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Graves’ disease (GD) is an organ-specific autoimmune disorder of the thyroid, which is
characterized by circulating TSH-receptor (TSH-R) stimulating antibodies (TSAb), leading
to hyperthyroidism. Graves’ ophthalmopathy (GO) is one of GD extra-thyroidal
manifestations associated with the presence of TSAb, and insulin-like growth factor-1
receptor (IGF-1R) autoantibodies, that interact with orbital fibroblasts. Cytokines are
elevated in autoimmune (i.e., IL-18, IL-6) and non-autoimmune hyperthyroidism (i.e., TNF-
a, IL-8, IL-6), and this could be associated with the chronic effects of thyroid hormone
increase. A prevalent Th1-immune response (not related to the hyperthyroidism per se,
but to the autoimmune process) is reported in the immune-pathogenesis of GD and GO;
Th1-chemokines (CXCL9, CXCL10, CXCL11) and the (C-X-C)R3 receptor are crucial in
this process. In patients with active GO, corticosteroids, or intravenous immunoglobulins,
decrease inflammation and orbital congestion, and are considered first-line therapies. The
more deepened understanding of GO pathophysiology has led to different immune-
modulant treatments. Cytokines, TSH-R, and IGF-1R (on the surface of B and T
lymphocytes, and fibroblasts), and chemokines implicated in the autoimmune process,
are possible targets of novel therapies. Drugs that target cytokines (etanercept,
tocilizumab, infliximab, adalimumab) have been tested in GO, with encouraging results.
The chimeric monoclonal antibody directed against CD20, RTX, reduces B lymphocytes,
cytokines and the released autoantibodies. A multicenter, randomized, placebo-
controlled, double-masked trial has investigated the human monoclonal blocking
antibody directed against IGF-1R, teprotumumab, reporting its effectiveness in GO. In
conclusion, large, controlled and randomized studies are needed to evaluate new possible
targeted therapies for GO.
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INTRODUCTION

Graves’ disease (GD) is an organ-specific autoimmune disorder
and it is the most frequent cause of hyperthyroidism in West
Countries (1–3). It affects overall women, typically in their third
to fifth decade, with an overall prevalence of 0.5% (4).

Clinical manifestations are linked to hyperthyroidism and to
the autoimmune process. GD-associated signs and symptoms
can vary markedly, influencing the overall well-being (5, 6).

GD is one of the principal autoimmune thyroid disorders
(AITD), which are associated with the failure of immune
tolerance against thyroid antigens [thyroid-stimulating
hormone (TSH) receptor (TSH-R), thyroid peroxidase (TPO),
and thyroglobulin (Tg)] (7, 8). At the basis of GD, an
autoimmune multifactorial mechanism is present, which acts
through environmental and endogenous factors in genetically
predisposed individuals (9). GD is characterized by
thyrotoxicosis, circulating anti-thyroid antibodies (ATA) and
autoreactive lymphocytes into the thyroid (10).

The autoimmune reaction in GD induces the release of anti-
TSH-R autoantibodies (TRAb) by B-cell clones, which infiltrate
the thyroid, and are implicated in GD pathogenesis and its
extrathyroidal manifestations, such as pretibial myxedema
(PTM)/Graves’ dermopathy and Graves’ ophthalmopathy
(GO). TRAb can be distinguished in: neutral antibodies;
thyroid blocking antibodies (TBAb); thyroid stimulating
antibodies (TSAb) (11). TSAb have similar downstream effects
such as the binding of TSH to TSH-R, leading to thyrocytes
proliferation, and secretion of thyroid hormones (TH; T4 and
T3) (11, 12).

