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Inflammation is a primary component of both initiation and promotion of colorectal cancer
(CRC). Cytokines secreted by macrophages, including tumor necrosis factor alpha
(TNFa), activates the pro-survival transcription factor complex NFkB. The precise
mechanism of NFkB in CRC is not well studied, but we recently reported the genome-
wide transcriptional impact of TNFa in two CRC cell lines. Further, estrogen signaling
influences inflammation in a complex manner and suppresses CRC development. CRC
protective effects of estrogen have been shown to be mediated by estrogen receptor beta
(ERb, ESR2), which also impacts inflammatory signaling of the colon. However, whether
ERb impacts the chromatin interaction (cistrome) of the main NFkB subunit p65 (RELA) is
not known. We used p65 chromatin immunoprecipitation followed by sequencing (ChIP-
Seq) in two different CRC cell lines, HT29 and SW480, with and without expression of
ERb. We here present the p65 colon cistrome of these two CRC cell lines. We identify that
RELA and AP1 motifs are predominant in both cell lines, and additionally describe both
common and cell line-specific p65 binding sites and correlate these to transcriptional
changes related to inflammation, migration, apoptosis and circadian rhythm. Further, we
determine that ERb opposes a major fraction of p65 chromatin binding in HT29 cells, but
enhances p65 binding in SW480 cells, thereby impacting the p65 cistrome differently in
the two cell lines. However, the biological functions of the regulated genes appear to have
similar roles in both cell lines. To our knowledge, this is the first time the p65 CRC cistrome
is compared between different cell lines and the first time an influence by ERb on the p65
cistrome is investigated. Our work provides a mechanistic foundation for a better
understanding of how estrogen influences inflammatory signaling through NFkB in
CRC cells.

Keywords: p65, ERb, ChIP, colon cancer, colorectal cancer (CRC), estrogen receptor
INTRODUCTION

Colorectal cancer (CRC) accounts for the third highest number of cancer deaths among both
women and men in theWestern world (1). Benign adenomatous polyps evolve into carcinomas over
10-15 years, and screening is performed in many countries. While COX-2 inhibitors (e.g. celecoxib)
or aspirin reduce inflammation and effectively prevent adenomatous polyp formation and CRC,
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adverse effects exclude their general usage (2–4). Better
prevent ive treatments are required , and a deeper
understanding of exactly how inflammation impacts CRC
is needed.

During inflammation, cytokines such as tumor necrosis factor
alpha (TNFa) are released by macrophages. TNFa activates the
nuclear factor kappa-light-chain-enhancer of activated B cells
(NFkB) transcription factor complex, which in turn induces
several oncogenes and signaling pathways involved in tumor
initiation and progression (5–7). Constitutive activation of NFkB
has been observed in nearly 70% of CRC cell lines and 40% of
clinical CRC specimens (8–11). NFkB is a homo- or heterodimer
comprised of two to five of subunits p65 (RelA/RELA), RelB
(RELB), cRel (RELC), p105/p50 (NFkB1), or p100/p52 (NFkB2),
that appears in multiple forms (12). The N-terminal Rel domain
is present in all subunits and binds to a specific DNA sequence
known as the kB site. Together with the recruitment of cofactors,
this induces or suppresses expression of target genes. The various
NFkB dimers differ in binding affinity and activation. p65 and
cRel are the most potent transcriptional activators (13), and p65
together with p50 constitutes the most common NFkB
heterodimer (14). While inflammation is critical in
development of CRC, the function of NFkB complex in CRC
is, however, poorly studied. Only one study describes the
genome-wide chromatin binding of p65 in colon cancer, in cell
line SW480 in the context of its interaction with p53 (TP53)
mutants (15).

The hormone estrogen has been shown to reduce CRC
incidence (16–20). Estrogen mainly acts through three
receptors, of which estrogen receptor beta (ERb, ESR2) is
present in epithelial colon and rectal cells (21, 22). We have
recently shown that intestinal epithelial ERb in vivo protects
from the epithelial damage caused by TNFa and prevents tumor
formation (22). Also, when reintroduced into CRC cell lines, ERb
has antiproliferative and tumor-suppressive activity (22, 23).
ERb is a ligand-activated nuclear receptor which binds to
genomic ERE (estrogen response elements). Its homologue,
ERa (ESR1) is upregulated in breast cancer, where it promotes
cell proliferation and interacts with p65 (24, 25). ERb expression,
in contrast, decreases during CRC development, and ERa is not
expressed in the colon epithelial cells, nor tumors (26). Our
hypothesis is that ERb in the normal colon opposes NFkB-
mediated inflammatory signaling and that this is an essential part
of its tumor protective mechanism.

