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In the past several decades obesity has become one of the greatest health burdens
worldwide. Diet high in fats and fructose is one of the main causes for the prevalence of
metabolic disorders including obesity. Promoting brown or beige adipocyte development
and activity is regarded as a potential treatment of obesity. Mondo family transcription
factors including MondoA and carbohydrate response element binding protein (ChREBP)
are critical for nutrient-sensing in multiple metabolic organs including the skeletal muscle,
liver, adipose tissue and pancreas. Under normal nutrient conditions, MondoA and
ChREBP contribute to maintaining metabolic homeostasis. When nutrient is
overloaded, Mondo family transcription factors directly regulate glucose and lipid
metabolism in brown and beige adipocytes or modulate the crosstalk between
metabolic organs. In this review, we aim to provide an overview of recent advances in
the understanding of MondoA and ChREBP in sensing nutrients and regulating obesity or
related pathological conditions.
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INTRODUCTION

The epidemic of obesity has emerged as a worldwide public health issue. In 2017, the Global Burden
of Disease Study estimated that high body mass index (BMI), one of the leading risk factors,
accounted for 4.72 million deaths and 148 million disability-adjusted life-years (DALYs) (1).
Excessive caloric intake mainly derived from the high-fat and high-fructose diet is a major cause for
obesity (2-4). The urgent need for weight-loss treatments has given rise to multiple attempts to
target cellular metabolism and restore systemic energy homeostasis, among which is the strategy of
promoting brown and beige adipocyte activity and development. Brown adipocytes are essential for
thermogenesis in mammals with their characteristic expression of uncoupling protein-1 (UCP1) in
mitochondria, while beige adipocytes are inducible to express thermogenic genes in response to
stimulus (5). Enhancing activities of brown and beige adipocytes not only promotes energy
expenditure through heat generation, but also enhances glucose metabolism and protects against
insulin resistance (6-11), which provides promising therapeutic effects to counteract obesity and
related diseases.

The Mondo family transcription factors, comprised of MondoA (also known as MLXIP) and
carbohydrate response element binding protein (ChREBP, also named MondoB and MLXIPL),
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belong to the basic helix-loop-helix leucine zipper (bHLH/LZ)
family (12, 13). Upon binding to their heteromeric partner MLX
(Max-like protein X), Mondo and MLX translocate to the
nucleus where they bind to carbohydrate response elements
(ChoREs) on target gene promoters, and stimulate a
transcriptional response to nutrients (12-14). As a structural
basis of their nutrient-sensing and responsiveness, the glucose-
sensing module (GSM) of Mondo proteins consists of a low-
glucose inhibitory domain (LID) and a glucose-response
activation conserved element (GRACE) (Figure 1). Under
basal conditions, GRACE is repressed by the LID domain,
which is relieved by alterations in nutrient levels such as the
elevation of glucose concentration (15). An isoform of ChREBP,
ChREBP, lacks the LID domain and is induced by the activation
of the canonical isoform ChREBPo (16). Upon activation,
MondoA and ChREBP bind to importin-o. which mediates
their nuclear entry (17), while their nuclear export and
cytoplasmic retention are regulated by chromosome region
maintenance protein 1 (CRM1) and 14-3-3 proteins (18-20).
Though similar in structure, MondoA and ChREBP have distinct
tissue distribution patterns, with MondoA predominantly in
skeletal muscle and immune cells and ChREBP in liver and
adipose tissue (12, 13), and our unpublished data.

Initially identified as glucose sensors, Mondo family has more
extensive regulatory functions in metabolic homeostasis.
Therefore, their role in physiological and pathological
conditions has gained growing interest. In this review, we will
discuss how MondoA and ChREBP sense and respond to
nutrient availability, focusing on the involvement of Mondo
family in obesity and related diseases.

NUTRIENT-SENSING BY MONDOA
AND CHREBP

ChREBP in Metabolic Organs

ChREBP is widely expressed in metabolic organs, predominantly
in liver, also in adipose tissues, pancreas, intestine, kidney,
relatively low in skeletal muscle (21).