GD is associated to another autoimmune disease in ~20% of
patients (13). A study evaluated prospectively the prevalence of
other autoimmune diseases in GD patients (including some GO
patients) vs. healthy controls, or patients with autoimmune
thyroiditis (AT), or with multinodular goiter (MNG) (gender-
and age-matched, and with a similar iodine intake). In 1.5% of
GD, three associated autoimmune disorders were present.
Patients with GO had a higher prevalence (18.9%) of another
autoimmune disorder than GD patients without GO
(15.6%) (13).
GRAVES’ OPHTHALMOPATHY

According to the European Group on Graves’ Orbitopathy
(EUGOGO), GO has a prevalence of 10/10,000 persons and
16/10,000 persons in Europe and Japan, respectively (14, 15).

Approximately 30% to 50% of patients with GD develop GO.
Tearing, proptosis, periorbital edema, and diplopia are the
characteristic signs of Graves’ orbitopathy (16).

Orbital fibroblasts (OF) are the target of a variety of
autoimmune responses, that taking together induce
proliferation, adipogenesis and overproduction of the
extracellular matrix, that includes glycosaminoglycans [GAG;
i.e., hyaluronan (HA) and chondroitin sulfate] (4).
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GD is a phasic disorder characterized during the active phase
by hyperthyroidism, which can go in remission both after
therapy or sometimes spontaneously. The recurrence of
hyperthyroidism can occur after weeks or decades of
euthyroidism, overall owing to physical or psychological
stressful events (2). Also, GO is characterized by the presence
of moderate-severe inflammatory signs during the active phase
that can remit after therapy or spontaneously. Mild GO
disappears spontaneously in the majority of cases (17). The
most frequent factors associated with the recurrence of GO are
stressful life events (2), and smoking (18). Smoking cessation can
improve the outcome for GO (3, 4). Components of cigarette
smoke might induce adipogenesis and synthesis of GAG,
through reactive oxygen species (ROS) production, and
whether vaping could have some negative effects on GO is still
to be clarified, as nicotine induces the release of pro-
inflammatory cytokines (4, 19). As well as in GD, an
autoimmune response is at the basis of GO. T cells, and
autoantibodies recognizing a common autoantigen both for the
thyroid and retro-ocular tissues (such as TSH-R, that is
expressed also on fibroblasts and orbital preadipocytes), have a
crucial role in this process (20). Moreover, another autoantigen,
the insulin-like growth factor-1 (IGF-1) receptor (IGF-1R), has
been suggested to be linked to GO (21). Autoantibodies against
IGF-1R take part in the activation of GO OF, and its elevated
expression has been shown in the thyroid and in orbital tissues in
GD patients (20).
THERAPIES FOR GO

An anti-inflammatory treatment is suggested in the active phase
of GO. A euthyroid state is mandatory for successful treatment
and radioiodine therapy should be avoided in active progressive
GO (15).

In patients with active GO, corticosteroids (CS), or high dose
intravenous (iv) immunoglobulins, decrease inflammation
and orbital congestion (22). A prospective, randomized
trial compared the efficacy and safety of two protocols of
iv 4.5 g methylprednisolone (MP) in 80 patients, randomized to
receive iv MP weekly or daily. The weekly protocol of iv MP therapy
was more efficient and safer than the daily protocol for patients with
active moderate-to-severe GO (23).

According to randomized controlled trials, a meta-analysis
reported in patients treated with iv glucocorticoids that a
reduction of 1.14 mm of proptosis and of 33% of diplopia is
present, while non-randomized studies reported a reduction of
1.58 mm of proptosis and of 25% of diplopia (24). After 6 weeks,
in case of worsening of the disease the therapy should be
supplemented or substituted with second-line treatments (15),
such as orbital radiotherapy (25, 26). Orbital decompression
should be done in severe GO (27).

Patients with severe GO can have a reduced quality of life
(QoL) during standard therapies and, for this reason, novel
treatments, targeting directly the pathogenic disease
April 2021 | Volume 12 | Article 654473
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mechanisms in GO, are necessary to improve the clinical
outcome in these patients.

At present, the more deepened understanding of GO
pathophysiology has led to alternative immune-modulant
therapies that target various antigens (28, 29).

