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Somatostatin (SST) and somatostatin receptors (SSTRs) play an important role in the
brain and gastrointestinal (GI) system. SST is produced in various organs and cells, and
the inhibitory function of somatostatin-containing cells is involved in a range of
physiological functions and pathological modifications. The GI system is the largest
endocrine organ for digestion and absorption, SST-endocrine cells and neurons in the
GI system are a critical effecter to maintain homeostasis via SSTRs 1-5 and co-receptors,
while SST-SSTRs are involved in chemo-sensory, mucus, and hormone secretion,
motility, inflammation response, itch, and pain via the autocrine, paracrine, endocrine,
and exoendocrine pathways. It is also a power inhibitor for tumor cell proliferation, severe
inflammation, and post-operation complications, and is a first-line anti-cancer drug in
clinical practice. This mini review focuses on the current function of producing SST
endocrine cells and local neurons SST-SSTRs in the GI system, discusses new
development prognostic markers, phosphate-specific antibodies, and molecular
imaging emerging in diagnostics and therapy, and summarizes the mechanism of the
SST family in basic research and clinical practice. Understanding of endocrines and
neuroendocrines in SST-SSTRs in GI will provide an insight into advanced medicine in
basic and clinical research.

Keywords: somatostatin, somatostatin receptor, inflammation response, enteric nervous system, gastrointestine (GI)
INTRODUCTION

Somatostatin (SST-14,28) is considered a universal endocrine molecule and a peptide hormone in
the central nervous system (CNS), peripheral nervous system (PNS), and enteric nervous system
(ENS) (1–5). It inhibits via different subtypes of SST receptors, and belongs to the superfamily of G
protein-coupled receptors (GPCR) with 7-transmembrane domains. There are five SST receptors
(SSTR1-5 and two isoforms SSTR2A, 2B), which are broadly expressed in the brain, spinal cord,
dorsal root ganglion (DRGs), and ENS (1–6). The gastrointestinal (GI) system is recognized to be
n.org March 2021 | Volume 12 | Article 6523631
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the largest endocrine organ for digestion and absorption by
exocrine, endocrine, paracrine, and autocrine secretory effects
in animals during GI physiological and pathophysiological
processes. There are various SST-endocrine-cells embedded in
the GI tract, which release gastrointestinal hormones to regulate
GI function, such as SST producing-D cells from the stomach,
intestine, and pancreas. SST in the GI system is involved in the
inhibition of secretory activity and intestinal motility, blood flow,
inflammation response, conduction of pain and sensation, and
modulation of the release of hormone factors and other
neurotransmitters, while SST-SSTRs mediate the release of
gastric juice, intestinal juice, gastric acid, and other hormones
via other endocrine factors (7–9). In addition, SST-SSTRs in
non-GI tracts also are involved in digestion and absorption
functions, such as the pancreas, liver, and gallbladder (10–12).
The pancreas, containing SST producing-D cells, secretes the
larger number of digestive liquids with digestive enzymes to
mediate digestion and the absorption process. SST-SSTRs play
an important role in the GI system via the neuroendocrine
system. SST release from the GI is controlled by the vagus
nerve and various local ENS neurotransmitters (13). SST-
SSTRs of the brain and pituitary also impact on GI function
via SST-SSTRs in the brain-gut axis and circulatory blood (14,
15). Advanced agonists and antagonists of SST-SSTRs are most
commonly used in basic research and clinical practice (6, 16, 17),
but the underlying mechanism is not fully understood. This
mini-review will focus on the versatile functions of SST-SSTRs in
the gastrointestinal system, and specifically in current
advanced medicine.
SST AND SSTRs IN GASTROINTESTINAL
SYSTEM

SST and SSTRs are widely distributed in the GI system of the GI
tract and non-GI tract (Table 1), while major endocrine cells
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(Enteric endocrine cells, EEC) and D cells in the stomach,
intestine, and pancreas produce SST (7, 10). 90% of SST cells
in the GI tract are endocrine cells, while 10% are neurons in the
ENS (5). SST-SSTRs have an inhibition effect on the
physiological functions of digestion and absorption in the GI
system (8, 9). SST release from the pituitary and SST in
circulatory blood could modulate GI function via its receptors.
SST-ENTERIC ENDOCRINE CELLS AND
NERVOUS SYSTEM IN THE
GASTROINTESTINAL TRACT