ChREBP is regulated by multiple nutrient molecules, among
which glucose and its metabolites are major determinants. In the
presence of high glucose, glucose 6-phosphate (G6P), the first
intermediate in glycolysis binds to the GRACE domain of
ChREBP (22, 23). Moreover, xylulose 5-phosphate (Xu5P), the
metabolite generated through the pentose phosphate pathway,
activates protein phosphatase 2A (PP2A), and the sequential

GSM
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LID GRACE
= ~
NH2 é é Proline-rich region bHLH/LZ DCD | | COOH
|
MCR I-V
GSM
! ChREBPa (35244
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\
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ChREBPp 7544
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while a nuclear localization signal (NLS) allows the interaction with importin-o.

FIGURE 1 | Structural domains of the human Mondo proteins. MondoA and ChREBP contain homologous C-termini, where a bHLH/LZ region and a dimerization
and cytoplasmic localization domain (DCD) mediate the heterodimerization process and DNA binding. On the other hand, the N-termini of MondoA and ChREBP
determine their glucose responsiveness. The glucose-sensing module (GSM) lies within the N-terminal region of MondoA and ChREBPa and is composed of a low-
glucose inhibitory domain (LID) and a glucose-response activation conserved element (GRACE). Compared with the canonical ChREBPa of 852 amino acids, the
ChREBP isoform, a product of alternative splicing, is a 675-amino acid protein that lacks the LID domain. The N-terminal region also includes five Mondo conserved
regions (MCR [-V), with LID spanning MCR I-IV and GRACE harboring MCR V. Two nuclear export signals (NES1, NES2) correspond to the binding site of CRM1,
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dephosphorylation of several residues activates ChREBP (24).
Furthermore, fructose-2,6-bisphosphate (F2,6-BP) derived from
fructose-6-phosphate (F6P) has been identified as another
signaling metabolite responsible for glucose-induced
recruitment of ChREBP to its target genes (25). On the other
hand, when glucose is limited, branched chain keto-amino acids
(BCKA) and fatty acids (FA) inhibit ChREBP activity (26, 27)
(Figure 2).

ChREBP regulates many enzyme genes in glycolysis and
lipogenesis, including liver type pyruvate kinase (L-PK), acetyl-
CoA carboxylase (ACC), fatty acid synthase (FAS), ATP-citrate
lyase (ACLY), stearoyl-CoA desaturase-1 (SCD1) and glycerol-3-
phosphate dehydrogenase (GPDH) (28-30). In addition,
ChREBP may control very low-density lipoprotein (VLDL)
export by regulating microsomal triglyceride transfer protein
(MTTP) transcription (31) (Figure 3).

Mouse models with knockout or overexpression of the
ChREBP gene provide direct evidence for its role in glucose
and lipid metabolism (Table 1). ChREBP global knockout mice
show down-regulated pyruvate production and inhibited
glycolysis, with lower mRNA levels of ACC, FAS, ACLY and
SCD1 in liver than wild-type mice, leading to a significant
decrease in lipids converted from glucose (32). ChREBP liver-
specific knockout mice showed dysregulation of glucose response

and impaired glucose homeostasis (34). Moreover, adenoviral
overexpression of ChREBP caused higher liver triglyceride
contents with increased FAS and ACC expression (35, 46). It is
now believed that ChREBP and sterol regulatory element binding
protein-1c (SREBP-1c) play a synergistic role in the regulation of
lipogenesis in liver (47). Moreover, the expression of the
ChREBPP isoform is associated with the respective increase
and repression of branched chain alpha-keto acid
dehydrogenase kinase (BDK) and protein phosphatase Mg’
*/Mn**-dependent 1K (PPMIK) transcript levels in liver (48).
In addition, the transcription of fibroblast growth factor 21
(FGF21) is regulated by ChREBP (49). FGF21 is involved in
energy metabolism by regulating carbohydrate intake (50).
Fructose ingestion increases FGF21 production in a ChREBP-
dependent manner while FGF21 knockout attenuates ChREBP
expression and de novo lipogenesis following fructose
consumption, indicating that ChREBP and FGF21 constitute a
signaling axis which mediates an adaptive hepatic metabolic
response to fructose ingestion (51).