The aim of new treatments for thyroidal and extrathyroidal
GD is firstly to target the principal autoantigens of the disease
and/or molecules that have a key role in the immunological
response. Future treatments of GD, and GO, will involve
monoclonal antibodies (mAb) or small molecules (15).

A mechanism for targeting the pathophysiology of GD, and GO,
is to “mask” the TSH-R from the action of thyroid-stimulating
immunoglobulin (TSI), through the TSH-R antagonist, K1-70 (15,
30, 31). An open-label clinical trial (clinical trial number
NCT02904330) is currently in progress to assess its safety and
tolerability in patients with hyperthyroidism in GD (32).

A small TSH-R antagonist (clinical trial number
NCGC00229600) has been shown to reduce the synthesis of
HA in retro-ocular fibroblasts/adipocytes in GO, with good
results (33).

Furthermore, an encouraging treatment in GO patients is
teprotumumab (RV 001, R1507), a recombinant, human mAb of
the immunoglobulin G1 subclass. It binds to the cysteine-rich
domain of human IGF-1R with high affinity, preventing the
binding with endogenous ligands (IGF-1 and IGF-2), and leading
to the internalization of the receptor, in this way stopping the
IGF-1R signaling cascade (34–37).

As written above, active GO is linked to the autoimmune
activation of OF. This causes the production of cytokines that
promote T-cell infiltration into orbital tissues, triggering a local
inflammatory process, and resulting in growth and
differentiation of fibroblasts, and remodeling of orbital tissues.
Teprotumumab blocks these pathophysiological responses (36).

Teprotumumab decreased in vitro TSH-R and IGF-1R, the
TSH- and IGF-1–dependent phosphorylated Akt levels in
fibrocytes, such as the TSH induction of IL-6 and IL-8 mRNA
and protein (38).

A randomized, double-masked study was performed, to
evaluate the effectiveness and safety of this drug in 88 patients
with active, moderate-to-severe GO, administered with placebo,
or the drug (eight infusions) (39). The primary end point was the
response in the study eye. This response was defined as a
reduction of two points or more in the Clinical Activity Score
(CAS) and a reduction of 2 mm or more in proptosis at week 24.
About 69% of patients taking teprotumumab, in comparison to
20% of those receiving placebo, had a response at week 24
(P<0.001). At week 6, 43% of patients administered with
teprotumumab and 4% with placebo had a response (P<0.001).
The reported findings in active GO demonstrated that
teprotumumab, compared to placebo, is more effective in
decreasing proptosis and CAS (39).

Another randomized, double-masked, phase III multicenter
trial was done in patients with active GO in a 1:1 ratio to receive
iv teprotumumab (10 mg/kg of body weight for the 1st infusion
and 20 mg/kg for the following ones) or placebo once every 3
weeks for 21 weeks, for a total of 24 weeks (40). At week 24, the
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response in proptosis was higher in patients treated with
teprotumumab than with placebo (83% vs. 10%, P<0.001).
Secondary findings were s ign ificant ly bet ter wi th
teprotumumab than with placebo (P ≤ 0.001). The data
demonstrated that teprotumumab led to better outcomes (than
placebo) with regard to proptosis, CAS, diplopia, and QoL, with
uncommon severe adverse events (40).

Teprotumumab attained the approval by the U.S. Food and
Drug Administration (FDA) as first drug for thyroid eye disease
in March 2020 (41, 42).

Another emerging therapy is rituximab (RTX), a chimeric
mAb against CD20. It was approved by FDA in Wegener’s
granulomatosis, chronic lymphocytic leukemia, non-Hodgkin’s
lymphoma, and rheumatoid arthritis (RA), and it is an off-label
drug in different autoimmune diseases (43). Since RTX reduces B
lymphocytes, the cytokine burden and the produced
autoantibodies, its use has been proposed also in GO.