In the stomach, there are parietal cells, chief cells, neck mucous
cells, G cells (Gastrin), delta (D) cells (Somatostatin), X cells
(Ghrelin), and enterochromaffin-like cells (ECL, Histamine) for
chemical digestion. SST is secreted mainly by delta cells of gastric
mucosa. Closed-type SST-D-cells in corpus inhibit parietal cells,
ghrelin cells, and ECL cells, and open-type SST-D-cells in antrum
inhibit gastrin (G) cells and chief cells via paracrine inhibition. In
SST transgenic mice, SST secretion from SST-D-cells is regulated
by hormones, neurotransmitters, neuropeptides, and metabolites
(17). In SST-cre mice, many signaling receptors of peptide YY
(PYY), gastric inhibitory polypeptide receptor, cholinergic
receptor muscarinic 4, calcitonin receptor-like receptor, trace
amine receptor 1, and calcium-sensing receptor (Casr) are
identified and highly enriched in SST-D-cells in the gastric
epithelium by transcriptomic analysis (17, 33). SSTR2 is
expressed on endocrine cells and intramural, myenteric, and
mucosal nerve fibers, while SSTR1 and 3 are mainly distributed
on smooth muscles and neuronal cells of submucosal and
myenteric ganglia; these ganglia also contain SST+ neurons (5).
5-hydroxytryptamine (5-HT) is a marker for EEC of the GI
mucosa; small proportions of 5-HT cells also containing gastrin
or SST can be found in the stomach, and glucagon-like peptide
TABLE 1 | Distribution of SST and SST receptors in the gastrointestinal system.

Organ Cell/Tissue Humoral SST SSTR References

Salivary gland + (18)
Oesophagus S.P and M.P Saliva + + - + - - (5, 19)
Stomach S.P

D cells
Gastric juice + + +

+
+ + -
+

(5, 8, 9, 20–22)

Small intestine S.P
M.P
EEC

Intestine juice + + -
+
+

+ + -
+
+

(5, 20)

Large intestine S.P
M.P
D cells

- + +
+
+

+ +
+
+

(5, 20, 22)

Liver Gallbladder - + - - + + (11, 12, 23)
Pancreas D cells

Cilia
Pancreatic juice + + +

+
+ + -
+

(24, 25)

Brain (Pituitary) somatotropin cell - + + + + (26–28)
Blood vessels smooth muscle cell Circulatory blood + + + + + - (15, 29)
Spinal dorsal horn (R4) DRG - + + + + (18, 30–32)
Mar
ch 2021 | Volume 12
S.P, submucosal plexus; M.P, myenteric plexus; + expression; - not reported; EEC, enteroendocrine cell; DRG, dorsal root ganglion.
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(GLP-1) or SST in the large intestine (34). SST-positive (SST+)
neurons in the ENS are changed in pig diabetes model
(Streptozotocin); SST+ neurons increased only in the
submucosal plexus in corpus of the stomach, and in the
myenteric and submucosal plexus in all segments of the small
intestine, but SST+ neurons decreased in the descending colon
(20). In female pig stomach, SST+ immunoreactive neurons in the
prepyloric area were increased in gastritis model (Aspirin, orally,
100mg/kg), in hyperacidity model (0.25MHCl intragastrical, 5ml/
kg), and partial stomach resection model (21). Deletion of SST in
multiple endocrine neoplasia type 1 (MEN-1) null mice caused
hypergastrinemia and gastric carcinoids (35). After 12 ws-15%
fructose in drinking, SST-D-cells were diminished in gastric
corpus and increased in the antrum in male-Wistar rats (36).
C-X-C motif chemokine ligand-14 (CXCL14) immunostaining
endocrine cells and SST+ cell and nerve fibers co-expressed at
the lamina propria and submucosal and muscular layer from
the stomach to rectum in mice (37). This indicated that the
mechanism of SST might involve immune function and
inflammation response and crosstalk. There is localization of
muscarinic acetylcholine receptors (M4) on D-cells in the mice
stomach, and serum SST levels in M4-KO-mice were higher than
WT-mice; the activation ofM4-receptors inhibits SST release from
D-cells and minimizes SST inhibition for gastric acid release
through SSTR2, which in turn enhances acid response by M3-
receptors on parietal cells (38). In pig stomach tissues, the study
demonstrated amino acids can increase gastrin and SST secretion,
and the Casr-dependent pathway modulated H+-K+-ATPase
activity (39).

