
Frontiers in Endocrinology | www.frontiersi

Edited by:
Manuel D. Gahete,

Maimonides Biomedical Research
Institute of Cordoba (IMIBIC), Spain

Reviewed by:
Marta Korbonits,

Queen Mary University of London,
United Kingdom
Sabrina Chiloiro,

Catholic University of the Sacred
Heart, Italy

*Correspondence:
Manel Puig-Domingo

mpuigd@igtp.cat
Mireia Jordà

mjorda@igtp.cat

†These authors have contributed
equally to this work and share

senior authorship

Specialty section:
This article was submitted to

Pituitary Endocrinology,
a section of the journal

Frontiers in Endocrinology

Received: 25 December 2020
Accepted: 22 February 2021
Published: 15 March 2021

Citation:
Gil J, Jordà M, Soldevila B and

Puig-Domingo M (2021) Epithelial–
Mesenchymal Transition in the

Resistance to Somatostatin
Receptor Ligands in Acromegaly.

Front. Endocrinol. 12:646210.
doi: 10.3389/fendo.2021.646210

MINI REVIEW
published: 15 March 2021

doi: 10.3389/fendo.2021.646210
Epithelial–Mesenchymal Transition
in the Resistance to Somatostatin
Receptor Ligands in Acromegaly
Joan Gil 1, Mireia Jordà1*†, Berta Soldevila2 and Manel Puig-Domingo1,2,3*†

1 Endocrine Tumours Lab, Program of Predictive and Personalized Medicine of Cancer (PMPPC), Germans Trias i Pujol
Research Institute (IGTP), Badalona, Spain, 2 Department of Endocrinology and Nutrition, Germans Trias i Pujol University
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Epithelial-mesenchymal transition (EMT) is a dynamic process by which epithelial cells loss
their phenotype and acquire mesenchymal traits, including increased migratory and
invasive capacities. EMT is involved in physiological processes, such as embryogenesis
and wound healing, and in pathological processes such as cancer, playing a pivotal role in
tumor progression and metastasis. Pituitary tumors, although typically benign, can be
locally invasive. Different studies have shown the association of EMT with increased tumor
size and invasion in pituitary tumors, and in particular with a poor response to
Somatostatin Receptor Ligands (SRLs) treatment in GH-producing pituitary tumors, the
main cause of acromegaly. This review will summarize the current knowledge regarding
EMT and SRLs resistance in acromegaly and, based on this relation, will suggest new
biomarkers and possible therapies to SRLs resistant tumors.

Keywords: epithelial–menchymal transition, somatostatin analogs, pituitary, E-cadherin, somatotroph adenoma,
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INTRODUCTION

Epithelial–mesenchymal transition (EMT) is a dynamic process that reorganizes the cell from an
epithelial to a mesenchymal phenotype leading to functional changes in cell invasion and migration
capacities (1). This process is triggered by microenvironment signals that cells receive which
produce changes in gene expression and post-translational regulation mechanisms leading to the
loss of epithelial characteristics (cell polarity, stable epithelial cell-cell junctions and interactions
with extracellular matrix) and the acquisition of mesenchymal features (fibroblast-like morphology
and increased migratory and invasive properties). Although it has been considered as a binary
process for many years, EMT has been recently shown to occur through distinct transition cellular
states that are driven by a network of transcription factors (EMT-TFs) (2, 3). SNAI1-2, TWIST, and
ZEB protein families have been the most extensively studied EMT-TFs as they regulate the classical
EMT focused on the repression of E-cadherin, the prototypic adhesion molecule; however, the list of
EMT-TFs has largely grown in the last years (4).

EMT was first described in embryonic development as a process that enables the correct
morphogenetic events during migration of epithelial cells from the original position to their
ultimate destination. However, EMT also occurs in pathological situations such as cancer (2, 5).
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During the progression of solid malignancies from benign
tumors to locally invading tumors, and finally to metastatic
neoplasms, EMT plays a key role. However, it seems that
cancer-associated EMT is only activated partially and
transiently, in contrast to developmental EMT (3). This
attribute and the fact that EMT programs have been associated
with other cellular programs such as cell survival, stemness and
resistance to drugs (4), makes EMT difficult to study by only
analyzing the expression of EMT-TF network.