Two randomized trials showed contrasting results regarding the
use of RTX. In the 1st prospective, randomized, placebo-controlled
trial, RTX was not effective in 25 GO patients, showing no
improvement of CAS (44). In the other randomized, double-
blinded study, 32 patients took iv MP or RTX, and CAS
decreased in both cases, overall with RTX. After 24 weeks, all
patients receiving RTX ameliorated with respect to 69% after ivMP,
showing RTX was more effective than ivMP in GO patients (45).

More recently, a meta-analysis and systematic review was
done in 293 GO patients, treated with RTX, or glucocorticoids, or
saline, to evaluate the effectiveness of RTX. It was shown a
significant decrease of CAS (vs. controls) in patients receiving
RTX at 24 weeks, and a not significant one of proptosis (46).

In another study (47), 219 GO patients received pulse MP, and
then oral steroids and/or orbital radiotherapy. At last, 15 (6.8%)
were administered with 100 mg RTX (100–400 mg as cumulative
dose) for the presence of active GO. A low dose of RTX had an anti-
inflammatory effect in patients with active GO resistant to standard
treatments (47). Another paper agreed with those results in 12
patients with active GO treated with a 100 mg RTX infusion; it
reported that a low dose of RTX is effective in these patients, thus
leading to a reduced administration of systemic steroid (48).

Furthermore, 14 patients with active and moderate-to-severe
GO, of whom 11 CS-refractory, were administered with ivRTX
(1000 mg twice with a 2-week interval), reporting that RTX was
well-tolerated (49). A modest amelioration of CAS, and disease
inactivation in half of the patients, were reported. At week 12,
CAS ameliorated in 14.3% of patients and inactivation of GO in
28.6%. At week 24, total eye score and proptosis improved in
28.6% and 33% of patients, respectively.
CYTOKINES AND DRUGS TARGETING
CYTOKINES, IN GD AND GO

Cytokines in GD and GO
Cytokines [including interleukins (IL), tumor necrosis factors
(TNFs), interferons (IFNs), lymphokines, and chemokines] are
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small proteins, important in normal physiology, and in host
responses to infection, trauma, reproduction, inflammation,
sepsis, and tumors (10).

They are produced by different cell types, including immune
cells (B and T lymphocytes, mast cells, macrophages), fibroblasts,
endothelial cells, and different stromal cells, and act through
receptors (Table 1).

Chemokines are “chemotactic cytokines”, or signaling
proteins, which can induce directed chemotaxis in the
responsive cells. Chemokines exert their biological effects
through the interaction with G-protein-linked transmembrane
receptors, which are present on their target cells (10). The
chemokine receptor (C-X-C)R3 binds Th1-chemokines [IFN-g-
inducible protein 10 (IP-10)/chemokine ligand 10 (C-X-C motif)
(CXCL)10, IFN-inducible T-cell a chemoattractant (I-TAC)/
CXCL11 and monokine induced by IFN-g (MIG)/CXCL9]
(60). Th1 lymphocytes are attracted in inflamed tissues by Th1
chemokines, that are released there (61), and increase cytokines
production, leading to Th1 chemokines secretion by different
cells, establishing an amplification feedback loop (62). Raised
serum and tissue Th1 chemokines levels have been demonstrated
in specific autoimmune disorders [autoimmune thyroiditis (AT)
(63–65), GD and GO (52), etc.], or systemic rheumatological
diseases [systemic sclerosis, psoriasis or psoriatic arthritis (66,
67), etc.], hepatitis C virus infection related autoimmune
disorders (68), and cancer (69, 70).

Certain serum cytokines are elevated in non-autoimmune
(IL-8, TNF-a, and IL-6) (71) and autoimmune (IL-18 and IL-6)
(72) hyperthyroidism, and this could be due to the chronic effects
of TH excess, and not to the coexisting autoimmune condition at
the basis of GD (73).

