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Background: Hashimoto’s thyroiditis (HT) is an autoimmune disease that features
activation of thyroid antigen-specific helper T cells. HT patients have increased Th1 and
Th17 T cell subsets. Glycolysis supports chronic activation of Th1 and Th17 T cells, but
how this contributes to HT remains unknown.

Methods: The metabolism of CD4+ T cells from 30 HT patients and 30 healthy controls
was evaluated by determining the extracellular acidification rate (ECAR) and the oxygen
consumption rate (OCR). Mice in a subacute thyroiditis (SAT) model were treated with
2DG, metformin, or combination. Metrics of mTOR/HIF-1a/HK2/glycolysis were
measured by western blot and Seahorse assay methods. The severity of SAT was
measured by flow cytometry and HE staining.

Results: CD4+ T cells from HT patients had enhanced ECAR and OCR. Levels of Glut1,
HK2, PKM2, and LDHA in cultured HT CD4+ T cells were elevated. The expression of HK2
and PKM2 in cultured SAT CD4+ T cells was elevated compared with the control group.
Activation of the mTOR and HIF-1a pathways was significant in SAT mice, and expression
of HIF-1a in the 2DG treated group was reduced. Treatment with 2DG and/or metformin
significantly decreased the ratio of Th17 and Th1 T cells.

Conclusions: Thyroiditis results in elevation of the mTOR/HIF-1a/HK2/glycolysis
pathway in CD4+ T cells. The activation of this pathway is reduced by treatment with
2DG and metformin, which also reverted imbalances in CD4+ T cell differentiation.

Keywords: Hashimoto’s thyroiditis, Tregs, HIF1a, immunometabolism, glycolysis
INTRODUCTION

Hashimoto’s thyroiditis (HT) is an organ-specific immune disease characterized by autoantibodies
in circulation. HT induces chronic thyroid inflammation and infiltration of thyroid tissue by
lymphocytes, including CD4+ and CD8+ T cells (1, 2). In HT, the antithyroid immune response
begins with activation of thyroid antigen-specific helper T cells (3). CD4+ T cells undergo
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activation, proliferation and differentiation after antigen
exposure. Depending on different cytokine signals, CD4+ T
cells differentiate into different T cell subtypes, including
effector T cell (Teff) or T helper cell (Th) lineages, such as
Th1, Th2 and Th17 cells, or regulatory T cells (Tregs). Once Th1
and Th17 cells are activated, they induce B cells to secrete thyroid
antibodies, contributing to the autoimmune response.
Furthermore, Tregs cells suppress immunity and inflammation
(4). Study shows that HT patients have elevated Th1 and Th17
subsets and exhibit excessive expression of IFN-g and IL-17 (5).
Therefore, targeting the pro-inflammatory T helper subtypes,
such as Th1 and Th17 cells, could be a promising treatment
strategy for HT.

In order to undergo proliferation and differentiation, activated
CD4+ T cells must use a metabolic pathway that meets energy
requirements necessary to support rapid biosynthesis. In contrast
with the TCA cycle, glycolytic metabolism provides less ATP but
more key metabolic intermediates that can benefit cellular growth
(6). T cells activated by lipopolysaccharide (LPS) preferentially use
the glycolysis metabolism pathway. Activated T cells show an
increase in glycolysis, most notably in Th17 cells and Th1 cells (7,
8). While the metabolic characteristics of CD4+T cells in LPS-
induced inflammation have been described, the metabolism of
CD4+ T cells remains poorly understood in the context of HT.

HIF-1a is a keymetabolic sensor in cellular metabolism pathways,
and plays a vital role in influencing immune responses (9, 10). The
switch from oxidative phosphorylation to glycolysis during immune
cell activation requires HIF-1a (11). HIF-1a protein translation is
enhanced by activation of the PI3K/AKt/mTOR pathway (12).
Different T cell subsets apply different metabolic pathways
depending on their specific cellular demands (13). T cell fate can
be shaped by differential metabolic programming (14). We
hypothesize that cellular metabolism contributes to HT
pathogenesis through T cell activation, that some metabolic sensors,
such as mTOR and HIF-1a, influence autoimmune responses
through metabolic pathways in HT, and that metabolic modulating
treatments could be used to reduce or revert HT.

