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Background: Somatic gene mutations that facilitate inappropriate intracellular calcium
entrance have been identified in most aldosterone-producing adenomas (APAs). Studies
suggest that angiotensin Il and adrenocorticotropic hormone (ACTH) augment
aldosterone production from APAs. Little is known, however, regarding possible
variations in response to hormonal stimuli between APAs with different aldosterone-
driver mutations.

Objective: To analyze the transcript expression of type 1 angiotensin Il receptors
(AGTRT), ACTH receptors (MC2R), and melanocortin 2 receptor accessory protein
(MRAP) in APAs with known aldosterone-driver somatic mutations.

Methods: RNA was isolated from APAs with mutations in: KCNJ5 (n = 14), ATP1AT (n =
14), CACNATD (n = 14), and ATP2B3 (n = 5), and from normal adjacent adrenal tissue (n =
45). Transcript expression of MC2R, MRAP, AGTR1, aldosterone synthase (CYP11B2),
17o0-hydroxylase/17,20-lyase (CYP17A7), and 11B-hydroxylase (CYP11B1) were
quantified using quantitative RT-PCR and normalized to B-actin.

Results: Compared to adjacent normal adrenal tissue, APAs had higher transcript levels
of CYP11B2 (2,216.4 [1,112.0, 2,813.5]-fold, p < 0.001), MC2R (2.88 [2.00, 4.52]-fold,
p < 0.001), and AGTR17 (1.80 [1.02, 2.80]-fold, p < 0.001]), and lower transcript levels of
MRAP, CYP17A1, and CYP11B1 (0.28-0.36, p < 0.001 for all). MC2R and CYP11B2
transcripts were lower in APAs with KCNJ5 vs. other mutations (o < 0.01 for both). MC2R
expression correlated positively with that of AGTR7 in APAs harboring KCNJ5 and
CACNATD mutations, and with MRAP expression in APAs harboring ATPase mutations.

Conclusions: While MC2R and AGTR1 are expressed in all APAs, differences were
observed based on the underlying aldosterone-driver somatic mutations. In tandem, our
findings suggest that APAs with ATPase-mutations are more responsive to ACTH than
KCNJ5-mutated APAs.

Keywords: primary aldosteronism, aldosterone, angiotensin, adrenocorticotropic hormone (ACTH), adrenal,
adrenal cortex
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INTRODUCTION

Primary aldosteronism (PA) is characterized by inappropriate,
renin-independent aldosterone production. PA is the most
common curable form of secondary hypertension, accounting
for up to 20% of resistant hypertension cases (1). Growing
evidence suggests that PA increases the risk of cardiovascular
and renal complications as compared to essential hypertension,
independently of blood pressure control (2-4). Inappropriate
mineralocorticoid receptor activation might promote the release
of pro-inflammatory cytokines (5), oxidative stress (6), and,
consequently, target organ damage (2, 4). Sporadic PA is
broadly classified as bilateral adrenal hyperaldosteronism (BHA)
or unilateral PA, which is often caused by an aldosterone-
producing adenoma (APA). APAs account for 30-50% of PA
cases and they can be cured by adrenalectomy, while BHA requires
life-long targeted medical therapy (7). PA subtyping is typically
established based on adrenal venous sampling (AVS) (7). In many
centers, AVS is performed after administration of cosyntropin, a
synthetic adrenocorticotropic hormone (ACTH), which enhances
the confidence of successful adrenal vein catheterization and
circumvents intrinsic ACTH fluctuations that might occur due
to the stress of the procedure. Reports regarding the impact of
ACTH on APAs, however, have been inconsistent (8-12).