A crosstalk between the related ERa and NFkB has been
extensively studied in breast cancer, albeit with some
contradicting findings. A few studies report that ERa represses
NFkB activity (27, 28), whereas other reports that ERa, in the
same cell lines (MCF7, T47D, ZR-75), enhances NFkB activity
(24, 25). Specifically, TNFa in ERa-positive MCF-7 breast
cancer cells was shown to profoundly modify the ERa
enhancer-binding landscape in an NFkB-dependent manner
(29). Based on the homology between the two ERs DNA-
binding domains, along with previous findings that ERb
regulates NFkB key targets and reduces inflammatory signaling
in colon, we speculated that ERb may impact the colon p65
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cistrome. In the present study, we used p65 chromatin
immunoprecipitation (ChIP) followed by sequencing (ChIP-
Seq) to test this hypothesis, and to detail the p65 landscape in
CRC cell lines.
MATERIALS AND METHODS

Cell Culture
SW480 (Research Resource Identifier RRID: CVCL_0546) and
HT29 (RRID: CVCL_0320), previously generated to express ERb
and corresponding mock control cells (23, 30, 31), authenticated
and mycoplasma tested, were cultured in Dulbecco’s modified
Eagle’s medium (D6429, Sigma Aldrich) supplemented with 10%
FBS (F9665, Sigma Aldrich), 1% penicillin-streptomycin (P/S)
and 1% blasticidin (D429, Sigma Aldrich). A day before ChIP,
the media was changed to Dulbecco’s Modified Eagle Medium
(DMEM)-phenol-red free with 1% charcoal-stripped fetal bovine
serum (FBS, 12676011, ThermoFisher). Cell lines were not
treated with E2 since previous studies has revealed that
transduced ERb functions ligand independent in CRC cell
lines, possibly due to activation through growth factors and
phosphorylations (23, 32, 33).

p65 ChIP
For each ChIP experiment, 60x106 cells were used. Cells were
treated with TNFa (30 ng/ml, 11088939001, Roche, lot no:
25885600) Sigma-Aldrich) for 30 min and washed with PBS
before cross-linking. Cells were first cross-linked with 2 mM
disuccinimidyl glutarate (DSG) (20593, lot TF263080, Thermo
Scientific) for 45 min during shaking. After washing (three times,
with PBS) to remove DSG, they were cross-linked again with
formaldehyde (1%) for 10 min during shaking. The double
crosslinking was used to capture both short- and long-range
p65 chromatin interactions. Glycine (final concentration
0.125M) quenched the cross-linking reaction. After washing
(twice with PBS), cells were collected and pelleted by
centrifugation. Cell pellets were further processed at 4°C using
ice cold reagents. After lysis in LB1 (50Mm HEPES, 140mM
NaCl, 1mM EDTA, 10% glycerol, 0.5% NP-40 and 0.25% triton-x)
for 10 min, and centrifugation (4500 rpm, 5 min), pellets were
suspended in LB2 (10 mMTris-Hcl, 200 mMNaCl, 1 mM EDTA)
for 5 min, centrifuged, and dissolved in LB3 buffer (10 mM Tris-
Hcl, 100 mM NaCl, 1 mM EDTA, 0.5 mM EGTA, 0.1% Na-
deoxycholate and 0.5% Na-lauroylsarcosine) to separate nuclear
chromatin. Sonication generated 200-500 bp long fragments of
chromatin. Following centrifugation (13000 rpm, 5 min),
supernatants were collected in low-binding DNA tubes and
incubated overnight with p65 antibody [Invitrogen, mouse
monoclonal, cat no: 33-9900, lot no: QJ216251, RRID :
AB_2533153, validated in (34)] or IgG (Santa Cruz, mouse
polyclonal, cat no: sc-2025, lot no: J1514, RRID : AB_737182) as
control. Next, samples were incubated with 30 µl protein G
Dynabeads (cat no: 10004D, Invitrogen) for 3h. Beads were
washed in sequential steps using TSE1 (20 mM Tris-HCl,
150 mM NaCl, 2 mM EDTA, 0.1% SDS and 0.1% Triton-X),
March 2021 | Volume 12 | Article 650625
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TSE2 (20 mM Tris-HCl, 500 mM NaCl, 2 mM EDTA, 0.1% SDS
and 1% Triton-X), LiCl buffer (20 mM Tris-HCl, 1 mM EDTA,
250mM LiCl, 1% NP-40 and 1% Na-deoxycholate) and TE buffer
(10 mM Tris-HCl and 1 mM EDTA), and eluted (NaHCo3
(0.75%) SDS (1%), proteinase K (200 ng/µl)) overnight at 65°C,
and finally treated with RNase A (1h at 37°C). QIAquick PCR
purification columns (Qiagen, cat no: 28104) were used to
purify DNA.