Recent studies suggest the involvement of EMT in first
generation Somatostatin Receptor Ligands (SRLs) resistance in
GH-producing pituitary tumors (6–9). Here we review the role of
EMT in pituitary adenomas and discuss the relationship between
EMT and SRLs resistance in GH-producing pituitary tumors as
well as offer new potential biomarkers and therapeutic options.
METHODS

We performed a systematic review with the aim of summarizing
the current knowledge of EMT in GH-secreting adenomas with a
special focus on SRLs resistance. We performed a search in
MEDLINE database using its PubMed tool of the literature
available until January 2021. We searched for the terms:
“Epithelial-mesenchymal transition” OR “EMT” AND
“Acromegaly” OR “Pituitary adenoma” OR “Pituitary tumor”
AND/OR “Somatostatin” OR “Somatostatin receptor ligands”
OR “Somatostatin analogs”.
EPITHELIAL–MESENCHYMAL
TRANSITION IN PITUITARY TUMORS

It is well known the importance of the expression of determined
transcription factors during pituitary organogenesis to give the
final identity to every different hormone-secreting cell type (10),
and EMT plays an important role in this embryogenic process
(11). The PROP1 transcription factor, that is vital for the
ontogenesis of somatotroph cells, was discovered to promote
EMT during pituitary stem cell differentiation, making EMT an
important step to obtain fully-functional differentiated pituitary
cells (12, 13). These results have been validated by single-cell
transcriptomic profiling of the different developmental lineages
in human pituitary (14).

EMT is not only linked to pituitary through development, as
E-cadherin has been related to hormone secretion in mature
cells. E-cadherin reduces prolactin protein content through
affecting trafficking of secretory granules (15). Furthermore, it has
been also associated with follicle-stimulating hormone (FSH)
content and subcellular localization in non-functioning pituitary
tumors (16).

EMT also plays an important role in the aggressive biologic
behavior of pituitary tumors. Pituitary tumors are the second
most common primary brain tumors with invasive properties.
The loss of E-cadherin, which is a key characteristic of EMT
associated with poor prognosis and high grade tumors in almost
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all malignancies derived from epithelial cells, has also been
reported in pituitary tumors. E-cadherin, a calcium-dependent
cell to cell adhesion transmembrane protein, is part of a cell
adhesion complex where it is associated with other proteins (a−,
b−, g− and p120-catenins) through an intracellular domain (17).
Interestingly, E-cadherin can act as direct transcriptional
regulator by nuclear translocation (18). In pituitary tumors, the
loss of E-cadherin, specifically the loss of cytoplasmic E-
cadherin, is frequently found concurrently with its detection in
the nucleus (19). Importantly, nuclear staining E-cadherin is
associated with tumor invasion, suggesting that cleavage of the
extracellular domain of E-cadherin and nuclear translocation
may participate in local invasion in pituitary tumors. Similarly,
E-cadherin among other adhesion molecules was related to
invasiveness and proliferative status of prolactinomas (20, 21).
Other classical EMTmarkers, such as N-cadherin, SNAI1, SNAI2
and TWIST (21, 22) or b-catenin (23) have also been associated
with a worse clinical course in pituitary tumors, especially
indicating an invasive phenotype, although there is some
controversy regarding this subject in acromegaly (21, 24).

Furthermore, different other non-classical molecules related
to EMT have been characterized as part of the mechanisms
allowing invasiveness in pituitary tumors, such as ADAM12
(a disintegrin and metalloprotease 12), which has been postulated
as an EMT inducer in these tumors (25). ADAM12 overexpression
is associated with pituitary tumor invasiveness, while its silencing
prevents such biological behavior. Mechanistically, ADAM12
silencing impairs ectodomain shedding of epidermal growth
factor receptor (EGFR) ligands and attenuated the EGFR/ERK
signaling pathway. Inhibition of EGFR signaling resulted in
EMT suppression similar to repression of ADAM12. Also, a
recent study by Falch at al (26). in non-functioning gonadotroph
tumors reported that those tumors harboring invasive and rapid
growing characteristics showed overexpression of genes involved in
EMT, in particular SPAG9, SKIL, MTDH, HOOK1, CNOT6L
and PRKACB.