MondoA in Metabolic Organs

As another transcriptional biosensor of intracellular glucose
concentration, MondoA contributes to more than 75% of
glucose-induced transcription signature in HAI1ER epithelial

ChREBP

Ketone bodies

Polyunsaturated fatty acids
(PUFAs)

Acetylation 'AC

O-GlcNAcylation OG

MondoA

Non-glucose hexoses
(allose, 3-O-methylglucose
and glucosamine)

-

Adenine nucleotides, and other
adenosine-containing molecules

Cellular acidosis

Glutamine

FIGURE 2 | Nutrient-sensing and regulation of Mondo family. Mondo family transcription factors sense multiple nutrients. G6P, F2,6-BP and Xu5P are considered
the major metabolites through which glucose stimulates ChREBP and MondoA nuclear translocation and transcriptional activity. Ketone bodies and polyunsaturated
fatty acids (PUFASs) are reported to inhibit ChREBP activity. MondoA activators include non-glucose hexoses, adenosine-containing molecules and cellular acidosis.
Glutamine represses MondoA transcriptional activity. Post-transcriptional modifications (PTMs) including phosphorylation, acetylation and O-GlcNAcylation also play a
role in regulating Mondo family, especially ChREBP. cAMP is a common inhibitor of ChREBP and MondoA. cAMP acts through PKA (protein kinase A) to promote
the phosphorylation of ChREBP. Increased AMP levels lead to both retention of ChREBP in the cytosol and AMPK-induced phosphorylation of ChREBP, thus

inhibiting ChREBP activity.
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FIGURE 3 | Metabolic genes regulated by Mondo family. Metabolic genes regulated by MondoA and ChREBP at the transcriptional level are herein summarized.
They are involved in glucose and fructose uptake, glycolysis, fructose metabolism, glycogenesis, hexosamine biosynthesis pathway (HBP), pentose phosphate
pathway (PPP), and lipogenesis. MondoA targets are highlighted in red, ChREBP targets in green, and their common targets are in blue. HK II, hexokinase II; PTG,
glycogen targeting protein; GBPDH, glucose-6-phosphate dehydrogenase; KHK, fructokinase; GFPT, glutamine:fructose-6-phosphate aminotransferase; PFKFB3, 6-
phosphofructo-2-kinase/fructose-2,6-biphosphatase 3; TKT, transketolase; PK, pyruvate kinase; PDH, pyruvate dehydrogenase; SDHAPS, succinate dehydrogenase
complex flavoprotein subunit A pseudogene 3; DCT, C4-dicarboxylate transport protein; ME1, malic enzyme; MOGAT2, monoacylglycerol O-acyltransferase 2;

DGAT, diacylglycerol acyltransferase.

cells (52). By shuttling between mitochondria and nucleus,
MondoA bridges cytoplasmic nutrient level to transcriptional
adaptations. MondoA localizes to the outer mitochondrial
membrane under basal conditions, and accumulates in the
nucleus in response to nutrient signals such as high glucose
(52, 53). In addition to nuclear accumulation, glucose triggers
MondoA-MLX binding to target promoters, and activates gene
expression through recruitment of histone H3 acetyltransferase
as coactivators (54).