A Th1 immune response is more prevalent in the active phase
of GD, and GO; CXCR3 and Th1 chemokines (CXCL9, CXCL10,
CXCL11) are crucial in this process, while a switch in immune
prevalence from a Th1 to a Th2 response is present in the
inactive or later phases (1, 74).

Systemic hyperthyroidism and T cell infiltration into orbital
tissue leads to ROS production, which can aggravate GO
severity by increasing T cell proliferation, adipogenesis, and
GAG production in OF (75). Recently, the role of the protein
tyrosine phosphatase 1B (PTP1B), encoded by the PTPN1 gene,
has been characterized in GO (76). PTP1B is known to be
involved in immune cell signaling by regulating cytokines via
dephosphorylation of janus kinase (JAK)2, signal transducer
and activator of transcription (STAT)5, and tyrosine kinase
(TYK)2. After 24 h of transfection with PTPN1 siRNA, the
fibroblasts were exposed to IL-1b, cigarette smoke extract
(CSE), H2O2, and transforming growth factor (TGF)-b
stimulations. PTPN1 silencing ameliorated ROS generation in
both CSE- and H2O2-stimulated cells. The changes in the
phosphorylation level of multiple transcription factors after
PTP1B inhibition in GO OF indicate a more complex network
of signaling pathways. PTP1B inhibition suppressed IL-1b–
induced Akt, and JNK phosphorylation, but p38 MAPK
phosphorylation was reduced only in GO OF. As the p38 and
JNK pathways, and the MAPK pathway, can mediate the
Frontiers in Endocrinology | www.frontiersin.org 4
transcription and translation of inflammatory cytokines, this
study demonstrated that PTP1B mediates inflammatory
reactions in GO OF (76).

Inflammation and cytokine production, adipogenesis, and
HA synthesis are the prevailing processes implicated in the
pathogenesis of GO (20). In the initial phases of GO, the
prevalent Th1 immune response facilitates cell-mediated
immunity, leading to the production of IFN-g, TNF-a, IL-1b,
and IL-2, that increase fibroblast proliferation and GAG
synthesis. IFN-g induces the secretion of Th1 chemokines by
fibroblasts, and the migration of lymphocytes is promoted (54).
IL-1b further stimulates the synthesis of GAG (77) and the
production of CCL2, CCL5, IL-6, IL-16, IL-8, and neutrophils, by
OF (78). Then, inflammation leads to Th2 lymphocytes
activation, that release cytokines (i.e., IL-13, IL-10, IL-5, and
IL-4), and to humoral reactions and the production of IgG (79).
Tissue remodeling and fibrosis characterize the late phase of
GO (20).

OF express also the costimulatory protein CD40, and its
binding to the ligand CD154, on T cells, induces the
production of different inflammatory mediators by OF [CCL2,
IL-1a, prostaglandin E2 (PGE2), IL-6, and IL-8] (80–82).

GD OF include cell subsets with specific cellular markers,
such as the CD34+ CXCR4 + Collagen 1+ phenotype (CD34+
OF), while CD34− OF do not display them. On the other hand,
OF obtained from normal subjects are CD34−OF (55). The axon
guidance glycoprotein Slit2 is produced by CD34− OF, and it
inhibits fibrocyte differentiation and modulates their
characteristic gene expression profile. Slit2 upregulates IL-12
expression and it attenuates that of IL-23, which are both
involved in GD and GO (83). CD34+ fibrocytes obtained from
peripheral blood mononuclear cells (PBMCs) produce low basal
levels of HA, very few of which were affected by bovine
thyrotropin (bTSH). On the other hand, GD OF synthesize
higher levels of HA, both basally and after the treatment with
bTSH. The treatment of confluent cultures with rhSlit2 increases
HA production in fibrocytes, while the knock-down of Slit2
expression attenuates its synthesis in GD OF. Considering HA
synthase isoenzymes (HAS1–3), low HAS1 levels are present in
fibrocytes, while HAS2 is the most strongly expressed in GD OF.
Slit2 alters the pattern of HAS and uridine diphosphate (UDP)
glucose dehydrogenase (UDPGD) expression and cytokine
production, both in GD OF and fibrocytes. The exogenous
rhSlit2 causes a transition from HAS1 dominating expression
to that of HAS2 in fibrocytes, decreasing also the expression of
TNF-a and IL-6. These data suggest that HA synthesis in GD OF
depends on the CD34− OF cell subset, while TNF-a and IL-6
expression is present in CD34+ OF. For these reasons GD OF,
comprising both CD34+ OF and CD34− OF, can generate
inflammatory factors (84, 85).