In the small intestine, SST-D-cells are located in the lamina
propria and between the epithelial cells of the crypts, while the
SST+-neurons are located in the submucosal and myenteric
plexus and innervate intestinal smooth muscles, submucosal
layer, and the mucosa. SST+ neurons are type-II-Dogiel cells
with branched dendrites and one long axon (5, 7). EEC expressed
urotensin 2B in the jejunum and colon; these cells inhibit GLP-1
secretion through SSTR5 in a paracrine manner (40, 41).
Occasionally SST-cell will colocalize with 5-HT in mice small
intestine (34). The transcription factor “aristaless-related
homeobox” (Arx) is specifically expressed in intestinal
endocrine cells. In neonatal Arx-KO mice, many intestinal
hormones, such as cholecystokinin, secretin, neurotensin,
glucose dependent insulinotropic peptide, GLP-1, and GLP-2,
did not express in GI, but SST and chromogranin A (CGA) were
significantly upregulated in the duodenum. Also there is loss of
lipid transport in duodenal enterocytes, more lysozyme-positive
Paneth cells, and increased-antimicrobial peptides in the
steatorrhea mice (42). In mouse constipation model (Carbon
bioactivated), Lactobacillus fermentum CQPC03 (LF-CQPC03)
relieved constipation symptoms in mice, and serum levels of SST
were lower, and levels of gastrin, endothel in, and
acetylcholinesterase were higher in mice after CQPC03
treatment (43). In arthritic-rats (Curcumin,100mg/kg, oral),
SST secretion elevated from the endocrine cells in the small
intestine, and SST exhibited an anti-arthritic effect via cAMP/
PKA and Ca2+/CaMKII mechanism. SST depletor (CSH) and
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non-selective SST receptor antagonist (C-SOM) abolished the
inhibitory effect of curcumin on arthritis (44), this supported the
hypothesis that SST from GI mediates the inflammation
response. In hereditary transthyretin amyloidosis patients
undergoing evaluation for liver transplantation, SST
(Octreotide) administration induced fasting motility with more
daytime phase III migrating motor complexes, and higher
frequency of low-amplitude complexes in 24h duodenojejunal
manometry; there was a delay in SST (Octreotide) response in
late-onset patients (50 years of age) (45).