In the present study, we used in a murine model of
spontaneous autoimmune thyroiditis (SAT) induced by
excessive iodine intake in NOD-2h4 mice. We evaluated
whether treatment with the glucose blocker 2-deoxyD-glucose
(2DG) and/or the mitochondrial complex 1 inhibitor,
metformin, could alter the relationship between abnormally
activated mTOR/HIF-1a/glycolysis and imbalance of CD4+ T
cells subtypes. The results of this study provide new insights into
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how metabolism regulates T cell function and autoimmunity,
and reveal key modulators of metabolism in the pathology of
autoimmune thyroiditis.
METHODS

Human Subjects
The HT group consisted of 30 HT patients (4 males, 26 females,
35–65 years old) (Table 1). A clinical diagnosis of HT was
based on elevated serum levels of thyroid antibodies (TPOAb>
200 IU/ml). None of the HT patients had accompanying
thyroid carcinoma, and none had a medical history of other
autoimmune diseases. The healthy control (HC) group consisted
of 30 participants (7 males, 23 females; 35–65 years). The healthy
control group comprised of age- and sex-matched healthy
individuals with no history of autoimmune disease and with
normal rage of thyroid antibody and thyroxin levels. None of
the participants had taken any medicine. The study protocol was
approved by the Ethics Committee of China Medical University
(Liaoning, China).

Animal Subjects and SAT Models
NOD.H-2h4 mice were purchased from the Jackson Laboratory
(Bar Harbor, ME, USA). Mice were breed and raised in specific
pathogen-free conditions with a 12 h light/12 h dark cycle at the
Animal Experiment Center of China Medical University. All animal
experiments were approved by the Animal Ethics Committee of
China Medical University. Seven mice were selected and
randomized into an iodine-free water control group and 28 mice
were assigned into a high-iodine group. The iodine-free group
received sterile water for 12 weeks. After 4 weeks of sterile water, the
high-iodine group was administered 0.05% NaI (1000 x higher than
normal concentration) for 8 weeks, then switched back to sterile
water for 4 weeks. Treatment was performed for 4 weeks with 3 mg/
mL metformin (Met; Sigma) or 5 mg/mL 2DG (Sigma), or a
combination of the two (n = 7 mice per treatment group),
administered in drinking water. All the mice were euthanized
after 12 weeks. Thyroid sections were collected and prepared for
hematoxylin and eosin staining. The expansion, lesions, and
lymphocyte infiltration of thyroid follicles were assessed for
indications of spontaneous autoimmune thyroiditis (SAT). The
SAT condition was identified based on the collective area of the
inflammatory lymphocyte cells, as previously described (15): 0, few
inflammatory cells and mild abnormal follicular cells; 1+: <10%
TABLE 1 | Characteristics of patients with HT and healthy controls in this study.

Healthy Controls (n=30) HT Patients (n=30) P-value

Age(years) 39.93±12.19 47.13±2.85 0.218
Gender(female) 23(77%) 26(87%) 0.000
TSH (mIU/L) 2.06±0.16 2.85±0.28 0.004
FT4 (pmol/l) 15.13±0.39 14.50±0.31 0.228
FT3 (pmol/l) 4.9±0.11 4.6±0.16 0.014
TPOAb (IU/ml) 12.70±4.21 422.59±26.36 0.000
TgAb (IU/ml) 97.24±39.54 368.35±65.03 0.027
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infiltration; 2+: 10–30% infiltration; 3+: 30–50% infiltration; 4+:
more than 50% infiltration. Histological scores of thyroiditis were
independently estimated by two blinded scorers.

Flow Cytometric Analysis of
T-Cell Subsets
Lymphocytes were sterilely prepared from harvested spleens or
blood of participants, stimulated by CD3/CD28 (Dynabeads
Human/mouse T-Activator, Life Technologies), and incubated
at 37°C for 5 h. Anti-mouse/human CD4 and CD25 antibody
staining (BD, USA) was used to detect extracellular proteins.
Anti-mouse/human IFN-g, IL-4, and IL-17a antibody staining
(BD, USA) was used to detect intracellular proteins. The
proportions of T-cell subsets were measured and analyzed
using FACScan Flow Cytometry and WinMDI2.9.