ChIP-Sequencing
Libraries of the ChIP DNA were prepared and sequenced by the
National Genomic Infrastructure (NGI) for Bioinformatics and
Expression Analysis (BEA). DNA libraries were prepared using
the NEB Next Ultra II DNA Library Prep Kit for Illumina (p/n
NEB #E7645) and quality confirmed using TapeStation (DNA
D1000 ScreenTape, Agilent). Libraries were loaded (1.8 pM end
concentration of 1%) and sequenced (75 cycles, single read)
using NextSeq 550 (Illumina).

ChIP-Seq Data Analysis
Spliced Transcripts Alignment to a Reference (STAR) was used
to map unique ChIP-Seq reads to the human reference genome
assembly hg38 (GRCh38) with the alignIntronMax flag set to 1.
Peak calling was performed using Hypergeometric Optimization
of Motif Enrichment (HOMER) over input with a four-fold
enrichment as cutoff and applying a false discovery rate (FDR)
less than 0.001. Peaks which overlapped within 200 bp and were
present in at least two out of three biological replicates were used
for downstream analysis. Raw tag counts were normalized using
R and binding pattern differences were identified with edgeR
package. To cluster and visualize the different peaks, Complex
heatmap from R was used. Promoter regions were defined as -1kb
to +100bp from TSS and genomic distribution of binding sites
were identified by HOMER. Gene functional annotation was
performed using Database for Annotation Visualization and
Integrated Discovery (DAVID), with P <0.05 considered
as significant.

Data Availability
The p65 ChIP-Seq data is deposited in the Gene Expression
Omnibus (GEO) repository (GSE160856), TNFa bead array
gene expression data was published previously (available at
GSE65979), and SW480ERb input and HT29ERb input
controls (GSE149979).
RESULTS

First, to understand the role of p65 transcriptional activity and
oncogenic functions in CRC, we aimed to characterize its
genome-wide binding in human CRC cells and correlate this to
the TNFa-mediated transcriptional impact in the same cells. We
used two well-characterized human colorectal adenocarcinoma
cell lines: HT29 from a female primary tumor and SW480 from a
male Dukes’ type B primary tumor.
Frontiers in Endocrinology | www.frontiersin.org 3
The p65 Cistrome of Colon Cancer Cells
After optimizing the protocol for antibody specificity and
including a double cross-linking (DSG-formaldehyde)
procedure to capture long-range interactions of p65, we
analyzed the chromatin bound by p65 in triplicate experiments
of each cell line, HT29 and SW480. The sequencing produced
between 24M and 65M (80%) of high-quality mapped reads per
sample (Table S1). We identified a total of 12,504 (HT29) and
5004 (SW480) significantly enriched p65 peaks compared to
input (Table S1). Out of these, 3151 and 1459 binding sites were
found in HT29 and SW480 cells, respectively (Figure 1A).
Whereas more p65 chromatin-binding sites were detected in
HT29 cells overall, comparison between the two cell lines
revealed that 63% (919) of sites found in SW480 were also
found in HT29 (Figures 1A, B). We next used HOMER to
determine DNA motifs of the identified peaks. As expected, we
identified RELA as the top motif, followed by JUN-AP1, in both
cell lines (Figure 1C). This corroborates the specificity of the
antibody and the protocol. Further, the transcription factors
HNF4A and NFAT motifs were present in 3-5% of the HT29
binding sites, and FOXA1 and RUNX1 were relatively abundant
(12% and 17%) in the SW480 p65 cistrome. Thus, we present the
p65 cistrome of two different CRC cell lines and identify a shared
common core, as well as cell-line specific differences.