In guinea pig large intestine, round or oval SST-neurons in
the submucous plexus have oral projections, and in myenteric
plexus both have oral and caudal projections. SST-neurons in the
proximal colon are more abundant in the submucosal plexus as
compared to the myenteric plexus, and in the distal colon
myenteric plexus SST-neurons are denser and have visible
varicosities. Two types of SST-neurons have been identified in
pig: type-V descending interneurons located in the myenteric
and outer submucosal plexus and type-IV neurons secretomotor
neurons in all types of intramural plexuses (5). In the colon, there
was a lower number of epithelium SST-cells in colitis (Dextran-
sulfate-sodium-induced) rat model and higher epithelium SST-
cells in colitis (Trinitrobenzene sulfonic acid) rat model (46, 47).
In colitic-mice, SST (Octreotide) stimulated colonic sodium/
hydrogen exchanger 8 (NHE8) expression, while SSTR2
agonist (Seglitide) and 5 agonist (L-817/818) restored NHE8
expression via by suppressing ERK1/2 phosphorylation (48). SST
exposure (LS174T-cells) stimulated colonic MUC2-mucin2
expression and mucus secretion in human goblet-like cells, this
was blocked by SSTR5 siRNA transfection and SSTR5 antagonist
(L817/818) (49). Colon tissue from selenoprotein glutathione
peroxidase 2 (GPx2) knockout mice, under selenium deficiency
or adequate Se supplementation, showed a downregulation of
SST mRNA expression (50). GPx2 might be important for
intestinal epithelium function. By single cell transcriptomic
profiling from the colon, seven EEC subgroups were identified,
four clusters expressed high levels of Tph1 (ECM-cells, 50%),
two clusters were enriched for proglucagon (GCG) and PYY
(L-cells, 40%), and the last cluster expressed high levels of SST,
which is characteristic of D-cells (10%) (51). After change in
dietary habits in irritable bowel syndrome (IBS) patients, there
was an increase in SST-cells in the rectum epithelium and
symptomatic relief (52, 53). Oral treatment (Lactobacillus
plantarum ys2) in carbon-induced constipation Kunming mice
reduced serum SST level, promoted gastrointestinal peristalsis,
and reduced the first black stool defecation time (54). SST
immunoreactive neurons co-expressed with P2X1-receptor
(ATP receptor) was detected in mouse myenteric and
submucosal plexuses (55). Using intrinsic markers targeting
vagal and spinal sensory, sympathetic, and parasympathetic
axons, the spatiotemporal map showed extrinsic axons project
along the myenteric plexus and keep intimate contact with
enteric neurons in whole gut in mice E9.5-E16.5 (56). This
proposed that SST-neurons can crosstalk with other
neurotransmitters in the parasympathetic and sympathetic
system and ENS of the gastrointestinal tract.
March 2021 | Volume 12 | Article 652363
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SST-ENDOCRINE CELLS IN
NON-GASTROINTESTINAL TRACT

Somatotropic cells in the pituitary control GI function via brain-
gut axis and circulation. Classical SST and growth hormone-
releasing-hormone receptor (GHRH) in the hypothalamus
affects negative and/or positive control growth hormone (GH)
transcription and release in mammals. Currently, the structural
and functional connection between Pomc-neurons and the
somatotropic hypothalamo-pituitary axis have been reported in
larval zebrafish. Excessive feeding induced leptin resistance and
decreased-Pomc expression; Pomc-neurons stimulating SST-
neurons result in reduced-growth hormone. So, SST-neurons
mediate faster somatic growth, this suggests that a Pomc-SST-
GH axis might be involved in metabolism and homeostasis (57).
Both SSTR2 and SSTR4 in the hippocampus selectively inhibit
HPA axis activation induced by stress but regulate anti-
depressive and anti-anxiety effects through different
mechanisms in rats (26). SSTR5 modifies HPA axis stress
response and attenuates cort icotroph responses to
corticotropin releasing factor (CRF) by post-transcriptionally
suppressing CRFR1 expression and function via miR-449 (27).
In pituitary AtT20-cells, CRF (100nM) induced rapid Rab10-
dependent resurfacing of endocytosed SSTR2 via CRFR1,
providing a feedback mechanism to inhibit CRFR signaling
(28). Hypoxia stimulated expression of SSTmRNA and protein
in the periventricular nucleus of the hypothalamus and
decreased GH release from pituitary and body weight gain in
rat. CRFR1 and SST were involved in downregulated-mRNA of
pituitary GH and upregulated-mRNA of hepatic insulin-like
growth factor-I (58–61). The activation of central SST
signaling induced a robust stimulation of food and water
intake via SSTR2. Brain SST contributes to the orexigenic and
dipsogenic responses during the dark-phase in rodents (62). SST
released from the capsaicin-sensitive sensory nerves mediates
analgesic and anti-inflammatory effects via the SSTR4-receptor,
while orally novel SSTR4 agonists exert a potent anti-
hyperalgesic effect in chronic neuropathy mice model (30).