Studies conducted over the past decade have identified a series of
aldosterone-driver gene mutations in familial and sporadic forms of
PA. Affected genes include: KCNJ5 (13), ATP1AI (14, 15), ATP2B3
(15), CACNAID (16), CACNAIH (17), CTNNBI (18), and CLCN2
(19, 20). Next-generation sequencing (NGS) of aldosterone-
producing areas precisely mapped using immunohistochemistry
(IHC) for aldosterone synthase (CYP11B2) has revealed
aldosterone-driver somatic mutations in over 90% of APAs (21-
23). A shared molecular feature of the somatic mutations found in
APAs is that they facilitate intracellular calcium entrance, which
then stimulates aldosterone production by augmenting CYP11B2
expression (23). Nonetheless, APAs harboring different aldosterone-
driver somatic mutations have distinct histopathological features
(24), steroidogenic potential (25), and responses to ACTH
stimulation (26).

In addition to ion channel or pump mutations, some studies
suggest that the aberrant expression of receptors in APAs, such
as G-protein coupled receptors (GPCRs), might contribute to
their dysregulated aldosterone production (27-29). Under
physiological conditions, angiotensin II, serum potassium, and,
to a lesser extent, ACTH control aldosterone synthesis from the
adrenal zona glomerulosa (ZG) (30, 31). Variability in type 1
angiotensin II receptor (AGTRI) and melanocortin type 2
receptor (MC2R, also known as ACTH receptor) expression,
which is abundant in both APAs and normal adrenals (29),
might modulate aldosterone production (30, 31). Although
cellular models of aldosterone-driver mutations showed that
responses to angiotensin II are increased (32, 33), data on
possible variations in response to hormonal stimuli between
APAs with different somatic mutations are scarce. Herein, we
investigated the transcript expression of AGTRI, MC2R, and
melanocortin-2-receptor accessory protein (MRAP) in APAs
with known aldosterone-driver somatic mutations and in

adjacent normal adrenal tissue. In addition, we assessed the
relationship between aldosterone-regulators and CYPI11B2
expression in APAs with different somatic mutations.

MATERIALS AND METHODS

Tissue Samples

The current study included adrenals from 47 patients with APA
who underwent adrenalectomy at the University of Michigan
between 2004 and 2018. Patients were selected based on
availability of formalin-fixed paraffin-embedded (FFPE) adrenal
tumor blocks. The clinical diagnosis of PA was made according to
the institutional consensus available at the time or the Endocrine
Society Clinical Practice guidelines (7). All adrenal specimens
were pathologically diagnosed as adrenocortical adenomas. For
comparison, we used adjacent normal adrenal tissue obtained
from the same patients. Because the availability of adrenal tissue
adjacent to the APA was limited, cortical and medullary tissue
were not dissected separately. Sections from FFPE adrenal tumor
blocks were used for IHC for CYP11B2 and 17c-hydroxylase/
17,20-lyase (CYP17A1) and for genetic analysis, as previously
described (21). This study was approved by Institutional Review
Boards at the University of Michigan (HUMO00106809,
HUMO00024461, HUMO00083056). Written informed consent
was obtained from all patients who underwent adrenalectomy
after February, 2011. A waiver of consent was granted for the use
of archival specimens (HUMO00083056).

DNA/RNA Isolation

Genomic DNA (gDNA) and RNA were obtained from APAs
with mutations in: KCNJ5 (n = 14), ATPIAI (n = 14), CACNAID
(n=14),and ATP2B3 (n = 5), and from adjacent normal adrenal
tissues (n = 45). Adrenocortical adenomas that displayed
CYP11B2-expressing cells were considered APAs. After
identification of CYP11B2-positive areas by IHC, four to nine
unstained consecutive 5 um FFPE slides were used to separately
dissect corresponding CYP11B2-positive areas. Dissection of
FFPE sections was performed using disposable scalpels under
an Olympus SZ-40 microscope. The AllPrep DNA/RNA FFPE
kit (QIAGEN, Hilden, Germany) was used to isolate gDNA and
RNA, as previously described (34).

Next-Generation Sequencing

For mutation analysis, multiplexed PCR-based NGS was
conducted using Ion Torrent Ampliseq sequencing (Thermo
Fisher Scientific), as previously described (21, 34). The panel
for library preparation included amplicons targeting the full
coding regions of known aldosterone-driving genes, including
the most commonly affected: KCNJ5, ATP1A1, CACNAID, and
ATP2B3. APAs with other aldosterone-driver mutations were
not included in this analysis, due to their low prevalence.