p65-Bound Genes Are Involved in
Migration and Circadian Clock
In order to decipher how the above identified p65 binding may
impact gene expression, we analyzed where the binding sites
were located in relation to known genes. We found a highly
similar pattern in both cell lines, with about 38% of sites located
within introns, 34% in intergenic chromatin regions, and 22%
within the promoter area (-1kb to +100bp from the transcription
start sites, TSS) of genes (Figure 1D). The top-20 most enriched
promoter sites in both cell lines include well-known p65 targets
such as NFkB regulators NFKBIB,NFKBIZ, TNFAIP3 (35), BCL3
(36), and BIRC3 (37, 38), NFkB subunits NFkB2 (p52) and
RELB, tumor suppressor p53, TNIP1, and CREB1 (Table S2).
p65-binding sites unique to either cell line also included well-
known p65 target genes (HT29: BCAR3, BIRC7, DUSP16,
PTGS2, and TNFAIP8; SW480: CDX2, CDH10, CLRN3, ESR1
(ERa), and KCNH3, Figures 2A, B). Pathway analysis of genes
bound by p65 (-50kb to +2kb of TSS) revealed that genes with
transcriptional regulatory functions (e.g. JUND), cell adhesion
and migration (e.g. WNT5B, BCAR1, TGFB1, CXCL16), NFkB
signaling, TNFa signaling, and apoptosis were enriched. This is
in accordance with general NFkB functions (39, 40). We also
identified a novel pathway, not previously associated with p65,
including circadian rhythm in both cell lines (Figure 1E).
Circadian rhythm genes bound by p65 included the central
circadian regulator CLOCK, BMAL2, CREB1, and KLF10. In
conclusion, we note highly concordant binding to cis-regulatory
chromatin in proximity of genes within expected functions and
further identify potential mechanism for p65 regulation of the
colon circadian rhythm.
March 2021 | Volume 12 | Article 650625
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p65 Recruitment Correlates With TNFa-
Regulated Gene Expression in CRC Cells
While binding of a transcription factor indicates a potential gene
regulation of nearby or distant genes, all such bindings do not
translate into actual gene regulation. To determine the effect p65
binding has on transcriptional regulation of corresponding genes
in CRC cells, we linked the p65 ChIP-Seq data to our previously
generated TNFa (2-h treatment) transcriptome data set of the
same cells (22). We found coordinated p65 binding and short-
Frontiers in Endocrinology | www.frontiersin.org 4
term TNFa regulation of 274 genes in HT29 and 82 genes in
SW480 cells (Figure 3A, Table S3). Out of these, 59 genes (72%
of those identified in SW480) were bound by p65 and regulated
by TNFa in both cell lines (Table S3). All 59 core genes were
upregulated by TNFa in both cell lines. Motif enrichment
analysis of the p65-bound and TNFa-regulated core genes
demonstrated significant enrichment for the p65 motif.
Overall, the TNFa-regulated genes associated with p65-binding
sites were mainly involved in the gene ontology functions of
A

B

D

E

C

FIGURE 1 | Genomic distribution of p65 binding sites in colon cell lines. (A) Identified p65 binding sites in three replicates of colon cancer cell lines HT29 and
SW480 with those detected in at least two replicates used for further analysis and highlighted (top), and their overlap between cell lines (bottom), represented using
Venn diagram. (B) Heatmap representing p65 binding sites in the two cell lines. (C) Motifs highly enriched in p65 binding sites identified by HOMER using de novo
motif analysis and sorted by p-value. (D) Genomic distribution of p65 binding sites in relation to gene locations. (E) Biological functions enriched in genes nearest
p65 binding sites (-50kb +2kb).
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NFkB signaling, TNFa signaling, and inflammatory pathways.
These included regulations and binding of known NFkB target
genes (BCL3, CCL20, CXCL1, CXCL8, and NFKBIA, Fig 3B-C).
Other known targets were differently bound and regulated in
HT29 (BCL11B, DUSP16, KLF6, RELA) and SW480 (IL23A,
PRRG1) cells (Table S3). In conclusion, this data clearly shows
a strong transcriptional activity by p65 in both CRC cell lines,
with p65-bound and regulated genes involved in critical CRC
pathways, including apoptosis and cell migration.

p65 Cistrome Differs Between Colon and
Breast Cancer Cell Lines
To explore the extent that p65 binding is conserved between
colon and breast cancer, we compared our generated p65
cistrome (colon) with previously published p65 ChIP-Seq data
of the ER-positive breast cancer cell line MCF7. We selected a
data set that also used double crosslinking (41). A heatmap
illustrating p65 chromatin-binding sites in MCF7, HT29 and
SW480 cells are shown in Fig 4A. Only 22% (230 sites) of MCF7
p65 binding sites were present in either CRC cell line (Figure
4B). Also, a markedly lower fraction of p65 sites were located by
promoters in MCF7 cells (12% versus 21-22%, Figure 1D). The
predominant motifs in MCF7 were NFkB (p65) itself, supporting
accuracy of this data set, but were otherwise different (FOXA and
AP2, Figure 4C) from colon (AP1, Figure 1C). The enriched
biological functions for p65 sites specific for MCF7 also included
apoptosis, transcription regulation, cell cycle, and circadian clock
(Figure 4D). Thus, our study shows a cell specificity of p65
Frontiers in Endocrinology | www.frontiersin.org 5
binding, where it binds different motifs and regulates different
genes in different tissues or cell lines, but the biological functions
of the regulated genes appear to have similar roles in cancer
cell lines.