The activation of OF by TRAb suggests the link between GD
and GO. The increased OF activity contributes to the fibrosis of
the orbital tissues, causing inflammatory cell infiltration, and
edema. Consequently, the optic nerve can be compressed leading
to optic neuropathy. The inflammation and swelling of the eye
muscles are involved in the final exophthalmos (20).
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Furthermore, TSH-R–expressing T cells, which could be
activated by TRAb, could stimulate adipogenesis of OF in GO
through a peroxisome proliferator-activated receptor-g (PPAR-g)
ligand produced via upregulated cyclooxygenase (4). CD34+
fibrocytes, such as OF, migrate from the circulation into sites of
inflammation and injury and express two of the major GO thyroid
autoantigens, TSH-R and thyroglobulin (4). Both CD4+ and CD8+
T cells, and B cells, are present in the majority of GO orbits, and
the level of infiltration correlates with disease activity (86).
Frontiers in Endocrinology | www.frontiersin.org 5
Macrophages are found in the orbits in early disease, whereas
monocytes and mast cells have been associated with secretion of
platelet-derived growth factor, that stimulates OF proliferation
and HA production, in particular the platelet-derived growth
factor-BB isoform in OF from both patients with/without GO (4).
Mast cells also produce prostaglandins, which are able to enhance
adipogenesis (87). In light of the above, there are multiple
overlapping factors in the development of GO, and cytokines
are strongly involved in its pathogenesis.
TABLE 1 | Main cytokines implicated in Graves’ ophthalmopathy, the cells producing them and their biological effects.

Retrobulbar
Cells

Main Cytokines Biological effects References

Fibroblasts/
preadipocytes

IFN-g, TNF-a, IL-1a has been observed in tissue
sections and in primary OF cultures of patients
with active GO

IFN-g, TNF-a, IL-1a in fibroblast stimulate:
-the expression of a 72-kDa heat shock protein (HSP 72)
-the expression of inter-cellular adhesion molecule-1 (ICAM-I).
IFN-g, TNF-a enhance the expression of HLA-DR

(50)

IL-6, 8, 16, RANTES, MCP-1, IFN-g, TNF-a, IL-1 IL-16 acts as a ligand for CD4+ cells, and it is important for T-cell trafficking. IL-16
production is believed to follow that of RANTES, and both are responsible for T-cell
trafficking in orbital and thyroid fibroblasts

(51)

In retrobulbar fibroblasts and preadipocytes
obtained from GO patients:
1)IFN-g induced CXCL10 secretion in a dose-
dependent manner;
2)TNF-a alone was not able to induce chemokine
secretion;
3)IFN-g+TNF-a synergistically increased CXCL10
secretion

CXCL10 induces the migration of Th1 lymphocytes into the orbit, thereby
perpetuating the autoimmune cascade

(52, 53)

In retrobulbar fibroblasts and preadipocytes
obtained from GO patients:
1) IFN-g alone dose dependently induced the
secretion of CXCL9 and CXCL11;
2) IFN-g+TNF-a combination leads to a huge
response of CXCL9

C-X-C chemokines participate in the self-perpetuation of inflammation (54)