Similar to ChREBP, MondoA senses levels of G6P and F2,6-
BP (52, 55) (Figure 2). Meanwhile, MondoA is responsive to
non-glucose hexoses including allose and glucosamine (56).
Intriguingly, glutamine recruits a histone deacetylase-
dependent corepressor to MondoA, turning MondoA-MLX
into a transcriptional repressor. Moreover, cellular acidosis
drives MondoA transcriptional activity since low pH promotes
the production of mitochondrial ATP, with which mitochondria-
bound hexokinase generates G6P from cytoplasmic glucose (57).
This finding has justified the special localization of MondoA-

MLX and unraveled the mechanisms underlying the activation of
MondoA by lactic acidosis. Other molecules reported to be
sensed by MondoA include adenine nucleotides and other
adenosine-containing molecules (58, 59). Furthermore, mTOR
(mammalian target of rapamycin), another key nutrient sensor,
interacts with MondoA with a suppressive effect on its
transcriptional activity (60). Nonetheless, so far there is no
report on fatty acids or amino acids regulating MondoA level
or activity.

Different from ChREBP, MondoA is predominantly
expressed in skeletal muscle and immune cells (12), and our
unpublished data. MondoA-deficient mice show enhanced
glycolytic rates probably because loss of MondoA in skeletal
muscle increases glucose uptake (43) (Table 1). In response to
glucose and fructose, MondoA activates transcription of
thioredoxin interacting protein (TXNIP) and arrestin domain-
containing 4 (ARRDC4), which inhibits glucose uptake (Figure
3) (56, 61). TXNIP, a dynamic sensor that modulates the energy
demand of cells, plays a crucial role in the homeostasis of glucose.
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TABLE 1 | Roles of Mondo family on body weight, hepatic steatosis and insulin sensitivity according to mouse models, depending on nutritional status, genetic

background and drug administration.

Mondo Context Modulation in Mouse Models Body Fat Hepatic Insulin  Reference
family Weight Mass Steatosis  Sensitivity
ChREBP  Standard diet Global knockout \ = . (32, 33)
Liver-specific knockout = N\ = N (34)
Liver-specific overexpression = N / = (35)
AT-specific knockout = = N N (36)
AT-specific overexpression N\ N\ = = (37)
Pancreatic B-cell-specific overexpression N ND ND N (38)
Standard diet in ob/ob mice  Global knockout N N N / (33)
background Liver-specific knockdown \ \ . / (39)
High-fat diet Liver-specific knockout = = = N (34)
Liver-specific overexpression = N\ / / (35)
AT-specific knockout = = = N (36)
AT-specific overexpression N N N / (37)
Western diet Global knockout \ \ . ND (40)
High-carbohydrate diet Liver-specific knockout N N\ N N\ (34)
HFrD Global knockout \ ND / ND (41)
Liver-specific knockout \ . = Va (42)
MondoA  Standard diet Global knockout = ND ND = (43)
Muscle-specific knockout = ND ND = (44)
High-fat diet Muscle-specific knockout = ND ND / (44)
MondoA  High-fat diet Administration of a compound (SBI-993) that deactivates ND N / (45)
/ChREBP MondoA/ChREBP signaling

“="“means not changed. ND, not determined. The upward and downward arrows indicate an increase and decrease in the level, respectively.

As a direct and glucose-responsive target of MondoA, TXNIP is
upregulated when G6P level increases and concomitantly restricts
glucose absorption, thus providing a negative feedback loop to
prevent energy overload. Mechanisms underlying inhibition of
glucose uptake regulated by TXNIP include the suppression of
glucose transporter (GLUT) expression, GLUT vesicle transport
and insulin signaling (44, 62-64). Moreover, MondoA enhances
glycogen synthesis by activating the transcription of
phosphoprotein phosphatase 1 regulatory subunit 3A
(PPP1R3A), phosphoprotein phosphatase 1 regulatory subunit 3B
(PPP1R3B) and genes encoding the glycogen targeting subunits of
protein phosphatase 1 (PP1) for promoting glycogen synthesis (65,
66). Muscle-specific MondoA knockout decreases glycogen level in
the skeletal muscle of mice (62) (Table 1). Hence, under
physiological conditions, glucose homeostasis is maintained by
the downstream effects of MondoA activation.

