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Imprinted Genes Impact Upon Beta
Cell Function in the Current (and
Potentially Next) Generation
Chelsie Villanueva-Hayes† and Steven J. Millership*

Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College
London, London, United Kingdom

Beta cell failure lies at the centre of the aetiology and pathogenesis of type 2 diabetes and
the epigenetic control of the expression of critical beta cell genes appears to play a major
role in this decline. One such group of epigenetically-controlled genes, termed ‘imprinted’
genes, are characterised by transgenerational monoallelic expression due to differential
allelic DNA methylation and play key functional roles within beta cells. Here, we review the
evidence for this functional importance of imprinted genes in beta cells as well as their
nutritional regulation by the diet and their altered methylation and/or expression in rodent
models of diabetes and in type 2 diabetic islets. We also discuss imprinted genes in the
context of the next generation, where dietary overnutrition in the parents can lead to their
deregulation in the offspring, alongside beta cell dysfunction and defective glucose
handling. Both the modulation of imprinted gene expression and the likelihood of
developing type 2 diabetes in adulthood are susceptible to the impact of nutritional
status in early life. Imprinted loci, therefore, represent an excellent opportunity with which
to assess epigenomic changes in beta cells due to the diet in both the current and
next generation.

Keywords: genomic imprinting, methylation, beta cell function, type 2 diabetes, diet, nutritional regulation,
pancreatic islets
INTRODUCTION

The term “epigenetics” has been redefined frequently since the 1940s, and therefore, we will use this
term to define “the study of molecules and mechanisms that can perpetuate alternative gene activity
states in the context of the same DNA sequence” (1). Epigenetic mechanisms control genetic
information whilst unaltering the underlying DNA sequence (2) and include DNA methylation,
chromatin remodelling, histone modifications, and gene regulation by non-coding RNA. Moreover,
these epigenetic pathways modulate expression of target genes, and therefore, have a significant role
in the establishment, maintenance and dynamic changes in the cell (3). In mammalian genomes,
DNA methylation usually refers to methylation of 5’-cytosines within CpG dinucleotides (4) and is
the major pathway controlling several epigenetic phenomena, including genomic imprinting, X
chromosome inactivation and repression of transposable elements (3). CpG methylation is carried
out by a family of DNAmethyltransferases (DNMTs) [reviewed in (5, 6)] at key regulatory genomic
regions, e.g. promoters, and is associated with activation and repression of gene expression (7–13).
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The epigenetic phenomenon of genomic imprinting results in
monoallelic and parent-of-origin-specific gene expression in a
select group of genes (14, 15). The discovery of inconsistencies in
the level of DNA methylation at the same locus between paternal
and maternal alleles revealed the involvement of epigenetic
alterations in the regulation and conservation of monoallelic
s i lencing in genomic imprint ing (16–18) . Nuclear
transplantation experiments showed that embryos containing
one set of parental chromosomes (uniparental disomy; UPD) did
not survive beyond early gestation, demonstrating that the
parental genomes were not functionally equal (19–23).
Imprinting is a highly conserved process in mammals and to
date, approximately 150 imprinted genes are known in mice and
around 100 in humans. Imprinted genes are generally found in
clusters throughout the genome and have been found to be
regulated by discrete DNA elements called imprinting control
regions (ICR), which are a differentially methylated region
(DMR) (14, 17). Parental allele-specific imprinting marks are
preserved during the lifespan (24–26), [reviewed in (27, 28)] and
are reset and re-established transgenerationally (29). Secondary
‘somatic’ imprints can also be established post-fertilisation and
are believed to reinforce the allele-specific gene repression at
imprinted loci (30).
IMPRINTED GENES PLAY KEY
FUNCTIONAL ROLES IN PANCREATIC
BETA CELLS