Quantitative Real-Time RT-PCR (qPCR)
Total RNA was reverse transcribed using the High-Capacity cDNA
Reverse Transcription Kit (Applied Biosystems). qPCR was
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performed using the ABI StepOnePlus Real-Time PCR systems
(Applied Biosystems). CYP11B2, CYP17A1, and CYPI11BI primer/
probe mixtures were prepared as previously described (27, 35). For
Human MRAP qPCR, the primer (qHsaCID0022591, Bio-Rad) was
mixed with SYBR Green PCR master mix (Applied Biosystems).
Primer/probe mixtures for the amplification of AGTRI
(Hs00258938_m1), MC2R (Hs00300820_s1), and B-actin (ACTB;
Hs01060665_g1) were purchased from Applied Biosystems. In this
study, ACTB transcript was used as a reference gene for
normalization between samples. Relative quantification was
determined using the comparative threshold cycle method (36).
The average ACT value of all adjacent normal tissues was used as
reference when comparing gene expression between APAs with
various underlying mutations.

Statistical Analysis

Statistical analyses were conducted using SAS 9.4 (SAS Institute,
Cary, NC, USA), and GraphPad Prism 8 was used to generate
figures. The Kruskal-Wallis test, followed by the Dwass-Steel-
Critchlow-Fligner test were employed to compare continuous
variables across multiple groups. Distribution of categorical
variables across groups was assessed by the Chi-square or
Fisher’s exact test. Wilcoxon signed-rank test was used for
paired comparison of transcript levels between APAs and the
corresponding adjacent normal adrenal tissues. Correlations
between gene expressions were examined with the Spearman
correlation test. Two-sided p values below 0.05 were considered
statistically significant.

RESULTS

Demographic and clinical characteristics of study participants
are presented in Table 1. Most patients were Caucasian, with
ages between 20 and 79 years (median age 52) and 62% were
men. Patients with APAs harboring KCNJ5 mutations were
younger, leaner, and mostly women (Table 1).

AGTR1, MC2R, MRAP, CYP11B2,
CYP17A1, and CYP11B1 Gene Expressions
in Aldosterone-Producing Adenomas

Overall, APAs displayed higher transcript levels of MC2R (2.88
[2.00, 4.52]-fold, p < 0.001), AGTRI (1.80 [1.02, 2.80]-fold, p <
0.001), and CYPI1B2 (22164 [1112.0, 2813.5]-fold, p < 0.001)
compared to the corresponding adjacent normal adrenal tissue,
and these differences remained robust in APAs with CACNAID
and ATPIA1 mutations (Table 2). AGTRI and MC2R transcript
levels were only minimally, but not significantly higher in KCNJ5-
mutated APAs as compared to the paired adjacent normal adrenal
tissue. Conversely, APAs had lower transcript levels of MRAP,
CYP17A1, and CYP11BI (0.28-0.36-fold, p < 0.001, Table 2) than
the corresponding normal adjacent adrenal tissue and these
differences were observed in all mutation subgroups.

APAs harboring KCNJ5 mutations displayed lower MC2R
and CYPIIB2 mRNA expressions compared to other APAs
(Figures 1B, C), while AGTRI and MRAP transcript levels
were relatively similar between mutation groups (Figures
1A, D).

Correlations Between Aldosterone
Regulators and Steroidogenic Enzymes
in Aldosterone-Producing Adenomas
Overall, APA CYPI1B2 expression correlated positively with
MC2R (r = 0.77, p < 0.0001) and AGTRI (r = 0.52, p = 0.0002,
Figure 2), and inversely with CYP17A1 and CYPIIBI (r = -0.3,
P < 0.05 for both). The strongest correlations between CYPI11B2
and both MC2R and AGTRI were observed in ATP1AI-mutated
APAs (r = 0.77, p = 0.001 and r = 0.61, p = 0.021, respectively).
APAs with CACNAID and KCNJ5 mutations displayed tight
positive correlations between MC2R and AGTRI transcripts (r =
0.75, p = 0.002 and r = 0.65, p = 0.012, respectively), while no
significant correlations were found in APAs with ATPase
mutations. Conversely, MC2R and MRAP expressions
correlated positively only in ATPIAI- and ATP2B3-mutated
APAs (r = 0.62, p = 0.018 and r = 0.90, p = 0.037, respectively).