In addition, SST, secreted by pancreatic D-cells (d-cells), is a
powerful paracrine inhibitor for insulin and glucagon secretion
(from a-cells and b-cells). D-cells comprise only ~5% of the cells
of the pancreatic islets. Some factors (Insulin, Glucagon,
Urocortin 3, and GABA) released by neighboring a-cells or b-
cells amplify the glucose-induced effects on SST secretion from
D-cells, and SST acts locally within the islets as a paracrine or
autocrine inhibitor of insulin (10). Glucose stimulates SST
secretion in d-cells via cAMP-dependent [Ca2+]i release (63).
SST-D-cells contain ATP-sensitive K+ channels which close at
high glucose levels; this closure channels initiate membrane
depolarization and increase SST secretion (63). Meanwhile,
stimulation of SST secretion also depends on sodium/glucose
cotransporter 2 (SGLT2), by which insulin can inhibit glucagon
release by an indirect paracrine mechanism (64). After the
ablation of insulin-secreting b-cells in mice, some glucagon-
producing a-cells and SST-producing D-cells become insulin-
expressing cells (65). a-cells can reprogram to produce insulin
Frontiers in Endocrinology | www.frontiersin.org 4
from puberty through to adulthood to aged individuals, even a
long time after b-cell loss in mice, whereas only juvenile’s SST-
producing-D-ce l l s convert to insul in producer by
dedifferentiation, proliferation, and re-expression of
developmental regulators [FoxO1 (Forkhead box protein O1)
and downstream effectors] (24). The multiple intra-islet cell
interconversion mechanisms offer new insight for future
clinical therapy. Reduced SST secretion in isolated islets
induced hypersecretion of glucagon in high fat diet-fed female
mice, however, this cannot be suppressed by exogenous SST
(SST-14, 1.34mL/min/mg pancreas) (66). Cilia in pancreatic
tissues are hubs for cellular signaling and are involved in
proper development of pancreatic epithelium and b-cell
morphogenesis via SSTR3. A paracrine negative feedback role
for b-cell ciliary SSTR3 regulates insulin secretion.
Immunohistochemical and electron microscopic study found
abundant SSTR3-expressing solitary cilia in insulin- and GH-
secreting cells in mouse. SSTR3 was restricted to the plasma
membrane of cilia, but not at the cell body. The primary cilia in
the islet-cells were longer than those in the pituitary cells and
extended for a long distance in the intercellular canaliculis
endowed with microvilli (25). The study demonstrated the
mechanisms of tight glycemic control in islet-D-cells, mice
urocortin-3 co-released with insulin, and increased glucose-
stimulated SST secretion via cognate receptors, this indicated
SST-dependent negative feedback control of insulin
secretion (67).
MECHANISMS OF SST–SSTRs IN
ENDOCRINE CELLS

SST is a cyclic hormone-release inhibitory peptide with 2-3
minutes half-life that has high binding affinity to all of its five
SST-receptors (SSTRs) in the GPCR superfamily. SST negatively
regulates the release of multiple hormones and cell proliferation
via activation of its cognate receptors. The five subtypes of
SSTR1-SSTR5 are coupled with inhibitory G protein Gi/o
(Table 2) and are involved in motility, mucous and hormone
secretion, blood vessels contractility, inflammation responses,
and microbiotal flora (9, 54). Phosphorylation and
dephosphorylation of SSTRs at C-terminal or serine and/or
threonine residues is involved in fine‐tuning signalling (75). A
novel higher selective monoclonal antibody for extracellular
domain of SSTR2 binds the surface of neuroendocrine tumor
(NET) cells via signalling cascades and reduce tumor growth.
Phosphosite-specific antibodies for human SSTR2 and SSTR5
monitor the spatial and temporal dynamics of SSTRs’
phosphorylation and dephosphorylation (75, 80). Based on the
integrated physiological regulation mechanism of the
neuroendocrine system, a high combination of chimeric
molecules for NET and cancer have emerged (73, 81) in 2D-
and 3D-cultures. SST-D2R multi-receptor targeting drugs inhibit
CgA and serotonin secretion, but not NET cell growth (81).
Overexpressed-SSTR2 in pancreatic human NETs demonstrated
March 2021 | Volume 12 | Article 652363
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that fluorescence of SSTR2 receptor-mediated uptake was
observed at the macro-, meso-, and microscopic scales, thus
displaying specific SSTR2-digital image pathological findings,
such as tumor boundaries and location (82).
SST-SSTRs IN BASIC RESEARCH AND
CLINICAL MEDICINE