Imprinted genes are highly expressed in metabolic systems where
they play a central role in controlling growth, development and
metabolism (31). Pancreatic beta cells express a number of
imprinted genes that are critical for beta cell function.
Demonstrating the importance of maintaining the correct
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dosage of imprinted gene expression are the presence of
several human imprinting syndromes (Prader-Willi, Angelman,
Beckwith-Wiedemann and Silver-Russell) that result in severe
developmental and metabolic abnormalities, due to altered
imprinted gene expression at imprinted loci (15, 32, 33)
[reviewed in (34)], including a transient form of neonatal
diabetes caused by paternal UPD of the 6q24 region (35–37).
Here, we discuss several imprinted genes with known function in
beta cells (Figure 1), primarily through their characterisation in
cellular or mutant mouse models. As a significant decline in beta
cell function often coincides with a reduction in whole-body
glucose homeostasis, we also discuss imprinted genes in the
context of their nutritional regulation by the diet and the
evidence for altered imprinted gene expression in type 2
diabetes (T2D). Finally, we explore what is known regarding
susceptibility to diabetes in the next generation via epigenetic
changes in the offspring due to parental under- or overnutrition.

Nnat
Nnat is a paternally expressed imprinted gene which is highly
enriched in neuroendocrine systems, including pancreatic beta
cells (38–40). Early in vitro work reported a potential role in
glucose-stimulated insulin secretion (GSIS) in two different
stable mouse pancreatic beta cell lines and expression of both
known isoforms of neuronatin, Nnat-a and Nnat-b, found
predominantly in the endoplasmic reticulum (ER), were
increased after acute stimulation with high glucose (41, 42). It
has been postulated that NNAT plays a role in the regulation of
the intracellular calcium dynamics in several cell types (42–44);
however, primary islets from Nnat-null mutant mice displayed
unaltered Ca2+ signalling (45). Both global and beta cell-specific
Nnat deficient mice demonstrate impaired GSIS due to reduced
beta cell insulin content (45). Furthermore, NNAT was shown to
interact with the signal peptidase complex (SPC) and facilitates
the translocation of nascent preproinsulin into the ER (45). Nnat
FIGURE 1 | Direct functional importance of imprinted genes in pancreatic beta cells falls into two major categories: modulators of beta cell mass (via changes in
cellular proliferation, apoptosis and/or differentiation) and alterations to specific components of the insulin secretory apparatus. Arrowheads and blocked lines
represent stimulatory and inhibitory actions on these cellular pathways, respectively.
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expression is also regulated by nutrient status in pancreatic beta
cells both in vitro and in vivo (42, 45) and in rodent models of
diabetes (42, 45, 46).

Plagl1
Plagl1 (also known as Zac1) is a zinc finger transcription factor
that is implicated in anti-proliferative activities such as the
regulation of cell cycle arrest and apoptosis (47–51). PLAGL1
is a paternally expressed imprinted gene on chromosome 6q24, a
region where paternal duplication or loss of methylation at the
PLAGL1 DMR causes transient neonatal diabetes mellitus
(TNDM) locus owing to PLAGL1 overexpression (35–37, 49,
52, 53). PLAGL1 overexpression appears to reduce beta cell mass
in neonates via its apoptotic and/or anti-proliferative capabilities
(51). This is potentially due to PLAGL1-mediated modulation of
PPARG and PACAP1-R expression, two key regulators of beta
cell proliferation and insulin secretion, respectively (54).
Additionally, high glucose levels reduced Plagl1 expression in
rodent beta cell lines and in primary mouse islets (55). Plagl1
overexpression in several rodent beta cell lines impaired insulin
secretion (56) and overexpression in mice recapitulates the early-
onset diabetes observed in TNDM patients (57). Furthermore,
induced Plagl1 expression resulted in a decrease of glucose-
stimulated proinsulin biosynthesis, despite an increase in
insulin mRNA (55) suggesting that Plagl1 can also negatively
regulate the translational apparatus and ultimately the efficiency
of insulin mRNA translation.