ERb Diminishes p65 Chromatin Binding in
HT29 Cells
Next, we aimed to study whether the mechanism whereby
estrogen impacts inflammatory signaling in colon involves p65
chromatin binding. As we have previously found that ERb can
attenuate pro-inflammatory cytokine IL6 signaling in CRC cell
lines (23) and regulate several important NFkB target genes and
TNFa signaling in vivo (22), we explored whether ERb impacts
the p65 cistrome. We performed p65 ChIP-Seq in the same CRC
cells, with and without (mock) expression of ERb. In HT29, we
found that whereas 1721 sites remained bound by p65 in both
conditions, 1430 p65 binding sites were no longer detected in
presence of ERb. Further, a smaller fraction of 228 new binding
sites were identified, only in presence of ERb (Figure 5A). Using
density plot, we noted that ERb reduced the overall p65 binding
in all three replicates (Figure 5B). We also analyzed this using a
sliding window approach, with a window of 200 bp and calling
for enriched regions between mock and ERb, and identified the
same trend (Figure 5C). Next, to investigate whether specific
p65-binding motifs were affected by ERb, we performed de novo
motif analysis. The predominant p65 motifs in HT29 remained
both in the absence and presence of ERb (p65, AP-1, HNF4A,
Figure 5D). Thus, the presence of ERb reduced p65 chromatin
A

B

FIGURE 2 | p65 chromatin binding sites. Peaks of p65 chromatin binding mapped to gene sequences in HT29 (A) and SW480 (B) cells using UCSC genome
browser. Bp indicates distance from corresponding gene’s TSS.
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binding and affected its distribution (numerous sites
disappeared) but did not affect the type of motifs bound.
Corresponding pathway analysis indicated that ERb hindered
p65 chromatin binding to genes with activities in cell adhesion,
migration and circadian clock, while enabling binding by genes
related to cell proliferation and Notch signaling (Figure 5E).

We also compared the p65 ChIP-Seq data with corresponding
TNFa gene expression data, with and without ERb (Figure 5F).
We identified that 162 of p65-bound genes were regulated by
TNFa differently in presence of ERb. Among those, ERb also
inhibited p65 binding by 51 genes and enhanced binding of 7
genes. A heatmap illustrates how ERb and resulting lack of p65
Frontiers in Endocrinology | www.frontiersin.org 6
binding, affects TNFa-mediated regulation of these 51 genes
(Figure 5G). Notably, presence of ERb either inhibited TNFa-
mediated response (50%), or enabled TNFa induction (31%) for
the majority of these genes. These genes were mainly involved in
functions such as negative regulation of transcription, negative
regulation of cell proliferation, and chromatin remodeling. The
seven genes where ERb enhanced p65 binding were also
impacted in terms of TNFa-mediated gene expression (Figure
5H). For example, ERb enabled p65 binding and TNFa
upregulation of TSC22D1 and binding fol lowed by
downregulation of ZNF341, but blocked (presumably through
p65 recruitment) TNFa-mediated upregulation of VEGFA,
A

B

C

FIGURE 3 | p65 transcriptional regulation in colon cell lines. (A) Number of genes with p65 chromatin binding sites and corresponding transcriptional regulation
upon TNFa (10ng/ml, 2 h) treatment, per cell line. (B) The top-10 TNFa upregulated and downregulated genes with p65 binding sites in both cell lines (HT29,
SW480). (C) Enrichment signal of p65 binding sites present in both cell lines, illustrated using UCSC genome browser.
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AGO2 and IGFL4. We thus identified that ERb reduces a sizeable
fraction of p65 binding, modifying TNFa regulation in HT29
cells, especially for genes involved in e.g. cell proliferation and
cell-cell adhesion.

ERb Enhances p65 Chromatin Binding in
SW480 Cells
Similarly, we explored the impact by ERb on p65 chromatin
binding in SW480 cells. Contrary to HT29, few binding sites
were decreased upon introduction of ERb and nearly all (1433
sites) remained. However, a high number (5796) of new p65
binding sites appeared in presence of ERb (Figure 6A). This
enhanced p65 binding was also evident for all replicates in the
density plot (Figure 6B). Pathway analysis showed that p65
binding sites dependent on ERb were located by genes involved
primarily in transcription regulation, GTPase activity, apoptotic
process, protein phosphorylation, cell migration, and MAPK
cascade (Figure 6C, right panel). The p65 and AP-1 motifs
remained highly enriched in SW480 ERb, but we note that
RUNX2 motifs were more common when ERb was present
(Figure 6D). RUNX2 is also upregulated by ERb (23).