SST analogues (Octreotide, Lanreotide, and Pasireotide (for SSTR2,5))
are widely used as first-line treatment for perioperative period,
metabolic diseases, and tumor control (68, 78, 83). Octreotide,
lanreotide, and pasireotide are applied to acromegaly, Cushing’s
syndrome, and carcinoid syndrome, respectively (69, 70, 74). SST
(Pasireotide 10-30mg/4ws/year) decreased urinary free cortisol and
late-night salivary cortisol to normal levels in patients with Cushing’s
disease (19). NETs are heterogeneous malignancies in different
neuroendocrine systems and higher incidents in the GI and Non-GI
Frontiers in Endocrinology | www.frontiersin.org 5
tract of SST analogs have been confirmed in antisecretory and
antitumor efficacy (19, 68–70, 74, 78, 79, 83). The FDA approved
peptide-receptor radionuclide therapy (Lutathera®) for
gastroenteropancreatic NETs; the treatment can improve patient
survival (71, 79). This mini review presents the current drugs used in
basic and clinical practice (Table 2). Anti-SSTR2 antibody drugs have
been developed forNETdiagnosis and therapy (79, 80). Smallmolecule
SSTR4 agonists (4-phenetylamino-7H-pyrrolo[2,3-d] pyrimidine
derivatives, 100µg/kg, oral) inhibited neurogenic inflammation and
neuropathic hyperalgesia (Sciatic nerve-ligation model) in rats (31).
Escalated doses of SST analogs (Octreotide, >30mg or Lanreotide,
>120mg/d, 28days) were well tolerated with antiproliferative effects in
neuroendocrine neoplasms (NEN) patients (72). Recently, phosphate-
specific antibodies have shown agonist-selective properties for
individual tumor tissues (75). NET patients overexpressed SSTR2 at
high density; the membrane expression of SSTR2 in tumors cells is
~20-fold higher than that of normal cells (79, 84).
Immunohistochemistry analysis showed over 70% of NET patients
TABLE 2 | Effect of SST and SSTRs in the gastrointestinal system for basic research and clinical medicine.

Function Gastrointestinal system Neuroendocrine and
endocrine tissue

References

Name Secretion Movement Blood
vessel

Inflammation Proliferation (Tumor/
cancer)

SST (analogues) Octreotide
(Sandostatin)
(Vapreotide,
Seglitide)

↓ (gastric juice,
gastric acid)

↓ (gastric
emptying,
segmental
motility)

↓ ↓ ↓ normal tissue and tumor,
Severe diarrhea,
Carcinoid syndrome with
unresectable,
metastasized tumor
↓ normal tissue and tumor
↓ normal tissue and tumor
For Imaging in nuclear
medicine

(11, 16, 29,
68–72)

Lanreotide ↓ ↓ mass
peristalsis

↓ ↓

Pasireotide
Cortistatin

↓ ↓ defecation
reflex

↓ ↓
↓↓

(16, 19, 29, 70,
73, 74)

Somatoprim
(heptapeptide)
In-111-
Pentetreotide

↓ ↓ ↓ ↓ (16, 75)
(76)

GPCR-SST receptor
(agonist or antagonist)

R1(Gai3, 1/2) ↓ ↓ ― ― (6)
R2(Gai3) ↓ ↓ ― ― (6)
R3(Ga1i) ↓ ↓ ― ― (6)
R4(Gi) ↓ ↓ ― ― (6)
R5(Gi/Gq) ↓↓ ↓↓ ↓↓ ― (6)

SST receptor phosphorylation or
dephosphorylation
(agonist)

C-terminal serine/
threonine

↓ ↓↓ ↓↓ (6, 75, 77)

Chimeric molecule,
Combination
(+agonist or antagonist)

+DA receptor 2
(D2DR,
Dopastatin)

↓ ↓ ― ― ↓non-hormone producing
tumor

(75)

+ GH receptor
(pegvisomant)

↓ ― ― ― ↓ solid tumor or cancer (69–71, 78)