Rasgrf1
Rasgrf1 is a paternally expressed imprinted gene that functions as a
guanine nucleotide exchange factor for Ras GTPases (58).
Pancreatic islets from the db/db diabetic mouse model had a
significant reduction in Rasgrf1 expression (59). Mice with
deletion of Rasgrf1 showed reduced beta cell proliferation and
neogenesis, and thus decreased beta cell mass, resulting in
hypoinsulinaemia and impaired glucose tolerance (60).
Interestingly, it was found that Rasgrf1 is a direct Plagl1 target
gene in multiple rodent beta cell lines and in mouse islets (56).
Moreover, a two-fold overexpression of Plagl1 in beta cells resulted
in repression of Rasgrf1 expression and impaired insulin secretion,
which could be rescued by restoring Rasgrf1 expression (56).

Cdkn1c and Kcnq1
Cdkn1c is expressed solely from the maternal allele (61, 62) and
regulates cell proliferation and differentiation (63–65). Indeed,
suppression of CDKN1C expression via viral delivery of shRNAs
into isolated human islets provoked a 3-fold increase in beta cell
proliferation and was sufficient to rescue hyperglycaemia when
transplanted into diabetic mice (66). Importantly, newly-
replicated beta cells retained the characteristics of mature beta
cells, with expression of key functional markers (insulin, PDX1
and NKX6.1) and a robust response to high glucose in terms of
calcium dynamics (66). Also found at the CDKN1C-containing
11p15/ICR2 imprinted region, the KCNQ1 gene encodes a
voltage-gated potassium channel, and overexpression of this
protein in mouse MIN6 beta cells causes impaired insulin
secretion (67). Furthermore, administration of a KCNQ1
Frontiers in Endocrinology | www.frontiersin.org 3
inhibitor enhanced insulin secretion in isolated islets and in
mice (68). Genetic disruption of the Kcnq1 gene in mice caused a
reduction in beta cell mass and subsequent glucose intolerance,
although this was likely due to a subsequent upregulation of
Cdkn1c expression (69).

The incidence of hypoglycaemia is approximately 50% in
patients with Beckwith-Wiedemann Syndrome (caused by genetic
disruption at 11p15) and is associated with beta cell hyperplasia and
subsequent hyperinsulinaemia in affected individuals (70–74)
[reviewed in (75)]. In many Beckwith-Wiedemann Syndrome
patients, the ICR2 region at 11p15 is hypomethylated on both
alleles (76), causing loss of expression of CDKN1C (77) and is
linked with an increase in proliferation of beta cells (66, 76, 78, 79).
Furthermore, targeted demethylation of ICR2 using a
methylcytosine dioxygenase 1 (TET1)-based approach repressed
CDKN1C expression in human islets, with subsequent increased
levels of Ki-67 and significant beta cell proliferation (80).
Interestingly, a point mutation in the CDKN1C gene was found
in a family with several features consistent with IMAGe syndrome
(81), a growth and developmental disorder similar to Beckwith-
Wiedemann Syndrome (82, 83), as well as an early-adult-onset
form of diabetes (81). It remains to be determined whether IMAGe
patients also develop diabetes at a later stage in life; however, these
findings suggest that mutation of CDKN1C alone may be sufficient
to drive a monogenic form of diabetes.