Surprisingly, pituitary tumor transforming gene 1 (PTTG1)
has been related to EMT in non-functioning pituitary adenomas
(27), just the opposite role of PTTG2 (28). Other authors
suggested that the mechanism triggering the EMT in pituitary
tumors is linked to the expression of S100A9, a member of the
S100 family of EF-hand motif Ca2+-binding proteins, mediated
by activation of AKT1 (29). In addition, it has been showed that
the transcriptoma of USP8 wild-type corticotropinomas,
characterized by increased invasiveness, was enriched in EMT
signature (30).

In another study in GH-secreting adenomas, cyclin B1
(CCNB1) knock-down was found to decrease the mesenchymal
marker N-cadherin and increase the epithelial markers E-
cadherin and p120-catenin. Thus, inactivation of cyclin B1
results in a decreased proliferation and EMT, and an increased
apoptosis (31). A similar approach was used in a different study
where the expression of SMAD4 was found to regulate EMT in
somatotropinomas. SMAD4 was associated with invasion,
increased levels of vimentin and N-cadherin and, decreased
E-cadherin (32).
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Other genes have been related to the suppression of EMT and,
therefore, invasion. It is the case of collagen type VI alpha 6
(COL6A6) that inhibits cell proliferation, migration, invasion,
and epithelial-mesenchymal transition (EMT) through the
binding of P4HA3 resulting in PI3K-Akt axis inhibition in
pituitary adenomas (33).

Not only coding genes have been related to EMT in pituitary
tumors, some microRNAs (miRNAs) and long non-coding
RNAs (lncRNAs) have been shown to modulate EMT. MiR-
149-5p and miR-99a-3p suppress the expression of EMT-related
genes (34). miR-132, miR-15a and miR-16 also inhibit EMT in
pituitary adenomas; in this case targeting SOX5 (35). Moreover,
miR-424-3p inhibits EMT and invasion by targeting JAG1 (36).
On the other hand, lncRNAs seem to be related to EMT
enhancement rather than inhibition. For example, lncRNA
SNHG6 induces EMT suppressing miR-944, which may inhibit
RAB11A (37). Furthermore, lncRNA PVT1 enhances EMT and
migration by activating Wnt/ß-catenin (38). Finally, lncRNA
SNHG1 promotes EMT and invasion by activation of TGFBR2/
SMAD3 and RAB11A/Wnt/b-Catenin axis, and the inhibition of
miRNAs such as miR-302/372/373/520 (39).

EMT is a dynamic process, not a binary process, with
intermediary states (2). It is very unlikely that benign tumor
cells undergo a complete mesenchymal transformation which is
associated with metastatic tumors (5). Because of that, it is more
likely that, as in the majority of neoplasms, pituitary tumors
would exhibit partial EMT states (40). This would explain why in
transcriptomic analysis some EMT markers are up-regulated
while others do not, instead of showing a complete mesenchymal
profile (9, 41).

It is noteworthy to highlight the importance of the tumor
microenvironment in mediating EMT and, therefore, the
aggressive behavior of pituitary adenomas. The alteration of
the tumor microenvironment seems to be triggered by tumor
chemokines that attract immune cells (42). Additionally, IL-6
and CCL2 produced by tumor associated fibroblasts have been
associated with EMT-like morphological changes and aggressive
behavior trough E-cadherin downregulation and ZEB1
upregulation in an in vitro study (43).