Metabolic Measurements
Human CD4+ T cells were enriched from peripheral blood using
the RosetteSep® Enrichment Cocktail (StemCell Technologies).
Cells were cultured with CD3/CD28 (Dynabeads Human T-
Activator, Life Technologies) for 3 days with 20 U/mL IL-2.
lymphocytes were sterilely prepared from harvested spleens,
stimulated by CD3/CD28 (Dynabeads Human/mouse T-
Activator, Life Technologies), and incubated at 37°C for 3
days. 1*106 CD4+ T cells were cultured in XFe96 plates coated
with Cell-Tak. The basic assay media contains 2.5 uM dextrose
and 2 mM glutamine. After cultured for 2 hours, injections of 2 mM
oligmycin, 2 mM FCCP, 10 mM 2-deoxyglucose, and 0.5mM
rotenone/antimycin A were performed sequentially. ECAR and
OCR were measured using a XF96 Extracellular Flux Analyzers
under mitochondrial stress test conditions (Seahorse, Agilent
Cell Analysis Technology, USA) and glycolysis stress test
conditions (Seahorse, Agilent Cell Analysis Technology, USA).
The Agilent seahorse XF technology can measure changes in the
rate of extracellular acidification (ECAR, a qualitative indicator
of lactate in glycolysis) and oxygen consumption rate (OCR).
Basal OCR or ECAR represents the last measurement before first
injection. Stressed OCR or ECAR represents maximum rate
measurement after oligomycin (ECAR)/FCCP (OCR) injection.
The metabolic potential represents (stressed/basal) *100%.

Western Blotting
Total cellular proteins were extracted from CD4+T cells and
spleen mononuclear cells using a protein extraction kit (Keygen
Biotech, Nanjing, China). Proteins were separated by 10% SDS/
PAGE and transferred to PVDF membranes (Merck Millipore,
USA). Membranes were washed three times with TBST, then
blocked in TBST containing 5% BSA for 2 h at room
temperature. Membranes were then incubated overnight at 4°C
with anti-Sirt2, anti-HIF1a, anti-mTOR, anti-LDHA, anti-Glut1,
anti-HK2, anti-PKM2 antibody (1:1000 dilution; Cell Signaling
Technology) and anti-GAPDH(1:1000; Santa Cruz). Membranes
were washed in TBST three times, and then incubated with goat
anti-Rabbit IgG secondary antibody (1:5000 dilution; Santa
Cruz) solution for 2 h at room temperature. Finally, protein
bands were visualized using a chemiluminescence western blot
detection system (Alpha Innotech; MicroChemi 4.2).
Frontiers in Endocrinology | www.frontiersin.org 3
Statistical Analysis
Statistical analyses were performed using SPSS 17.0 software and
GraphPad Prism 6.0 software. Sample mean values were
compared using independent sample t-tests with a level of
significance at P < 0.05. Proportion value comparisons were
performed using the c2 - test. Each in vitro experiment was
performed at least twice with reproducible results.
RESULTS

Subtypes of CD4+ T Cells Are Imbalanced
in HT Patients
We analyzed the percentage of CD4+ IL17A+, CD4+ IFN-r+,
CD4+ IL4+ T cells and CD4+ CD25+ Tregs in the total number
of CD4+ T cells from peripheral blood of 30 patients with HT
and 30 healthy control participants (HC) by flow cytometry. In
the HT patients, the ratio of the CD4+ IL17A+(7.49% vs. 2.72%,
p<0.01) and CD4+ IFN-r+ T cells (14.23% vs. 8.85%, p<0.01) was
significantly higher than that in the HC group (Figures 1A, C).
Additionally, the ratio of CD4+ Foxp3+ Tregs (3.50% vs.
7.54%, p<0.01) was significantly lower than in the HC group
(Figure 1D). However, there was no difference between two
groups in the ratio of CD4+ IL4+ T cells (1.28% vs. 0.97%,
p=0.168) (Figures 1B).

Abnormal Cellular Metabolism in
CD4+ T Cells of Patients With
Hashimoto’s Thyroiditis
To test whether these CD4+ T cell subtypes exhibited alterations in
cellular metabolism, we evaluated extracellular acidification rate
(ECAR), which is primarily indicative of glycolysis, and the oxygen
consumption rate (OCR), which corresponds to aerobic
metabolism. CD4+ T cells from HT patients showed enhanced
ECAR and OCR compared to CD4+ T cells from the age-matched
healthy control group (Figure 2A). The difference in CD4+ T cell
OCR is not apparent at basal metabolism levels but became more
pronounced in stressed conditions (Figures 2C, E). However, the
basal ECAR of CD4+ T cells in HT patients was higher than the HC
group (Figure 2D). This indicates that the basal state of CD4+T
cells from the two groups are different. Stressed CD4+ T cells from
the HT group also exhibited higher ECAR (Figure 2F). Elevated
ECAR and OCR in the stressed cells indicated an increased capacity
for glycolysis and aerobic respiration in the CD4+ T cells from the
HT group. These results suggest that the increased metabolism of
CD4+ T cells in HT patients is required to support the activated
immune functions.