Dlk1 and Gtl2/MEG3
The imprinting region on human chromosome 14q32 carries a
cluster of imprinted genes, including the paternally expressed gene
DLK1 and the maternally expressed long non-coding RNA
(lncRNA) MEG3 (Gtl2 in rodents) (84–86). Overexpression of
Dlk1 in mice improves glucose tolerance and whole-body insulin
sensitivity (87), potentially by promoting proliferation and
differentiation of beta cells (88). Transgenic mice overexpressing
Dlk1 in pancreatic beta cells demonstrate an increase in islet mass
with higher proportion of larger islets, whereas Dlk1 null mice
showed the opposite trend (89). Transgenic mice, therefore, had
increased insulin secretion and improved glucose tolerance (89),
although conversely, a different group has demonstrated increased
proliferation (and size) of pancreatic islets upon Dlk1 ablation in
mice (90). At the same locus, constituent deletion of Gtl2 and its
associated promoter in mice led to severe parent-of-origin-
dependent peri-/postnatal developmental defects and early
lethality (91). Increased methylation at the Gtl2 promoter DMR
in the mouse beta cell line, bTC6, resulted in decreased Gtl2
expression and increased beta cell sensitivity to cytokine-mediated
oxidative stress (92). Gtl2 has also been shown to maintain the
expression of Mafa, a critical beta cell transcription factor that
positively influences insulin synthesis and secretion (93). Gtl2
expression is also decreased in islets in the db/db diabetic mouse
model and its expression is glucose-regulated in both the MIN6
mouse beta cell line and in primary mouse islets (94). Knockdown
of Gtl2 using siRNA in both MIN6 beta cells and primary islets
impaired insulin synthesis and secretion and caused beta cell
apoptosis (94). Furthermore, knockdown of Gtl2 in vivo resulted
in impaired glucose tolerance and insulin secretion in mice, likely
due to a reduction in beta cell mass (94).
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Grb10
Grb10 functions via intracellular signalling pathways regulating
growth and metabolism (95) and has been implicated in binding
to, and negatively regulating signals from, the insulin receptor
(IR) and insulin-like growth factor 1 receptor (IGF1R) (96, 97).
Differential transcriptome analysis of mouse islets from diabetes-
resistant (ob/ob) vs diabetes-sensitive (New Zealand obese,
NZO) mouse strains revealed a number of human diabetes
candidate genes, including Grb10 (98). Several studies have
also uncovered a role for Grb10 in the regulation of glucose
handling; however, this has required picking apart the relative
contribution from Grb10 expression in the beta cell and other
peripheral, insulin target, tissues (99–101). Disruption of Grb10
expression in mice is associated with postnatal overgrowth and
enhanced insulin secretion and sensitivity and improved glucose
tolerance (99–103). Conversely, Grb10 overexpression in mice
caused postnatal growth retardation, accompanied by severe
insulin resistance and worsened glucose intolerance (104, 105).
Moreover, pancreatic-specific Grb10 deletion resulted in
increased beta cell proliferation and a subsequent increase in
insulin content and secretion, and improved glucose tolerance
(106). However, Prokopenko et al. found that shRNA-mediated
knockdown of GRB10 in isolated human islets led to a reduction
in insulin secretion (107).
EVIDENCE OF ALTERED IMPRINTED
GENE EXPRESSION IN T2D

T2D is predominantly a consequence of beta cell failure (108,
109) and the majority of the genes associated with T2D
pathogenesis encode modulators of beta cell function (110).
The studies described above demonstrate that careful control
of imprinted gene expression is required in order to maintain
normal beta cell function and glucose homeostasis. Interestingly,
several studies have shown that the expression and methylation
patterns of several imprinted genes show notable differences in
T2D vs non-diabetic islets (86, 107, 111–114) (summarised in
Frontiers in Endocrinology | www.frontiersin.org 4
Table 1). Specifically, Dlk1 expression was found to be elevated
in beta cells from patients with T2D (113) and has been posited
as a biomarker for identifying women at high risk of developing
diabetes (119). MEG3 expression was also found to be
downregulated in islets from T2D donors as a result of
hypermethylation at the MEG3 DMR (86). Additionally, a
study consisting of patients with gestational diabetes mellitus
showed that DNAmethylation at theMEG3-DMR was positively
correlated with maternal glycaemia and foetal growth (120).
Using a genome-wide association study (GWAS) based on
assessment of GSIS, Prokopenko et al. (107) demonstrated that
inheriting variants of GRB10 were associated with reduced GSIS
and an increased risk of T2D when inherited from the father, but
improved glycaemia when inherited from the mother, which
may be due to the different parent-of-origin tissue expression
patterns of Grb10 (121, 122). Several studies have also identified
single nucleotide polymorphisms (SNPs) at multiple imprinted
loci associated with T2D and impaired glucose tolerance
including those at the CDKN1C locus (amongst others) (115),
KCNQ1 (116, 117) and GRB10 (118) (Table 1). Indeed, several
imprinted genes including Plagl1, Dlk1, Gtl2 and Nnat were
differentially expressed between a ‘responder’ subclone of mouse
MIN6 beta cells (based on their sustained GSIS capacity) vs.
‘non-responder’ beta cells (123). In the above scenarios, where
the diabetic state is associated with altered DNAmethylation and
misexpression of imprinted genes in pancreatic beta cells, a
major question centres around the temporal nature of these
events. Are the observed changes in DNA methylation at key
regulatory genomic regions acting as a primary driver of
imprinted gene misexpression (and therefore functional
changes) in these beta cells? Or do changes in nutrient status
lead to misexpression of imprinted genes via other mechanisms
(e.g. nutrient-specific transcription factors) that are later
reinforced by long term epigenetic changes such as DNA
methylation? A recent study has shown that even mild
hyperglycaemia in rodents is sufficient to evoke deregulation of
critical genes for beta cell identity, including Nnat (46), and it
will be interesting to further explore this model in terms of
TABLE 1 | Imprinted gene candidates for conferring susceptibility to type 2 diabetes.