It is really important to confirm the link between EMT and
AIP, since AIP-ZAC1 pathway is one of the main molecular
mechanisms described for SRLs resistance (44). SRLs can activate
AIP which inhibits adenylate cyclase, reducing cyclic AMP levels.
On the other hand, AIP activates ZAC1. This molecule binds
directly p53 and activates gene transcription; moreover, p53
arrests cell cycle, through p21 interaction, and increases
apoptosis (45). Deeper explanation of the pathway could be
found in some other reviews (45, 46).
E-CADHERIN LOSS IS AN OUTSTANDING
BIOMARKER FOR SRL RESISTANCE IN
ACROMEGALY

Somatostatin is secreted by the hypothalamus and inhibits
hormone secretion and to a lesser extent pituitary cell growth
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by binding to different G protein-coupled receptors (SSTR1–5)
[reviewed in Ben-Shlomo and Melmed (47)]. As remnant of its
somatroph origin, somatotropinomas express somatostatin
receptors, specially SSTR2 and SSTR5 (48). First-generation
Somatostatin Receptor Ligands (SRLs), octreotide and
lanreotide, so far the accepted first-line medical therapy in
acromegaly despite that hormonal hypersecretion control of
the disease is generally reported to be lower than 50% and
both show a high affinity for SSTR2 receptor (49). Molecular
characterization of the tumors has unveiled several explanations
for such uneven response (50). However, many studies have
proved the involvement of many other players and nowadays we
do not know the whole picture of SRLs resistance in acromegaly.

EMT and epithelial plasticity have been associated with
resistance to conventional, targeted and immune therapies in
many cellular and preclinical models in different tumor contexts,
although there is little evidence from clinical samples (51). In this
line, different studies relate EMT and SRLs resistance in
acromegaly. E-cadherin has been linked to SRLs response as an
independent predictor by different studies and in different cohorts
(8, 52, 53). In a fair comparison between several known
biomarkers of SRLs response, E-cadherin showed the greatest
performance in predicting postsurgical SRLs response, even
greater than SSTR2 or Ki-67 (8). There is a general consensus
that low levels of E-cadherin mRNA and protein indicate a poor
responsive tumor to SRLs (8, 52, 53). Furthermore, E-cadherin
loss seems to be related to the granulation pattern of the tumor,
especially but not exclusively in GH-producing tumors (8, 53). It is
worth saying that the histological granulation pattern of
the tumor has been related to SRLs response for many years
(54, 55). Interestingly, some studies have shown the association
between E-cadherin downregulation and E-cadherin promoter
hypermethylation in GH-secreting tumors, suggesting the
involvement of epigenetic mechanisms (56–58). Another study
pointed to the presence of progenitor mesenchymal cells
derived from cancer stem cells as the cause of E-cadherin
decrease and EMT induction (through TGFbRII increase) in
somatotropinomas (59).

Taking into account that E-cadherin is routinely assessed in
pathology departments as diagnostic tool for other cancer types
(60), it would be easy to implement it as biomarker of response to
SRLs to better define acromegaly treatment (61).
BEYOND E-CADHERIN LOSS:
INVOLVEMENT OF OTHER EPITHELIAL–
MESENCHYMAL TRANSITION
MOLECULES IN SRL RESISTANCE
IN ACROMEGALY

Since E-cadherin loss is a marker of advanced EMT, some
authors have further investigated this phenomena in GH-
producing tumors. Lekva and colleagues analyzed the
transcriptome of tumors with very high and very low levels of
E-cadherin and identified several EMT-related genes.
Interestingly, in vitro, the expression of these genes were not
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regulated by E-cadherin but by Epithelial Splicing Regulatory
Protein1 (ESRP1) (6). ESRP1 has been characterized as an
important contributor to EMT by mediating alternative
splicing in EMT affecting the maintenance of epithelial features
(62). It is important to mention that several studies have proved
the relation of splicing and SRLs resistance in acromegaly (7, 63–
65). ESRP1, thus, may be a master regulator of the EMT, SRLs
response and other pathological processes in acromegaly (7).

Lekva and colleagues also investigated genes that were
differentially expressed upon treatment with SRLs in different
EMT contexts. They found that RAR Related Orphan Receptor C
(RORC) was overexpressed in phenotypically epithelial tumors
but not in mesenchymal ones (9). Moreover, RORC expression
was associated with SRLs response, a result that has been
confirmed by finding that RORC is a biomarker of SRLs
response improvement after surgical debulking (66).