-Cytokines detected in situ in GO include TNF-a,
IL-1a, IL-6, IL-8, IL-10, IL-12, IL-13, and IFN-g;
-Several of these are more highly expressed in
active vs stable disease and include IL-1b, IL-6,
IL-8, and IL-10;
-predominance of T helper (Th)1 cytokines in
active GO

-Both IFN-g and TNF-a induce B cell activating factor in GD OF
-IL-1b induces both IL-16 and RANTES in GD OF, enhancing the release of T cell
migration-promoting activity

(55)

In cultured primary OF from GO patients:
-IL-17A combined with CD40L could induce the
production of RANTES in time- and dose-
dependent modifications;
-IL-17A alone was not enough sufficient to trigger
RANTES release

Amplification of GO inflammatory process (56)

In primary cell cultures of GO fibroblasts and
preadipocytes:
1)TNF-a increases the secretion of CXCL8 dose-
dependently;
2) IFN-g stimulates the secretion of CXCL10, but
it inhibits that of CXCL8

This differential modulation of CXCL10 and CXCL8 chemokines could reflect a
different role of the two chemokines during the course of the disease, as CXCL10
could be associated with the initial phase of the disease when a Th1 immune
response (induced by IFN-g) is preponderant, while CXCL8 could be associated
with a later chronic phase of the disease, when there is a switch to a Th2 prevalent
immune response (induced by TNF-a)

(57)

Adipocytes High levels of MCP-1 mRNA in the orbital fat
tissue of patients with GO have been reported

MCP-1 positively correlated with the degree of macrophage infiltration in patients
with GO

(58)

Muscle cells In primary extraocular muscle
(EOM) cultures from patients with GO:
1)IFN-g induced CXCL10 secretion in a dose-
dependent manner;
2)IFN-g+TNF-a synergistically increased CXCL10
secretion;
3)IFN-g and TNF-a induce CCL2 secretion

Self-perpetuation of inflammation (59)
April 2021 | Volume 12 | A
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DRUGS TARGETING CYTOKINES,
IN GD AND GO

Drugs that target cytokines (etanercept, tocilizumab, infliximab,
adalimumab) have been tested in GO, with encouraging results.

OF have an increased expression of TSH-R, and a strong up-
regulation of TNF-a and IL-6, in the pathogenesis of GO (88).

The association between elevated circulating TNF-a levels
and the severity of GO has led to the use of mAb against TNF-a,
such as infliximab and etanercept (89, 90). The effectiveness of
infliximab in severe steroid and surgical-resistant GO has
recently been demonstrated in three cases, with complete
resolution after three doses of 5 mg/kg body weight given 1
month apart (91, 92). Moreover, a positive effect of infliximab
administration on active GO in a 58-year-old woman with GD
has been described, in whom a single dose of this drug resulted in
a reduction of inflammation and improvement of visual
function, determined by magnetic resonance imaging and CAS
and NO SPECS scales, with no noticeable short-term side
effects (93).

Etanercept is usually used to treat RA (29). The use of
etanercept has been evaluated as potential treatment in 10
patients with active GO, showing remission in 6/10 (89).
Moreover, a paper reported the case of a woman, initially
diagnosed with primary hypothyroidism (in substitutive
treatment with levothyroxine) and subsequently with RA, who
had insufficient therapeutic effectiveness with a conventional
medication. After 3 years, she showed symptoms and signs of
GO. Then, the patient received etanercept for RA, and after 4
months, the ocular symptoms ameliorated and exophthalmos
decreased, showing that RA and GO can share similar
pathogenic characteristics (88).

Furthermore adalimumab, that has been approved by FDA
for psoriatic arthritis, ankylosing spondylitis, inflammatory
bowel disease, RA, showed a significant amelioration in the
inflammatory composite score in a retrospective review (94).