+mTOR inhibitor
(rapamycin,
everolimus)

↓ ― ↓↓ ↓ ↓ solid cancer (29, 71, 79)

Antibody for human SST 2/5
receptors

Predictive for diagnostic and
intervention

(80)

Combination
(+chem-molecules)

+a interferon
(tamoxifen)

― ― ↓ ↓ ↓ cancer in GI
and others

(11, 78)

+anti-VEGF
(bevacizumab)

― ― ↓↓ ↓ (22, 72, 79)
March 2021 | Volume 12
GPCR, G protein-coupled receptor; R1-R5, receptor 1-5; DA, Dopamine; D2DR, D2 of dopamine receptor; VEGF, Vascular endothlial growth factor; Ga,i,q, subtype of G proteins; mTOR,
Mammalian target of rapamycin; GH, Growth hormone; GI, Gastrointestinal tract; ↓ = Downregulation; ― = Unchanged.
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with expressed-SSTR2 (79, 84). SSTR expression is a biomarker of
NEN biology and immunohistochemical staining SST, while SSTR and
CGA are candidates for prognostic information and risk-stratification
in clinic. SSTR2a was a positive prognostic marker for pancreatic NEN
(79, 85). Monitoring of treatment of SST analogues and changed-
circulating CGA levels can predict disease recurrence, outcome, and
efficacy (29). It is very interesting that the image for SST-SSTRs showed
nonspecific accumulation in activated immunological cells,
lymphocytes, epithelioid cells, monocytes, and blood vessels (76).
Internalization of the radiolabeled agonist was mandatory for SSTR-
mediated imaging and therapy, but radiolabeled SSTR antagonists
might perform better in preclinical work (86). SST (0.25mg, and
prophylactical SST long-term (0.25mg/h for 10h iv) decreased post-
endoscopic retrograde cholangiopancreatography (ERCP) pancreatitis
and post-ERCP hyperamylasemia (87). However, current effective
preventive strategy suggested rectal non-steroidal anti-inflammatory
drugs and pancreatic stent placement (88), and ameta-analysis showed
SST lacks the benefit in patients with ERCP after short-term infusion,
but gains an advantage in single-bolus or long-term injection (89).
Therefore, the risk vs benefit of SST and analogues should be carefully
assessed in patients (88). Long-acting SST analogues (Octreotide,
20mg/m or Lanreotide, 90mg/28 d, 12months, im) decreased blood
transfusion in patients with refractory bleeding from gastrointestinal
angiodysplasias (90). SST prolongs progression-free survival (PFS) in
individual precision medicine; global multicenter studies have
confirmed high dose-SST (Octreotide, 30mg/4ws) (Lanreotide,
120mg/4ws) is an active and safe option in patients with progressive
well-differentiated gastroenteropancreatic NETs, and an independent
individualized prediction model could be a valuable tool for making
treatment decisions in clinical practice for SST-treated patients (91–93).
Therefore, powerful prediction tools, drug-combination, and
conjugated-medicine are important to limit the side effects of SST
analogues in fatigue, diarrhoea, constipation, abdominal pain, nausea,
cholelithiasis and hyperinsulinism, and necrotizing enterocolitis in
infants (72, 94, 95). SST analogues might disturb infant development
and neuroendocrine system.
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CONCLUSION

SST-endocrine cells and neurons are a critical effector to
maintain homeostasis via SSTRs 1-5 and co-receptors. SST-
SSTRs are involved in chemo-sensory, secretion, motility, and
inflammation responses by autocrine, paracrine, endocrine, and
exoendocrine pathways. SST is also a powerful inhibitor for
tumor cell proliferation, severe inflammation, and perioperation,
and is listed as a first-line anti-cancer drug in clinical practice.
New development prognostic SS-SSTRs-markers, phosphate-
specific antibodies, and molecular imaging have emerged in
diagnostics and therapy. Dis-inhibition and network of SST-
SSTRs in the PNS of the sympathetic and parasympathetic nerve
system and special DRG should be explored. Understanding the
mechanisms of neuroendocrine in SST-SSTRs in the GI will
provide an insight into advanced medicine.
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