On the other hand, patients harboring AIP-mutated
somatotropinomas tend to be diagnosed at a younger age with
larger, more aggressive, and SRLs resistance tumors (44). Some
studies have shown that AIP is an important mediator of SRLs
response (45), and AIP expression has been found to be a potent
SRLs response predictor (44). In this context, it was interesting to
prove that the transcriptome of ten somatotropinomas and five
normal pituitaries revealed EMT as one of the most significantly
altered pathways in AIP-mutated tumors. Furthermore, the cell-
conditioned media of AIP-knockdown cells increases migration of
macrophages (41), reinforcing the role of tumor microenvironment
in inducing EMT and a more aggressive phenotype.
CYTOSKELETON, EPITHELIAL–
MESENCHYMAL TRANSITION, AND SRL
RESISTANCE IN ACROMEGALY

One of the main characteristics of EMT is the reorganization of
cell polarity through changes in the cytoskeleton, which is
composed of the actin cytoskeleton, the microtubule network
and the intermediate filaments that provide structural design and
mechanical strength. The cytoskeleton is known to play an
important role in EMT during cancer progression (67).
Concretely, refilin proteins perform their function through
filamin A (FLNA) to regulate the actin cytoskeleton
reorganization. RefilinA promotes the conversion of FLNA
from an actin branching protein into an F-actin bundler, and
RefilinB combined with FLNA organize a unique perinuclear
actin network at the apical surface during the EMT (68, 69).
Interestingly, in SNAI1-induced EMT, it has been proved that the
changes in nuclear morphology and in the cytoskeleton structure
correlate with decreased expression of FLNA (70).

FLNA plays an important role in GH-producing tumors since
it has been related to pituitary tumors migration and invasion
(71) and, more importantly, also to SRLs resistance (72).
Additionally, it has been proved that FLNA mediates
octreotide-induced SSTR2 trafficking through endosomal
proteins in acromegaly. Moreover, FLNA influences the
number of available SSTR2 at the surface of the cell (73).
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For more detailed explanation of the cytoskeleton involvement
in SRLs resistance, we recommend the review by Peverelli et al.
published in 2015 in this same journal (74).
EPITHELIAL–MESENCHYMAL
TRANSITION-RELATED THERAPIES

The involvement of EMT in acromegaly pathogenesis and SRLs
resistance offers new therapeutic approaches that should be
explored. As an example, CCNB1 overexpression in acromegaly
can be targeted with resveratrol, inhibiting CCNB1 and reverting
its effects on invasion (31). Interestingly, Pasireotide, a second
generation SRL, has been associated with a reduction of EMT-
associated chemokines in tumor associated fibroblasts, suggesting
an anti-tumor effect targeting the microenvironment (43). In
contrast, other first generation SRLs do not appear to affect
EMT (59).

Several EMT regulating TFs (SNAI1, SNAI2, TWIST…) can
induce a therapy-resistant intrinsic mechanism (overexpression
of drug efflux pumps) as well as an extrinsic one (gaining
resistance to apoptosis inducing agents). This explains why
EMT is often related to drug resistance in tumors (2).
However, EMT features are emerging as novel therapeutic
targets in cases of resistance to current therapies (75). Some of
the drugs proposed to inhibit EMT in clinical phases are well-
known for endocrinologists such as metformin (76). Others have
been proposed to be useful in acromegaly to target GDNF-RET/
PIT1/p14ARF/p53 pathway, like Sorafenib (77).

EMT offers target opportunities in different levels: inhibiting
stimuli from the tumor microenvironment, inhibiting extracellular
mediators and their corresponding receptors, inhibiting or
activating intracellular signaling pathways, and inhibiting
transcription factors that indirectly induce EMT (78). On this last
regard, the usage of an inhibitor of STAT3 could very much benefit
acromegaly therapy since it would act reverting EMT process (79–
81) and directly inhibiting GH hypersecretion (82). More than a
dozen of different therapies targeting EMT are being tested in
clinical trials, however the vast majority are used in combination
with regular chemotherapy since it is expected to recover sensitivity
of more conventional drugs upon EMT inhibition (78). In
acromegaly, the main concern rather than the proliferation and
formation of metastasis is the normalization of hormone levels; this
is the reason why rather than the expected antiproliferative effects of
these drugs, we would expect a resensitization to SRLs. However,
nowadays it is unknown if this effect would be achieved and which
molecules should be targeted.
DISCUSSION