In addition to glucose metabolism, MondoA diverts nutrients
to lipid metabolic pathways, including fatty acid
thioesterification [acyl-CoA synthetase 1, 4 (ACSL1, 4)],
desaturation [fatty acid desaturase 1,2 (FADSI, 2), SCD1, 5],
elongation [elongation of very long chain fatty acids protein 5, 6
(ELOVL5, 6)], and triglyceride synthesis [diacylglycerol
acyltransferase 1, 2 (DGATI, 2)] (44) (Figure 3). Taken
together, as a nutrient-regulated transcription factor, MondoA
not only decreases glucose import but also diverts nutrients to
storage in skeletal muscle. Although various posttranslational
modifications of ChREBP have been revealed to regulate its
activity in different conditions (67-69), there is so far no
report on how MondoA is posttranslationally modified.
Therefore, further mechanistic studies are needed to elucidate
the interacting protein network of MondoA in response to
nutrient level alterations.

THE ROLE OF MONDOA AND CHREBP IN
OBESITY

ChREBP: From White to Brown and Beige
Adipocytes

Obesity is the excessive accumulation of fat caused by imbalance
between energy intake and consumption. It is the major risk
factor for many metabolic disorders such as type 2 diabetes, fatty
liver and cardiovascular diseases (70). Regarded as a crucial
target for the prevention and treatment of obesity, the adipose
tissue consists of white adipocytes which store energy, and brown
and beige adipocytes which consume energy and produce heat
(71). Inducing beige adipocytes from white adipose tissues
(WAT) is known as browning, a process which improves
glucose metabolism and insulin sensitivity (11). Various
transcription and endocrine factors participate in this process
by directly or indirectly stimulating UCP1 expression in adipose
tissues, including peroxisome proliferator-activated receptor y
(PPARY), PPARY coactivator-1o. (PGC-1av), silent information
regulator type 1 (SIRT1) and FGF21 (72). The activation of
brown and beige adipocytes is considered to be an attractive
therapeutic strategy for obesity and its comorbidities. Brown and
beige adipocytes serve as a sink for excessive nutrients by
promoting energy expenditure in mitochondria (73).

ChREBP promotes lipogenesis in adipose tissues (36, 74). For
high-carbohydrate diets, excessive fructose and glucose are
converted to fatty acids, in which a series of enzymes including
ACLY, ACC and FAS participate (75). The predominant destiny
of the newly synthesized fatty acids is to become triglycerides for
storage, which helps to maintain energy homeostasis (76).
Adipocyte de novo lipogenesis is also involved in the regulation
of systemic insulin sensitivity and thermogenesis, both of which
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play key roles in mediating metabolic adaptations (21, 77).
Overexpression of a constitutively active ChREBP isoform
(caChREBP) in adipose tissues leads to an increase in expression
of key enzymes involved in de novo lipogenesis (37). Conversely,
adipocytes lacking ChREBP display impaired sucrose-induced
lipogenesis (36). In WAT, Glut4-mediated glucose uptake induces
ChREBP expression and activates the de novo lipogenic pathway. In
Glut4 knockout mice, ChREBP expression in adipose tissues
decreases by 50%. It is noteworthy that Glut4-mediated changes
in glucose flux have a stronger effect on the transcriptional
expression of ChREBPf than ChREBPa in WAT (16). ChREBP
activity in adipocytes depends on ACLY, one of its transcriptional
targets. In the absence of ACLY, the expression of both ChREBP
and its target genes is significantly suppressed. Consequently, ACLY
and ChREBP form a positive feedback loop in adipocytes to foster
dietary carbohydrates uptake, fatty acid synthesis and storage of
lipids (78). Moreover, specific ablation of Rictor, the essential
subunit of the mechanistic target of rapamycin complex 2
(mTORC2) in mature adipocytes reduces ChREBPP expression
and downregulates de novo lipogenesis in WAT and brown adipose
tissue (BAT) (79). In mature brown adipocytes, AKT2, which can be
phosphorylated by mTORC?2, is required for lipogenesis driven by
ChREBP activation (21, 80).