TABLE 1 | Baseline characteristics of patients with APA participating in this study.

Total (n = 47) KCNJ5 (n = 14) ATP1A1 (n=14) CACNAID (n=14) ATP2B3(n=5) p value
Age (years) 52.0 (20, 79) 42.0 (20, 56) 55.5 (41, 79) 53.0 (32, 78) 59.0 (53, 75) 0.002
Sex (n men, %) 29 (61.7%) 1(7.1%) 12 (85.7%) 11 (78.6%) 5 (100%) <0.001
Race (n) C(38), AA (4), A (1), U(4) C(10), AA (1), A(1), U2 C(13), U (1) C (1), AA (2), U (1) C (4), AA (1) 0.496
BMI (kg/m?) [n = 33] 30.6 [26.2, 35.7] 252 [23.2, 33.4] 34.7 [31.9, 40.6] 30.6 [26.8, 33.9] 29.1[26.1,30.6]  0.024
SBP (mmHg) [n = 44] 145.5 [130.3, 167.5] 141.0 [128.0, 175.0]  158.5[130.5, 182.0] 145.0[134.3, 159.8] 149.0 [135.5, 165.5]  0.779
DBP (mmHg) [n = 44] 86.0 [74.0, 91.8] 76.0 [70.0, 92.5] 90.0 [83.0, 96.3] 85.5 [74.5, 98.0] 78.0[73.0,84.5]  0.270
Serum Cr (mg/di) [n = 30] 0.90 [0.79, 1.10] 0.78 [0.69, 0.90] 0.94[0.81, 1.09] 1.03[0.83, 1.23] 1.50[1.20,3.43]  0.003
Serum potassium (mmol/L) [n = 43] 3.412.9, 3.8 3.3[2.9, 3.9 3.4[2.9,3.7] 3.6 3.4, 3.8] 3.2[3.0, 3.9] 0.462
PAC (ng/d)) [n = 44] 29.1 [21.7, 60.2] 26.2 [19.6, 36.1] 29.7 [23.3, 98.4] 27.4[21.7,481]  80.0[27.1,230.0]  0.296
PRA (ng/mi/h) [n = 31] 0.20 [0.10, 0.60] 0.10 [0.07, 0.60] 0.10 [0.10, 0.40] 0.30 [0.15, 0.75] 0.30[0.10,0.73]  0.399

Continuous variables are expressed as median [interquartile range], except for age, which is expressed as median (range).
APA, aldosterone-producing adenoma;, C, Caucasian; AA, African American; A, Asian; U, unknown; BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure;

Cr, creatinine; PAC, plasma aldosterone concentration; PRA, plasma renin activity.
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TABLE 2 | Paired comparisons of transcript levels of AGTR1, MC2R, MRAP, and steroidogenic enzymes between APAs and adjacent normal adrenal tissue.

AGTR1 MC2R CYP11B2 MRAP CYP17A1 CYP11B1

All APAs

APAs 1.80 [1.02, 2.80] 2.88 [2.00, 4.52] 2,216.40 0.36 [0.18, 0.59] 0.30 [0.15, 0.43] 0.28 [0.19, 0.56]
[1,111.98, 2,813.45]

Adjacent adrenal tissue 0.99 [0.64, 1.49] 0.99 [0.65, 1.43] 1.07 [0.35, 2.70] 0.97 [0.64, 1.65] 0.99 [0.78, 1.31] 1.04 [0.78, 1.27]

p value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

KCNJ5-mutated APAs

APAs 1.37 [1.06, 2.11] 1.90[1.13, 2.52] 911.30 0.41 [0.23, 0.66] 0.32[0.28, 0.53] 0.53[0.20, 0.81]

[602.92, 1,212.01]