In terms of gene expression, ERb modulated transcription of
110 TNFa-regulated genes that also had p65 binding sites in
SW480ERb cells (Figure 6E). About half of these (53 genes) had
p65 bound by regulatory chromatin only in presence of ERb. The
corresponding TNFa-mediated gene regulation is illustrated in a
heatmap (Figure 6F). Interestingly, ERb (presumably by
recruiting p65 to the chromatin) inhibited the TNFa activation
of the majority of these genes (56%, or 30 genes). Another 16
TNFa-response genes required ERb and resulting p65 binding
for their induction (Figure 6F), including DUSP5 [which
regulates inflammatory gene expression of TNFa (42)], nuclear
receptor NR2F6, and KLF9. Gene ontology enrichment reveals
that genes within cell proliferation and cell migration were
enriched among the p65 regulations modified by ERb in
Frontiers in Endocrinology | www.frontiersin.org 7
SW480 cells. Despite the finding that ERb enhanced p65
binding in SW480 cells, the resulting transcription of these
genes was mostly inhibited. ERb also modulated expression of
p65-bound TNFa-regulated genes, without impacting p65
chromatin binding (57 genes). Among these, expression was
attenuated in most (24), and enhanced in some (14). Genes
suppressed by ERb included BCL3, BIRC3, CCL20, NFkB2 and
RELB (Figure 6G), all of which are associated with poor
prognosis in CRC (43–47).

Thus, ERb clearly modulates p65 binding and TNFa response
also in SW480 cells. ERb appeared to enhance p65 binding, but
still repress TNFa transcriptional activity.

ERb Modulates p65 Signaling in Colon
Cells
From the above findings, we conclude that ERb impacted p65
binding in both CRC cell lines, partly in different ways but with
similar outcome in terms of TNFa-mediated gene regulation.
Here, we compare p65 chromatin binding (ChIP-Seq data)
between the two cell lines, with and without ERb (Figure 7). A
heatmap illustrates the reduced p65 binding upon ERb
expression in HT29, and the enhancement noted in SW480
(Figure 7A). A Venn diagram comparing p65 binding in the
four conditions (HT29 and SW480 with and without ERb,
Figure 7B) shows that a large fraction of p65 sites (727 sites)
are bound in all conditions, and 77 sites are enhanced by ERb in
both HT29 and SW480. ERb appears to enable p65 binding 56
kb downstream of TSS of PROX1 in both cell lines (Figure 7D).
PROX1 is a transcription factor highly upregulated in colon
cancers and previously shown to be regulated by ERb post-
transcriptionally through miR-205 (21). Overall, 15 genes were
bound by p65 and regulated by TNFa, both in absence and
presence of ERb, in both cell lines (Table S4). Out of these, the
TNFa response of 12 genes was modulated in opposite
direction by ERb in HT29 and SW480 cells, which include
A B

D

C

FIGURE 4 | p65 cistrome in colon vs breast. (A) Heatmap illustrating p65 binding sites in breast (MCF7) and colon cancer cell lines (HT29, SW480). (B) Venn
diagram comparing the p65 binding sites in MCF7, HT29, and SW480 cells. (C) DNA motifs located in MCF7-specific p65 binding sequences (D). Pathways
enriched among the gene ontology functions assigned to genes located nearest to MCF7-specific p65 binding sites.
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important target genes such as BIRC3, CXCL1, CXCL8 and
PDGFB (Figure 7C). We further identified 596 p65 binding
sites opposed by presence of ERb in HT29 but, in contrast,
bound only in presence of ERb in SW480 cell line (Figure 7B).
This core set of genes includes the well-known p65 interacting
protein AP-1, NFIB, and circadian clock genes (CLOCK,
Frontiers in Endocrinology | www.frontiersin.org 8
CXCL10, RUNX1, TP53I11, NFIB, BMAL2/ARNTL2, Figure
7D). Altogether, these results indicate that in addition to
conserved patterns there are also considerable cell specific
differences in p65 binding between HT29 and SW480 cells,
and that ERb impacts the p65 cistrome and TNFa response in
both cell lines.
A B