In order to further evaluate glycolysis in these cells, we
extracted protein from CD4+T cells to analyze the expression
of key glycolysis enzymes. Western blot results show that the
expression of Glut1, HK2, PKM2, and LDHA was elevated in
cultured CD4+ T cells from the HT group compared with the HC
group (Figure 2B). This result suggests that the increased
metabolism of CD4+ T cells in HT patients results from
increased expression of glycolysis-associated enzymes. Overall,
CD4+ T cells from HT patients present with enhanced cellular
June 2021 | Volume 12 | Article 659738
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metabolism that may contribute to the imbalance in ratios of
CD4+ T cell subtypes.

Reprogramming Abnormal Metabolism
of CD4+ T Cells in SAT Mice by
Administration of Metabolic
Regulatory Agents
We addressed whether pharmacological intervention against
abnormal metabolism using metabolic regulatory agents (2DG,
metformin, combination) was effective in a murine model of SAT
Frontiers in Endocrinology | www.frontiersin.org 4
induced by excess dietary iodine in NOD-2h4 mouse. After 8
weeks, twenty-one mice were randomized into three groups for
treatment with 2DG, metformin, or a combination of 2DG and
metformin (n = 7 per group).

We found that 2DG inhibited CD4+ T cell ECAR in SAT
mice (Figure 3A), and decreased OCR (Figure 3C), likely by
decreasing glucose oxidation. Metformin also decreased ECAR
(Figure 3A) and OCR (Figure 3C). The combination of the two
regulators showed the same trend in reducing ECAR (Figure
3B), and had a combinatorial effect in reducing OCR and ATP
A

B

D

C

FIGURE 1 | The ratio of CD4+ T cells subtypes in HT patients and HC group determined by flow cytometry. A representative Flow sample is shown from each
sample, and samples were run individually rather than pooled. Lymphocytes from HC and HT subjects were stimulated for 5 hours with CD3/CD28 and the ratio of
subtypes in CD4+ T cells were measured by flow cytometry. The cell frequency of CD4+IFNg+ (A), CD4+IL4+ (B), CD4+IL17A (C) and CD4+Foxp3+ (D) was
determined. The frequency of T cell subsets was investigated in sixty donors (30 healthy and 30 HT donors). The mean cytokine values are compared using two-way
ANOVA and the p values are indicated in the figure. (***P < 0.01).
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production (Figure 3D). Western blot analysis showed that the
expression of HK2 and PKM2 in cultured SAT CD4+ T cells was
elevated compared with the control group, and revealed that
treatment with 2DG and metformin significantly reduced the
elevation of glycolysis-related enzymes in CD4+ T cells from
SAT mice (Figure 4A).
Frontiers in Endocrinology | www.frontiersin.org 5
In order to understand the abnormal pathways and to identify
key factors contributing to this abnormal metabolism, we analyzed
levels of mTOR/HIF-1a and Sirt1 in the CD4+T cells of SAT mice.
The expression of Sirt1 was reduced in SAT mice and went back to
the normal expression following treatment with 2DG and/or
metformin (Figure 4B). The mTOR and HIF-1a levels in SAT
A

B
D

E

F

C

FIGURE 2 | The metabolism characteristic of CD4+ T cells from HT patients and HC group. The overall phenotype of CD4+ T cells (A) of HT patients (blue) and HC
group (red). The hollow squares represent the basal ECAR (X-coordinate) and OCR (Y-coordinate), and the solid squares represent the stressed ECAR (X-coordinate)
and OCR (Y-coordinate). Both basal OCR and stressed OCR of CD4+ T cells (C, E) and basal ECAR and stressed ECAR (D, F) in two groups were measured by
seahorse after incubated with CD3/CD28 for 3 days. The expression of glycolysis related key enzyme (Glut1, HK2, PKM2 and LDHA) in cultured HT CD4+ T cells (B)
were measured by western blot. ECAR, extracellular acidification rate. OCR, oxygen consumption rate. *P < 0.05.
A B