It is very likely that EMT plays an important role in acromegaly
pathogenesis, but also in the modulation of pharmacologic
response, thus inducing SRLs resistance in particular. However,
most of this relationship is unknown since the molecular
pathways relating EMT and SRLs signaling are not really
understood and sufficiently explored. We are only beginning to
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unveil this relationship and we have, by now, been able to find
some of the key molecules, but the whole picture remains elusive.
To add a little more complexity to the acromegaly and EMT
relationship, it is worth to mention that one of the surprising
effects of GH is the induction of EMT (83), closing the circle
around EMT and acromegaly. The induction of EMT by GH
seems to be mediated by the tumor microenvironment involving
not only tumor cells but multiple non-tumoral cell types (84, 85).

Importantly, the study of EMT has provided some interesting
biomarkers to predict SRLs response in acromegaly, for example,
E-cadherin and RORC. Furthermore, as we could only glimpse
for now, EMT in acromegaly is involved in a lot of processes like
stemness, apoptosis, secretory vesicles trafficking, cytoskeleton
organization, invasion capacities and aberrant splicing. All of
them are, to some extent, individually related to SRLs resistance
and that makes very difficult to delimitate the action of EMT. It
forces to contemplate EMT as a dynamic process with deep
connections with a multitude of different cellular programs.
Moreover, the presence of intermediate EMT states in tumors,
which generates tumor heterogeneity, is probably key in the
contribution of EMT to treatment resistance.

Further studies of the EMT process would not only provide
in-deep knowledge about the dedifferentiation of GH-secreting
tumors and the SRLs desensitization, but will certainly offer
alternative treatments to the SRLs. Several EMT inhibitors are
currently been tested in clinical trials for other malignancies. The
plastic and dynamic nature of EMT increases the difficulty in
determining the appropriate therapeutic and diagnostic
windows. However, targeting EMT blockade as an adjuvant
therapy could potentially increase the effectiveness of the GH-
secreting tumors to SRLs.
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In conclusion, EMT is a process that plays an important role
in the heterogeneity of pituitary adenomas and is associated with
a more aggressive phenotype. Furthermore, it has been linked to
SRLs response in somatotropinomas. Thus, EMT-related
therapies may be taken into consideration in the treatment of
acromegaly, especially in SRLs non-responder patients. This
could be an opportunity to find new therapies for pituitary
adenomas; however, the increasing therapeutic options for
acromegaly may overwhelm clinicians making more difficult the
choice of the best molecule(s) to target. In this regard, some
authors have developed a universal and quantitative EMT scoring
based on transcriptomic data that allows the prediction of
response to different pharmacological treatments (86). We
think that this type of tools should be the basis of the future
medicine in acromegaly; the “trial‐and‐error” approach to decide
the appropriate drug would no longer be an option (87–90).
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Zambrano ÁG, Torres B, Pintor-Toro JA. PTTG2 silencing results in
induction of epithelial-to-mesenchymal transition and apoptosis. Cell Death
Dis (2013) 4:e530–0. doi: 10.1038/cddis.2013.48

29. Huang N, Zhao G, Yang Q, Tan J, Tan Y, Zhang J, et al. Intracellular and
extracellular S100A9 trigger epithelial-mesenchymal transition and promote
the invasive phenotype of pituitary adenoma through activation of AKT1.
Aging (Albany NY) (2020) 12. doi: 10.18632/aging.104072

30. Neou M, Villa C, Armignacco R, Jouinot A, Raffin-Sanson M-L, Septier A,
et al. Pangenomic Classification of Pituitary Neuroendocrine Tumors. Cancer
Cell (2020) 37:123–34. doi: 10.1016/j.ccell.2019.11.002

31. Li B, Zhu H, Song G, Cheng J, Li C, Zhang Y, et al. Regulating the CCNB1 gene
can affect cell proliferation and apoptosis in pituitary adenomas and activate
epithelial−to−mesenchymal transition. Oncol Lett (2019) 18. doi: 10.3892/
ol.2019.10847