Adjacent adrenal tissue 0.99 [0.58, 1.35] 0.98 [0.53, 1.80] 0.38 [0.15, 2.31] 1.15[0.83, 1.85] 0.92[0.80, 1.17] 1.06 [0.75, 1.30]

p value 0.101 0.064 0.001 0.004 0.002 0.002

CACNA1D-mutated APAs

APAs 2.25[1.52, 2.89] 3.48 [2.57, 4.36] 2,5659.10 0.32[0.12, 0.58] 0.28 [0.19, 0.45] 0.20 [0.15, 0.36]
[1,506.43, 3,273.80]

Adjacent adrenal tissue 1.14[0.79, 1.61] 1.08 [0.67, 1.51] 1.09 [0.49, 2.20] 1.29[0.89, 2.36] 1.34[0.90, 1.49] 1.04 [0.77, 1.20]

p value 0.013 0.001 0.001 0.001 0.001 0.001

ATP1A1-mutated APAs

APAs 1.57 [0.98, 3.01] 5.13[2.35, 7.55] 2,329.07 0.43[0.22, 0.58] 0.18 [0.10, 0.40] 0.31[0.25, 0.48]
[1,519.96, 4,213.90]

Adjacent adrenal tissue 1.16 [0.65, 1.56] 1.16 [0.73, 1.36] 1.59[0.87, 7.77] 0.66 [0.60, 1.17] 0.85[0.67, 1.24] 0.96 [0.76, 1.66]

p value 0.013 0.001 0.001 0.002 0.001 0.001

ATP2B3-mutated APAs

APAs 2.91 [1.02, 6.97] 4.18 [2.58, 6.34] 2,736.94 0.36 [0.14, 0.63] 0.20 [0.08, 0.49] 0.19 [0.16, 0.55]
[1,755.25, 4,163.27]

Adjacent adrenal tissue 0.69 [0.57, 0.98] 0.73[0.48, 1.14] 0.51[0.25, 1.94] 0.65 [0.52, 0.78] 0.88 [0.72, 1.04] 1.07 [0.73, 1.09]

p value 0.144 0.068 0.068 0.068 0.068 0.068

gPCR data are shown as fold changes normalized to B-actin (ACTB). Continuous variables are expressed as median [interquartile range].

APA, aldosterone-producing adenoma; AGTR1, type 1 angiotensin Il receptor; MC2R, melanocortin type 2 receptors (ACTH receptors); CYP11B2, aldosterone synthase; MRAP,

melanocortin 2 receptor accessory protein; CYP17A1, 17 a-hydroxylase; CYP11B1, 11B-hydroxylase.

DISCUSSION

In this study, we delineate differential gene expression of the
primary aldosterone regulatory receptors in APAs with different
underlying mutations. We found that APAs displayed higher
mRNA expression of both MC2R and AGTRI than adjacent
normal adrenal tissue. In addition, we show that the expression
patterns of MC2R and AGTRI, and their associations with
CYP11B2 transcripts differ between APAs with various
underlying aldosterone-driver somatic mutations.

Under physiological conditions, angiotensin II induces Gi-
mediated cell membrane depolarization and increases
intracellular calcium signaling, thereby stimulating acute
steroid production as a result of increased steroidogenic acute
regulatory protein (StAR) protein expression (31). Furthermore,
this elevation in intracellular calcium activates a cascade of
signaling events that lead to increased CYPIIB2 transcription
and aldosterone secretion from ZG cells (30, 37). Although PA is
theoretically renin-independent, aldosterone excess may also
result from aberrant receptor expression within APAs and/or
hypersensitivity to physiological stimuli. A variety of autocrine
and paracrine regulatory factors (38) can activate ectopic or
aberrant receptors, which may govern aldosterone secretion
independently from the suppressed renin-angiotensin system
(29, 39). Indeed, mRNA expressions of AGTRI and MC2R
were previously reported to be higher in APA tissues
compared to healthy adult adrenals (27, 29, 40). The effects of
posture, angiotensin II infusion, and angiotensin converting
enzyme inhibitors have been shown to differ in APA when

compared to BHA, although results have been variable (7, 41-
43). In our study, AGTRI transcript levels tended to be higher in
APAs as compared to adjacent normal adrenal tissue. Tunny and
colleagues found that angiotensin II-unresponsive APAs were
more common in women, while those responsive to angiotensin
II were more prevalent in men (41). Indeed, we herein found that
KCNJ5-mutated APAs, which are most prevalent in women of all
races (44-46), expressed AGTRI transcript levels comparable to
those found in the corresponding normal adrenal tissue.