D

E

F G H

C

FIGURE 5 | ERb diminishes p65 chromatin binding in HT29 cells. (A) Venn diagram comparing p65 binding sites in HT29 cells with and without expression of ERb.
(B) Density plot representing the distribution of p65 tag densities in three replicates each of HT29 cells with and without ERb. (C) Volcano plot highlighting statistically
significant differences of p65 binding in HT29 cells in presence and absence of ERb, using sliding window approach. (D) Motifs highly enriched in p65-bound
sequencing in HT29 cells only in absence of ERb, regardless of ERb expression (core genes), and only in presence of ERb, respectively. HOMER was used to
identify genomic distribution and motifs of p65 binding sites across the genome. (E) Biological functions enriched among genes located nearest to p65 binding sites
in HT29 cells depending on ERb expression. (F) Overlap of genes located nearest to the p65 binding sites and those genes where ERb expression impacted TNFa
gene response in HT29 cells. (G, H) Heatmap representing ERb modulation of the TNFa-regulated genes, of genes located nearest to p65 binding that was
(G) inhibited and (H) enhanced by ERb in HT29 cells. Z score values were calculated from the logarithmic fold changes, which represent a value’s relationship to the
mean of a group of values. A positive Z score indicates the values above the mean and negative if it is below the mean.
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DISCUSSION

Activation of NFkB in the intestinal epithelia can lead to colitis-
induced CRC (48). Our study attempts to understand the molecular
mechanisms behind the CRC promoting role of inflammation, by
studying the cistrome of p65 and investigating how this is impacted
Frontiers in Endocrinology | www.frontiersin.org 9
by ERb. We characterize the p65 genome-wide chromatin binding
in two different CRC cell lines, and specify similarities and
differences. We find that presence of ERb impacts p65 binding
and corresponding TNFa-mediated transcription.

Our work emphasizes that NFkB binds primarily through
RELA and JUN-AP1 motifs in cells with a colon origin. Genes
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FIGURE 6 | ERb enhances P65 chromatin binding in SW480 cells. (A) Venn diagram of p65 binding sites in SW480 cells with and without expression of ERb.
(B) Density plot representing the distribution of p65 tag densities in three replicates each of SW480cells with and without ERb. (C) Biological functions enriched
among genes located nearest to p65 binding sites in SW480 cells depending on ERb expression. (D) Motifs highly enriched in p65-bound sequencing in SW480
cells only in absence of ERb, regardless of ERb expression (core genes), and only in presence of ERb, respectively. HOMER was used to identify genomic
distribution and motifs of p65 binding sites across the genome. (E) Overlap of genes located nearest to the p65 binding sites and those genes where ERb
expression impacted TNFa gene response in HT29 cells. (F, G) Heatmap representing ERb modulation of the TNFa-regulated genes, of genes located nearest to
p65 binding that (F) required ERb or (G) was not affected by ERb. Z score values were calculated from the logarithmic fold changes, which represent a value’s
relationship to the mean of a group of values. A positive Z score indicates the values above the mean and negative if it is below the mean.
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nearest to p65-bound chromatin were involved in
inflammatory response, cell proliferation, cell migration, and,
interestingly, circadian clock (BMAL2, CLOCK). A previous
study has shown that dysregulation of circadian rhythm
increases the risk for colorectal cancer (49). Indeed, CLOCK
gene mutations have been identified in 53% of CRC with
microsatellite instability (MSI) (50). Moreover, another study
identified that mutations in the CLOCK1 gene increased the
risk of developing CRC (51). In breast cancer cells, several
studies identified a link between circadian genes and NFkB
signaling pathway (52, 53). In colon cancer, two studies have
shown that REV-ERB-a through NFkB modulates circadian
Frontiers in Endocrinology | www.frontiersin.org 10
clock and reduced DSS-induced colitis (54, 55). In our recent
studies, we have showed that ERb can modulate the impact of
TNFa-NFkB activity in CRC cell lines and in vivo using the AOM-
DSS mouse model (22). We have also demonstrated that intestinal
ERb regulates the expression of the circadian clock gene Bmal1
(Arntl1) in colon of HFD-fed mice (56). Here, in addition to
identifying p65-binding sites, we demonstrate that the activation
of the TNFa-NFkB axis impacts the expression of circadian genes.
Moreover, we show that ERb interferes with the general p65
chromatin binding, including the circadian genes CLOCK and
BMAL2 (Figure 7C). Taken all this into account, our
interpretation is that p65 modulates circadian genes in the colon
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FIGURE 7 | ERb influences P65 chromatin binding in colon cancer cells. (A) Heatmap representing p65 chromatin binding over the genome in absence or presence
of ERb, in HT29 and SW480 cells. (B) Venn diagram comparing p65 chromatin binding sites in HT29, SW480 cell lines with and without ERb. (C) Heatmap
illustrating the impact of ERb on TNFa modulated genes with identified p65 chromatin binding sites in HT29 and SW480 cells, respectively. Z score values were
calculated from the logarithmic fold changes, which represent a value’s relationship to the mean of a group of values. A positive Z score indicates the values above
the mean and negative if it is below the mean. (D) Examples of p65 chromatin binding sites that was identified only in presence of ERb in SW480 cell lines, but
bound the same sites in HT29 in absence of ERb and p65 chromatin binding sites enhanced by ERb in both HT29 and SW480 cells illustrated using the UCSC
genome browser.
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in the pro-inflammatory pro-tumorigenic condition, and that ERb
can change this and thereby oppose the inflammatory condition
that drives development of colon cancer.

