, this emerging evidence suggest that gut microbiota
shifts induced by H. pylori and upon antibiotic treatment for its
eradication might, at least in part, underlie modulation of
metabolic variables. However, further studies should be
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performed to confirm this hypothesis and to fill the many gaps
of this intricate cross-regulation. Other H. pylori therapies than
triple therapy should be assessed, as well as the concomitant
effect of pre- or probiotic supplementation during eradication
treatment. In addition, the precise mechanisms and bacterial
activities involved in the H. pylori-gut microbiota-metabolism
crosstalk remains to be elucidated.
DISCUSSION

While the number of studies analyzing the effect of H. pylori
eradication therapies on the gut microbiota are increasing in
recent years, current evidence is not enough to draw clear
conclusions on the most relevant and common bacterial shifts.
Future research needs to face several challenges to make clear
assumptions on this relationship. Different population
characteristics can lead to divergent results. Gut microbiota
composition varies among ethnic groups, likely due to the
different dietary, hygienic and genetic factors as well as regional
antibiotic resistance rates (142). Thus, the modifications on specific
bacterial taxa and the underlying related mechanisms involved in
metabolic regulation could largely differs depending on the region
where the study is performed. In this sense, the inclusion of non-
infected healthy individuals as controls in intervention studies
would give valuable information to determine the actual reversion
degree to “healthy” baseline gut microbiome. Moreover, it is likely
that the severity of the H. pylori eradication therapy impact on
metabolism and adiposity in the long-term also varies depending on
the age group. In that way, other antibiotic treatments than those
used for H. pylori eradication have been shown to influence the
onset of obesity when applied to early-life infants, while evidence on
antibiotic administration effect on adult metabolism is not so clear
(31–34, 137, 138). The fact that most of the studies analyzing the gut
microbiota in H. pylori infected patients excluded subjects with
diabetes, obesity and cardiovascular diseases (10, 16, 17) also limits
the knowledge on the concomitant management of the dysbiosis
induced by H. pylori infection and treatment in patients with these
metabolic diseases.

Other unaddressed issue is how the different intestinal
bacterial patterns influenced by infection severity relates to
metabolic homeostasis. Furthermore, the relationship between
H. pylori-induced changes in gut microbiome and metabolic
disorders has been scarcely explored as yet, and the effect of each
therapeutic options used to treat H. pylori infection as well as the
concomitant use of probiotics on specific metagenomic and
metabolic modifications should be also further addressed.

Finally, to the best of our knowledge, direct evidence on the
bacterial functions and actions (by-product production,
inflammation and translocation of bacterial products) resulting
from the modulation of the diverse bacterial groups as a whole
during H. pylori infection and treatment remains unexplored.
This might be helpful to improving the understanding of the
metabolic regulation by gut microbiota within the context of
H. pylori-related disease.
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In conclusion, although current data points at an essential role
of gut microbiota as mediator of the crosstalk between H. pylori
and host’s metabolic health, the numerous remaining unanswered
questions warrant future in-depth research in this field.
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