To date, the role of ChREBP in regulating thermogenic
adipocyte function has been indicated in a growing body of
literatures (Figure 4). Reduced brown fat mass and hypothermia
in response to excess energy intake are observed in ChREBP-
deficient mice (32). ChREBPP and UCP1 expression levels
positively correlate in human BAT, suggesting that ChREBPJ
expression might indicate brown adipocyte activity (21). Under
chronic cold exposure, specific impairment of ChREBP-driven
lipogenesis in BAT promotes beige adipocyte development,
which is probably a compensatory response (21). Moreover,

studies in adipocytes exposed to high glucose show that
ChREBP is a critical mediator in triiodothyronine-induced
upregulation of UCP1 expression in brown adipocytes (81).
However, there is no significant binding of ChREBP protein to
the UCP1 promoter, indicating that ChREBP regulates UCP1
transcription indirectly (82), which awaits further study. In mice
fed a chronic high sucrose diet, expression of UCP1 in BAT is
significantly increased compared with controls, which is
probably due to the activated ChREBP-FGF21 axis (83).
Moreover, overexpression of constitutively active ChREBP in
adipocytes induces PPARY activity and upregulates its
thermogenesis-related target genes including UCP1 that
promotes browning of WAT, while depletion of endogenous
ChREBP in adipocytes has reciprocal effects (84). Furthermore,
adenoviral overexpression of ChREBP in mice increases mRNA
level of white adipose tissue UCP1 with increased plasma FGF21
level (46). After ChREBPP is identified, it is important to
consider the functional difference between the two isoforms of
ChREBP. Of note, overexpression of ChREBPB in brown
adipocytes leads to impaired BAT thermogenesis and WAT
browning, reflecting the role of ChREBPPB as a feedback
regulator upon cold exposure (82). Moreover, given the
expression of ChREBP in metabolic organs and macrophages,
global gain-of-function or loss-of-function mouse models of
ChREBP may not be ideal for analyzing the role of ChREBP in
adipose tissues. Additional studies will be needed to develop a
full picture of the specific role and mechanism of the two
isoforms of ChREBP in adipocyte thermogenesis.

MondoA: Inter-Organ Metabolic Crosstalk

MondoA is expressed predominantly in skeletal muscle which
makes up ~40% of body weight and is responsible for ~80% of
glucose uptake (62, 85). Therefore, as a transcriptional factor

anti-obesity
roles

Activation
of UCP1

Oxidation

Storage as
triglyceride

— @ T ChREBPo

Brown Adipocyte

Glucose, Fructose

anti-diabetes
roles

FIGURE 4 | ChREBP in BAT combats metabolic diseases. BAT has enormous promise for treating metabolic diseases including obesity and diabetes, as it is
capable of taking up glucose, fructose and fatty acids, as well as oxidizing or storing them afterwards. ChREBPB, a truncated isoform of ChREBP, is most highly
expressed in BAT and induced by the activation of the canonical isoform ChREBPa. In addition to regulating key enzymes involved in metabolism pathways of
glucose, fructose and fatty acids, ChREBP also mediates the activation of UCP1 in brown adipocytes. Thus, in BAT, ChREBP plays both anti-obesity and anti-
diabetes roles by increasing energy expenditure, reducing circulating glucose and improving insulin sensitivity.
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required for maintaining body homeostasis, MondoA plays a
crucial part in inter-organ metabolic crosstalk.

In the context of chronic energy overload, MondoA is
activated by glucose and fructose, which leads to the
upregulation of TXNIP and ARRDC4, and concomitantly the
impairment of glucose uptake in the skeletal muscle via
suppression of insulin action (44, 45, 55). Additionally, the
chronic activation of MondoA in skeletal muscle results in
lipotoxicity, namely deleterious effects of ectopic triglyceride
accumulation (44, 45, 55, 86). Therefore, MondoA activation
results in myocellular insulin resistance and lipid accumulation
(44), serving as an intriguing supplement to the well-known
insulin resistance based on triglyceride accumulation (87). These
defects, along with hyperglycemia and hyperlipidemia,
contribute to obesity-induced type 2 diabetes (T2D) (88).