In patients with active GO, IL-6 and its soluble receptor are
activated. Tocilizumab is a humanized mAb recognizing the IL-
6R, which attained the approval in Castleman’s disease, systemic
juvenile idiopathic arthritis, and RA. A prospective non-
randomized study has been conducted in 18 GO patients
(refractory to CS) treated with tocilizumab (95). An
amelioration of proptosis was reported in 13 patients,
extraocular motility in 15, and 7/13 solved the problem of
diplopia, with no relapse of GO at the end of the follow-up.
These data suggested that tocilizumab might be effective in GO
patients resistant to steroids (95). Furthermore, a reduction in
extraocular muscle thickness and chemosis was reported after
therapy with tocilizumab in patients with GO, by using an optical
coherence tomography. Four women and one man with a
median age of 52 years (range, 38–73 years) were enrolled.
Median GO activity duration was 17 months (12–18). After
tocilizumab, median muscle thicknesses and chemosis reduced.
Median CAS decreased from 5 (4–8) to 1 (0–3) (96). More
recently, a paper reported three GO patients refractory to CS or
Frontiers in Endocrinology | www.frontiersin.org 6
with advanced diplopia, receiving tocilizumab (8 mg/kg; monthly
iv), and it showed a significant amelioration in eye
symptoms (97).
CONCLUSION

GO is one of the extrathyroidal manifestations of GD. In patients
with GO, OF can differentiate into myofibroblasts or adipocytes,
able to interact with mononuclear cells, that produce
chemoattractants and cytokines, in this way reiterating
orbital inflammation.

Certain cytokines are elevated in autoimmune (i.e. IL-18 and
IL-6) and non-autoimmune hyperthyroidism (i.e. TNF-a, IL-8,
and IL-6), supporting the idea that this may be associated with
the chronic effects of TH increase, and not with the GD
inflammatory, autoimmune condition.

A prevalent Th1 immune response is reported in the
immune-pathogenesis of GD and GO; Th1 chemokines
(CXCL9, CXCL10, CXCL11), and the CXCR3, are crucial in
this process

Patients with active, mild GO usually benefit from local
therapies and selenium, whereas patients with moderate-to-
severe disease generally need the addition of iv glucocorticoids.
In case of an inadequate response to glucocorticoid therapy,
different second-line therapies have been evaluated, such as
orbital radiotherapy (with additional glucocorticoids), RTX,
mycophenolate mofetil, cyclosporine, and methotrexate. Novel
biologic agents, in particular teprotumumab and tocilizumab,
have shown strong reductions in disease activity and severity. If
these data are confirmed in the future, the treatment paradigm
could be changed. Moreover, new immunotherapies are now
evaluated for GD, that may have treatment implications also for
GO (30).

At present, the more deepened understanding of GO
pathophysiology has led to different immune-modulant
treatments. Cytokines, TSH-R and IGF-1R (on the surface of B
and T lymphocytes, and fibroblasts), and chemokines implicated
in the autoimmune process, are possible targets of
novel therapies.

The remodeled tissues in GO are dominated by adipogenesis,
the increase of HA into the orbit, and the local synthesis of
proinflammatory cytokines (including TNF-a and IL-6). There
is a high complexity in the interactions among the cells of the
heterogeneous population of GD OF in the GO orbit. Slit2 seems
to play an important role in the determination of the pattern of
HAS and UDPGD expression and IL-6, TNF-a, and HA
production in these fibroblasts, and it could be considered as
an interesting therapeutic target in GO (84, 85).

In the pathogenesis of GO, OF have an increased expression
of TSH-R, and a strong up-regulation of TNF-a and IL-6. Drugs
that target cytokines have been tested in GO, with encouraging
results. The association between elevated circulating TNF-a
levels and the severity of GO has led to the use of mAb against
TNF-a, such as infliximab, adalimumab, and etanercept. Also
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tocilizumab (anti-IL6-R) have reached significant findings
in GO.

In conclusion, large, controlled and randomized studies are
needed to evaluate new possible targeted therapies for GO.
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