In contrast with angiotensin II and potassium, ACTH
stimulates aldosterone secretion acutely but transiently (31,
47). Aldosterone production follows a circadian rhythm that
parallels that of ACTH both in normal individuals, as well as in
patients with PA (48, 49). In patients with aldosterone-secreting
tumors, plasma aldosterone concentration starts to fall around
mid-morning, as ACTH levels decrease, in spite of upright
posture (39). The relative impact of ACTH on aldosterone
production from APA vs. BHA and normal ZG cells remains
incompletely understood. Small studies suggest that APAs might
be more sensitive to ACTH stimulation and suppression than
BHA and normal adrenals (49). Asian studies (50-52) indicated
that the response of aldosterone to cosyntropin stimulation, with
or without a priori overnight suppression with Img
dexamethasone, is higher in patients with APA than in those
with BHA. Nevertheless, AVS data have shown that aldosterone
lateralization might be apparent only prior to or exclusively after
cosyntropin stimulation (8, 9, 53). Washout of a baseline
aldosterone gradient between the two adrenal glands following
cosyntropin stimulation indicates a relatively higher response
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FIGURE 1 | Transcript expression of AGTR1 (A), MC2R (B), CYP11B2 (C), MRAP (D), CYP17A1 (E), and CYP11B1 (F) in aldosterone-producing adenomas with
different aldosterone-driver somatic mutations. gPCR data are shown as the fold changes normalized to B-actin (ACTB). AGTR1, type 1 angiotensin Il receptor;
MC2R, melanocortin type 2 receptors (ACTH receptors); CYP11B2, aldosterone synthase; MRAP, melanocortin 2 receptor accessory protein; CYP17A1, 17a-
hydroxylase; CYP11B1, 11B-hydroxylase. Comparisons between groups were done using the Kruskal-Wallis test, followed by the Dwass-Steel-Critchlow-Fligner test.
*p < 0.05, *p < 0.01, **p < 0.001, compared with KCNJ5-mutated APAs. The boxes contain the 25" and 75™ percentiles, the whiskers mark the 10" and 90™
percentiles, and the horizontal line within the box indicates the median, and the @ represent outliers.

from either normal ZG cells or from asymmetrical BHA.
Conversely, amplification of a baseline aldosterone
lateralization points towards a highly ACTH-sensitive APA.
The impact of ACTH on aldosterone secretion is dependent
on the expression of MC2R in CYP11B2-positive cells (31). As
ACTH is the primary regulator of cortisol synthesis, MC2R is
abundantly expressed in the zona fasciculata (ZF) cells (54).
Previous studies have shown that APAs have higher MC2R
transcript levels than normal adrenal tissue, non-functional
adrenal adenomas, or carcinomas (27, 29, 40, 55-57), although
the levels reported have been somewhat variable. Our study is the
first to quantify the expression of MC2R and AGTRI transcript
levels in APAs confirmed by CYP11B2 IHC. Non-functional
cortical adenomas can be present in patients with PA, and these
tumors display lower MC2R expression than APAs or normal
cortical tissue (40, 55); this might explain previously reported
variability of MC2R expression in presumed APAs that were not
functionally confirmed by examining CYP11B2 expression.
Another cause of variability relates to the APA genotype.
While all APAs had higher transcript levels of MC2R
compared to adjacent normal adrenal tissue, KCNJ5-mutated
APAs displayed lower MC2R transcripts than other APAs.
Considering that BHA are often caused by multiple APCCs

that harbor CACNA 1D mutations (58), it is not surprising that
East Asians studies that assessed the aldosterone response to
ACTH stimulation or suppression in patients with APA vs. BHA
found considerable overlap. As confirmed by several cohorts,
KCNJ5 mutations account for the vast majority of APAs in East
Asian populations (45, 59). In line with these findings, we have
previously reported that aldosterone lateralization during AVS
often dampens following cosyntropin stimulation in patients
with APAs harboring KCNJ5 mutations, while the opposite
happens in patients with ATPase mutations (26).