Interestingly, p65 chromatin binding appears relatively
distinct between the two CRC cell lines, in support with the
fine-tuned cell-specific manner whereby NFkB controls
transcriptional regulation. The cell lines are indeed different in
several respects. While both are derived from primary colon
adenocarcinomas, the HT29 cell line is derived from a likely pre-
menopausal (44-year-old) woman, whereas SW480 originates
from a 50-year-old man (57, 58). We have also reported sex
differences in the non-tumor and tumor transcriptome of CRC
patients, which impacted biomarker discovery (59). The different
female-male origin of the cell lines used here, may indeed impact
the different regulation of p65 cistrome or its modulation by
ERb. However, further studies are needed to clarify this.
Moreover, HT29 cells are CIMP (CpG island methylator
phenotype) positive, and SW480 cells are CIMP negative.
Aberrant methylation of the CpG islands has been shown to
impact chromatin binding and accessibility to transcription
factors (60, 61). Their mutational profile also differs, with
HT29 having mutations in BRAF (V600E), PIK3CA (P449T),
and p53 (R273H), and SW480 in KRAS (G12V) and p53 (double
mutant alleles R273H and P309S, however still retaining
functionality of many p53-associated pathways) (62, 63). These
proteins are important transcriptional regulators that can also
influence the binding of transcription factors (64, 65). In parental
CRC cell lines HT29 and SW480, neither ERa nor ERb is
expressed, while MCF7 cell line expresses ERa, which has been
shown to interact with p65 (24). These factors may all modulate
the p65 cistrome.

While the p65 binding pattern was similar between the two
CRC cell lines, the p65 cistrome of breast cancer cell line MCF7
was more distinctly different. One of the well-known interaction-
partner of p65 is the p53 protein (65). Recently, it was shown that
mutant p53 enhances NFkB activity in mice, leading to chronic
inflammation and associated CRC (65). Another study
demonstrated that p53 mutants directly interact with NFkB in
SW480 cells (15). MCF7 cell line has wild type p53, whereas both
HT29 and SW480 cells express the R273H p53 mutant protein,
which inhibits DNA binding (66, 67). Hence it is possible that the
p53 status impacts p65 cistrome in these cell lines, and further
studies are needed to explore this hypothesis.

We have previously shown that TNFa triggers a
transcriptional response in both CRC cell lines, and that ERb
modulates this (22). Here, we correlate the transcriptional
response with p65 chromatin binding sites, and how ERb
modifies the p65 cistrome. To be noted, in order to optimize
experiments, different treatments times and concentrations of
TNFa were used in ChIP-Seq (30 ng/ml, 30 min) and for
transcriptional analysis (10 ng/ml, 2h). Further, the transduced
ERb is expressed at higher levels in SW480 compared to HT29
(1.8 times more), and previous data suggests that TNFa may
increase transactivation of ERb (22). These factors may all
influence the kinetics of the mechanisms described here, but
are not expected to have a major influence on the mechanism
Frontiers in Endocrinology | www.frontiersin.org 11
per se. Our findings offer mechanistic underpinnings of how
inflammation modulates specific signaling pathways and how
ERb can attenuate cytokine-induced carcinogenic response in
CRC cells.

The strength of this study includes the genome-wide
approach to decrypt these interactions, which together with the
validated high-quality ChIP-Seq data generates unbiased and
reliable data. The significance of these findings is reinforced by
the use of two different CRC cell lines and the comparison with
transcriptional impact, as well as comparisons between our
results and published data generated from cells of other origin.
A shortcoming includes the use of exogenous expression of ERb
in the CRC cell lines. However, cell lines mostly lack endogenous
expression of ERb (21, 22). Further, it may be preferable to use
non-tumor colonic cell lines, as one aim of the study was to
investigate how p53 can prevent CRC through its impact on
NFkB signaling. However, a key interest was also to decipher the
oncogenic NFkB signaling in CRC, and along with the lack of
suitable non-tumor cell lines at hand, and our access to highly
characterized cell lines with exogenous expression of ERb, this is
the balance we chose. Further, the difference of antibodies used
between our study and the breast cancer tissue study (41), may
contribute to the differences found.

In conclusion, we provide a mechanistic foundation for a
better understanding of how estrogen influences inflammatory
signaling through NFkB in CRC cells.
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