DC

FIGURE 3 | 2DG and metformin reverted CD4+ T cell metabolic dysfunction in vivo. The NOD-2h4 mice were raised and given excess iodine to form a murine
model of SAT. After 8 weeks three groups of mice for treatment with 2DG, metformin, or a combination of 2DG and metformin (n = 7 per group). CD4+ T cells was
extracted from these mice and the basal ECAR (A), glycolysis capacity and glycolysis reserve of CD4+ T cells of ever group (B). The basal OCR, spare respiration
capacity and ATP production of CD4+ T cells of every group were measured by seahorse (C, D). ECAR, extracellular acidification rate; OCR, oxygen consumption
rate. *P < 0.05.
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mice were all elevated. Treatment with 2DG only reduced HIF-1a
expression, and the effects on mTOR levels were more significant in
the metformin treatment group (Figure 4B). Overall, the mTOR/
HIF-1a/HK2/glycolysis pathway of CD4+ T cells in SAT mice was
activated, and treatment with the metabolic regulators 2DG and
metformin could reprogram this abnormal activation.

Treatment With 2DG and Metformin
Alleviates Thyroiditis Induced by Excess
Iodine in NOD-2h4 Mice
We sought to determine if metabolic reprogramming with 2DG and
metformin could reduce indications of SAT in mice. Treatment
with 2DG and/or metformin in vivo up-regulated Treg T cells
(Figure 5A), and significantly decreased the elevated ratio of Th1
(Figure 5B) and Th17 (Figure 5C) cells in SAT mice. The
treatments significantly decreased the severity of SAT, indicated
by a lower proportion of mice with high severity scores in the
treatment groups (Figure 5D). However, the combination of 2DG
and metformin did not have an added effect in reducing indications
of SAT over individual treatments. Overall, treatment with 2DG
and/or metformin could reverse the imbalance of CD4+ T cells in
SAT mice and reduced inflammation in thyroid tissue.

DISCUSSION

Hashimoto’s thyroiditis (HT), discovered by Hakaru Hashimoto in
1912, is an organ-specific autoimmune disease (16). As one of the
Frontiers in Endocrinology | www.frontiersin.org 6
most widespread thyroid disorders that can lead to hypothyroidism
(17, 18), HT is characterized by lymphocytic infiltration in thyroid
tissue, follicular cell destruction, and the presence of thyroid-specific
autoimmune antibodies. Environmental factors can trigger thyroid
autoimmunity in individuals susceptible to HT, resulting in
increased thyroid antigen presentation and reduced self-tolerance
in the thyroid (19). Consequently, pro-inflammatory cytokines are
produced by immune cells and thyroid cells, resulting in elevated
Th1 and Th17 responses (20). These proinflammatory subtypes of
immune cells produce factors that lead to thyrocyte apoptosis and
thyroid destruction (19). Regulatory T cells are vital for maintaining
self-tolerance and reducing excessive immune responses. The
reduction in or functional impairment of Tregs also influences
the pathogenesis of HT (21). In this study, we demonstrate that
patients with HT exhibit increased ratios of Th1 and Th17 T cell
subtypes, and decreased ratios of Tregs.

Recently, the idea of “immunometabolism” has risen in
prominence, and refers to how immune cells can switch to
preferential metabolic pathway to generate energy carriers and
metabolic intermediates when they need to produce biomass and
inflammatory mediators. Indeed, the different functional subtypes
of helper T cells preferentially utilize different metabolic pathways
(8, 22). Not surprisingly, the factors that influence metabolism,
including key enzymes in metabolic pathways, affect the
differentiation of naïve T cells. Therefore, we analyzed the
metabolic characteristics of CD4+ T cells in patients with HT.
Compared to a healthy control group, the CD4+ T cells of HT
A

B

FIGURE 4 | Treatment with 2DG and/or metformin deactivated the mTOR/HIF-1a/HK2/PKM2 pathway in CD4+ T cells of SAT mice. CD4+ T cells were extracted
from SAT mice treated with 2DG, metformin, or combination, and expression of glycolysis-related enzymes were evaluated by western blot (n = 7 per group). (A) The
expression of key glycolysis-related enzymes (HK2 and PKM2) of cultured SAT CD4+ T cells were measured by western blot. (B) The expression of key pathway
related proteins (sirt1, mTOR, and HIF-1a) were measured by western blot.
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patients has basal metabolism indicating high glycolysis and normal
aerobic metabolism. However, the stressed ECAR and OCR levels
were both higher in CD4+ T cells form HT patients than from the
healthy control group. This suggested that CD4+T cells switch to
high glycolysis and slightly high aerobic metabolism in order to
maintain immune activation. This result agreed with the changes in
immunometabolism described in systemic lupus erythematosus
(SLE) (23). However, the alterations in immunemetabolism in
rheumatoid arthritis (RA), another autoimmune disease, were
much different. In RA, glycolysis of CD4 T cells was very low,
and the pentose phosphate pathway (PPP) was elevated (24).