ACTH binds to its MC2R, and induces the activation of
adenylate cyclase and the generation of intracellular cAMP (54,
60). Subsequently, the increased cAMP activates protein kinase
A, which augments CREB phosphorylation and CYPIIB2
transcription (30, 31). MRAP, a small transmembrane protein,
is an essential factor in regulating trafficking and functional
expression of the MC2R in the adrenal gland (61, 62). Both
MC2R and MRAP are known to be highly expressed in the
undifferentiated zone as well as the ZF cells (63). Furthermore,
the acute steroidogenic responses to ACTH stimulation depend
on adequate amounts of MC2R and MRAP on the plasma
membrane surface (61). In this study, MC2R transcripts
correlated positively with MRAP expression only in ATPase-
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FIGURE 2 | Correlations between transcript levels of AGTR1, MC2R, MRAP, and steroidogenic enzymes in aldosterone-producing adenomas and adjacent normal adrenal
tissue. AGTR1, type 1 angiotensin Il receptor; MC2R, melanocortin type 2 receptors (ACTH receptors); CYP11B2, aldosterone synthase; MRAP, melanocortin 2 receptor
accessory protein; CYP17A1, 170-hydroxylase; CYP11B1, 11B-hydroxylase. Correlation analyses were done using the Spearman correlation test. o < 0.05, *p < 0.01,

**p < 0.001.
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mutated APAs. These findings further support the high
responsivity of ATPase-mutated APAs to cosyntropin observed
during AVS (26), in contrast with KCNJ5 or CACNA 1D-mutated
APAs. Conversely, MC2R transcript levels correlated positively
with those of AGTRI in APAs harboring KCNJ5 or CACNAID
mutations, but not in those with ATPase mutations. Together
these results highlight molecular differences between APAs,
which go beyond those illustrated by recent histopathological
studies (23, 24). Additional downstream molecular mechanisms
might be impacted differently by various aldosterone-driver
mutations and deserve further investigation. For example, in
vitro studies suggest that angiotensin II upregulates NR4AI,
NR4A2, and NR4A3 gene expression (64, 65), and that NR4A2
and NR4A3 are upregulated in cell models overexpressing KCNJ5
mutations (66, 67). Other transcriptome and methylome
variations have been shown between APA with and without
KCNJ5 mutations (68). In addition, differences in the expression
of inhibitory regulators, such as dopamine receptors (69, 70)
across APAs with various aldosterone-driver mutations deserve
further investigation.

In summary, we found that ACTH and angiotensin II
receptors are expressed in functionally confirmed APAs
harboring the four most common aldosterone-driver somatic
mutations. Additionally, we show that these key aldosterone
regulatory receptors display several differences in expression
across APAs with distinct underlying mutations. Specifically,
KCNJ5-mutated APAs express lower mRNA transcript levels of
both MC2R and CYPI1B2 as compared to other APAs, and they
display no association between MC2R and MRAP expression,
possibly explaining their relatively modest response to
cosyntropin stimulation observed during AVS. Conversely,
ATPIAI-mutated APAs showed robust positive correlation of
MC2R with both MRAP and CYPI11B2 expression, supporting
their ACTH-sensitivity. The relatively small number of tissue
samples and individual variability from APAs with distinct
somatic mutation are limitation of our study. Another
important limitation is the lack of protein translation
assessment, and thus conclusions regarding protein function
remain limited. Such studies will be critical once highly
selective human MC2R antibodies become available.
Nevertheless, this initial study provides insight into the
possible actions of ACTH and angiotensin II in APA with
various aldosterone-driver mutations.
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