In obesity, pancreatic 3 cells adaptively produce more insulin
to maintain blood glucose level, resulting in an amplified burden
on P cells. Intriguingly, MondoA serves as a significant glucose-
responsive transcription factor in B cells (89). Under high
glucose conditions, MondoA shuttles to the nucleus to induce
its targets TXNIP and ARRDC4 in B cells. TXNIP is a major
factor promoting [ cell apoptosis (89-93). Hence, impaired B
cells might lead to progressive dysfunction of pancreas and even
loss of its ability to produce and secrete insulin (94, 95).

All facts mentioned above will lead to an inter-organ vicious
cycle of nutrient disposal and metabolism. The ideal solution is
to limit energy intake while increasing the aerobic oxidation of
fat in skeletal muscle by exercising (88). Therefore, to get out of
the vicious cycle and regain the virtuous cycle, it is worthwhile to
treat MondoA in skeletal muscle as a therapeutic target for
obesity and insulin resistance.

MONDO FAMILY AS A TARGET FOR
METABOLIC DISORDERS

In view of the central role of Mondo family in regulating energy
homeostasis, the possibility to target MondoA or ChREBP in
metabolic disorders has been explored.

As MondoA downregulates insulin sensitivity and promotes
lipid storage in skeletal muscle (44, 45), it could be a promising
therapeutic target for insulin resistance and lipotoxicity. For diet-
induced obesity, muscle triglyceride accumulation and insulin
resistance are partially relieved in muscle-specific MondoA
knockout mice (44). MondoA deletion increases muscle
glucose uptake and glycolytic capacity, resulting in enhanced
sprint capacity (43). Moreover, SBI-477, a potent inhibitor of
MondoA, alleviates muscle triglyceride levels and hepatic
steatosis, thereby improving glucose tolerance in mice on a
high-fat diet (45). However, the significant role of MondoA in
skeletal muscle development has been recently revealed in mice
(62). Therefore, in the development of MondoA as a novel
therapeutic target, the timing for treatment is critical and the
risk of interfering with normal myogenesis needs to be avoided.

Reducing ChREBP activity is considered as a promising target
in the treatment of obesity according to studies utilizing ob/ob

and ChREBP double knockout mice (33). Of note, ChREBP plays
an important role in promoting white adipocyte browning (81).
Therefore, ChREBP in brown and beige adipocytes can be
regarded as a treatment option for obesity. In consideration of
the well-established role of brown and beige adipocytes in
counteracting obesity, we await further research in this respect.

SUMMARY

Mondo family transcription factors are critical for metabolic
homeostasis, as they sense multiple nutrient molecules and
regulate metabolic enzyme genes transcriptionally. MondoA
limits glucose uptake and glycolysis mostly in skeletal muscle and
immune cells, while ChREBP promotes de novo lipogenesis in liver
and adipose tissue. In pathological states of nutrient overload,
MondoA could interfere with insulin signaling, while adipose
ChREBP is linked to systemic insulin sensitivity and its role
extends from white to brown and beige adipose tissues. The role
of ChREBP in browning of white adipocytes is especially worth
further exploration. Targeting MondoA and ChREBP to counteract
obesity and related diseases is an appealing strategy that requires
further investigations. As the manipulation of Mondo family in
different organs and tissues could yield distinct systemic metabolic
consequences, future studies should be conducted using more
specific and rigorous models in order to clarify the beneficial or
deleterious effects of Mondo family in different contexts.
Meanwhile, before the therapeutic approaches could be
developed, it is noteworthy that MondoA and ChREBP could be
involved in normal myogenesis and adipogenesis. Moreover, under
certain circumstances, the target genes and metabolic pathways of
MondoA and ChREBP are overlapping. In this regard, in the
knockout phenotype of one of the two transcription factors,
whether the other acts in a compensatory way requires special
attention. Furthermore, increasing studies reveal the involvement of
Mondo family in critical signaling pathways, which awaits
mechanistic investigations to expand our understanding of the
action and regulation of these transcription factors.
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