32. Shan X, Liu Q, Li Z, Li C, Gao H, Zhang Y. Epithelial–Mesenchymal Transition
Induced by SMAD4 Activation in Invasive Growth Hormone-Secreting
Adenomas. Open Chem (2018) 16:571–82. doi: 10.1515/chem-2018-0061

33. Long R, Liu Z, Li J, Yu H. COL6A6 interacted with P4HA3 to suppress the
growth and metastasis of pituitary adenoma via blocking PI3K-Akt pathway.
Aging (Albany NY) (2019) 11:8845–59. doi: 10.18632/aging.102300

34. Zhao P, Cheng J, Li B, Nie D, Li C, Gui S, et al. Up-regulation of the expressions
of MiR-149-5p and MiR-99a-3p in exosome inhibits the progress of pituitary
adenomas. Cell Biol Toxicol (2021) 1. doi: 10.1007/s10565-020-09570-0

35. Renjie W, Haiqian L. MiR-132, miR-15a and miR-16 synergistically inhibit
pituitary tumor cell proliferation, invasion and migration by targeting Sox5.
Cancer Lett (2015) 356:568–78. doi: 10.1016/j.canlet.2014.10.003

36. Chen Y, Li B, Feng J, Fang Q, Cheng J, Xie W, et al. JAG1, Regulated by
microRNA-424-3p, Involved in Tumorigenesis and Epithelial–Mesenchymal
Frontiers in Endocrinology | www.frontiersin.org 6
Transition of High Proliferative Potential-Pituitary Adenomas. Front Oncol
(2020) 10:2785–98. doi: 10.3389/fonc.2020.567021

37. Mao D, Jie Y, Lv Y. LncRNA SNHG6 Induces Epithelial–Mesenchymal
Transition of Pituitary Adenoma Via Suppressing MiR-944. Cancer Biother
Radiopharm (2020). doi: 10.1089/cbr.2020.3587

38. Zhang Y, Tan Y, Wang H, Xu M, Xu L. Long Non-Coding RNA
Plasmacytoma Variant Translocation 1 (PVT1) Enhances Proliferation,
Migration, and Epithelial-Mesenchymal Transition (EMT) of Pituitary
Adenoma Cells by Activating b-Catenin, c-Myc, and Cyclin D1 Expression.
Med Sci Monit (2019) 25:7652–9. doi: 10.12659/MSM.917110

39. Wang H, Wang G, Gao Y, Zhao C, Li X, Zhang F, et al. Lnc-SNHG1 Activates
the TGFBR2/SMAD3 and RAB11A/Wnt/b-Catenin Pathway by Sponging
MiR-302/372/373/520 in Invasive Pituitary Tumors. Cell Physiol Biochem
(2018) 48:1291–303. doi: 10.1159/000492089

40. Grigore A, Jolly M, Jia D, Farach-Carson M, Levine H. Tumor Budding: The
Name is EMT. Partial EMT. J Clin Med (2016) 5:51. doi: 10.3390/jcm5050051

41. Barry S, Carlsen E, Marques P, Stiles CE, Gadaleta E, Berney DM, et al. Tumor
microenvironment defines the invasive phenotype of AIP-mutation-positive
pituitary tumors.Oncogene (2019) 38:5381–95. doi: 10.1038/s41388-019-0779-5

42. Marques P, Barry S, Carlsen E, Collier D, Ronaldson A, Awad S, et al.
Chemokines modulate the tumour microenvironment in pituitary
neuroendocrine tumours. Acta Neuropathol Commun (2019) 7:172.
doi: 10.1186/s40478-019-0830-3

43. Marques P, Barry S, Carlsen E, Collier D, Ronaldson A, Awad S, et al. Pituitary
tumour fibroblast-derived cytokines influence tumour aggressiveness. Endocr
Relat Cancer (2019) 26:853–65. doi: 10.1530/ERC-19-0327

44. Chahal HS, Trivellin G, Leontiou CA, Alband N, Fowkes RC, Tahir A, et al.
Somatostatin analogs modulate AIP in somatotroph adenomas: the role of the
ZAC1 pathway. J Clin Endocrinol Metab (2012) 97:E1411–20. doi: 10.1210/
jc.2012-1111
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