The activation of CD4+ T cells increases both lactate production
and oxidative phosphorylation (25, 26). Additionally, differentiation
into inflammatory CD4+ T cell subtypes, especially Th1 and Th17
cells, relies on aerobic glycolysis (27, 28). CD4+ T cell activation
requires mitochondrial metabolism, specifically the production of
reactive oxygen species (29). In our study, we showed that elevated
Frontiers in Endocrinology | www.frontiersin.org 7
glycolysis results from activation of key glycolysis-related enzymes
in CD4 T cells, including Glut1, HK2, PKM2, and LDHA. Based on
these observations, we administered metabolism regulatory agents,
2DG andmetformin, in amodel of SAT induced by excessive iodine
intake in NOD-2h4 mice. In a model of SLE, 2DG and metformin
significantly delayed disease onset (30). Our study showed that
treatment of SAT mice with 2DG and/or metformin reverted the
elevated glucose metabolism and mitochondrial oxidation of CD4+
T cells. 2DG and metformin efficiently normalized chronically
activated CD4+ T cells and inhibited both aerobic glycolysis and
oxidative phosphorylation. Our in vivo studies specifically
compared pyruvate oxidation and reduction in CD4+ T cell
activation and polarization into Th1 and Th17 subsets.

Sirtuin 1 (SIRT1), a member of the HDAC sirtuin family, is a
crucial factor in metabolism and immune responses (31, 32). SIRT1
can deacetylate downstream targets, including hypoxia inducible
transcription factor-1 alpha subunit (HIF-1a) (33), which is a key
A

B

D

C

FIGURE 5 | Treatment with 2DG and/or metformin for 4 weeks reversed thyroiditis in SAT mice. SAT mice treated with 2DG, metformin, or combination, and
spleen mononuclear cells were harvested, incubated, and evaluated by flow cytometry (n = 7 per group). Spleen mononuclear cells were incubated and the subtype
of CD4+ T cells including CD4+CD25+ Tregs T cells (A), CD4+IFNg+ Th1 T cells (B), CD4+CD17A+ Th17 T cells (C) were measured by flow cytometry. The severity
of SAT, indicated by proportions of high and low severity scores, was evaluated (D). Severity score: 0(a), 1+(b), 2+(c), 3+(d), 4+ (e, f). *p < 0.05.
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transcriptional factor in pro-inflammatory responses and cellular
metabolism. Recent studies have shown that HIF-1a is responsible
for glycolytic responses downstream of mTOR, however SIRT1
exerts negative regulatory effects on mTOR (34). Changes in HIF1a
expression lead to altered differentiation of naïve T cells (35).
Moreover, abnormal expression of SIRT1 has been associated
with elevated production of thyroid autoantibodies (36). In our
study, chronically activated CD4+ T cells had lower expression of
SIRT1 and elevated levels of mTOR and HIF-1a.

In summary, we identified abnormal CD4+ T cell metabolism as a
therapeutic target in a murine model of SAT. 2DG and/or metformin
may also directly target immune cells in vivo. Glycolysis is essential for
Th1 and Th17 cell functions, and both glycolysis and mitochondrial
function are vital for the activation of CD4+ T cells. In HT and a SAT
model, the activation of glycolysis in CD4+ T cells resulted from
activation of the mTOR/HIF-1a pathway. Although 2DG and
metformin proved effective at reversing the disease phenotype in
vivo, and whether these therapies could be applied to treat HT in
human patients remains unknown. This study only spotted out the
overall metabolism changes in the CD4+T cells in HT patients.
However, due to the limited volume of patients’ peripheral blood we
could collected, the different metabolism changes in different subtypes
of CD4+ T cells could not be measured. Hence, we could not explain
the phenomenon in this study which is glycolysis and aerobic
oxidation enhanced at the same time. Finally, we demonstrate that
deactivation of SIRT1 could be related to regulation of the whole
metabolic pathway in CD4+ T cells, but further study is required to
evaluate this phenomenon.
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