Study Imprinted loci or gene
affected

Methods used Human population(s)

(115) 11p15 and 7q32 GWAS - SNP chips (T2D vs control) Icelandic
(116) KCNQ1 GWAS - SNP genotyping (T2D vs control) Japanese, Korean, Chinese and

European
(117) KCNQ1 GWAS - SNP genotyping (T2D vs control) Japanese, Singaporean and

Danish
(118) GRB10 GWAS - SNP array (T2D vs control) Amish and Scandinavian
(107) GRB10 Meta-analysis of multiple GWAS (based on reduced GSIS) and SNP arrays Multiple backgrounds
(86) MEG3 Micro RNA sequencing in dispersed/FACS-sorted human islets (T2D vs control) Multiple backgrounds
(113) DLK1 and PLAGL1 Single cell transcriptomics in dispersed human islets (T2D vs control) Multiple backgrounds
(112) PEG3 RNA and exome sequencing in whole human islets (T2D vs control) European
(111) KCNQ1 Genome-wide DNA methylation and transcriptomic analysis in dispersed/FACS-sorted human

islets (T2D vs control)
Swedish

(114) GRB10 Genome-wide DNA methylation and transcriptomic analysis with SNP array in isolated human
islets from non-diabetic donors

Swedish
April 20
This has been assessed using GWAS and SNP analysis or via differential expression and/or methylation of imprinted genes in isolated islets from T2D vs control subjects.
21 | Volume 12 | Article 660532

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Villanueva-Hayes and Millership Imprinted Genes and Beta Cells
epigenetic alterations longitudinally over periods of chronic,
albeit mild, hyperglycaemia.
METABOLIC PROGRAMMING AND T2D IN
THE NEXT GENERATION

It is becoming increasingly apparent that individuals can be
predisposed to adult-onset metabolic diseases, such as T2D, due
to the direct effect of their nutritional status in early
development, either in utero or in the first few years of life
(124, 125). The developmental origin of health and disease
(DOHaD) hypothesis, first put forward by Barker (126, 127)
suggested that exposure to environmental factors during
vulnerable periods of foetal development or early childhood
might increase an individual’s risk to metabolic disease in later
life; this has since been linked with possible mediation by
epigenetic factors (1, 128–133). Indeed, intrauterine growth
restriction (IUGR) or parental overnutrition in rodents and
humans results in impaired glucose homeostasis in adulthood
Frontiers in Endocrinology | www.frontiersin.org 5
(134–140). One of the first examples of this phenomenon was the
finding that children born during the Dutch Winter Famine of
1944-45, who were exposed to maternal undernutrition in utero,
went on to develop diabetes in later life (141) with evidence for
altered DNAmethylation at imprinted loci (142, 143). Moreover,
it has been suggested that the transfer of epigenetic changes to
the next generation are not limited to exposure to the developing
foetus (i.e. in utero nutrition), but also directly to gametic cells,
with evidence for altered DNA methylation at imprinted loci in
oocytes from diabetic female mice (144). Furthermore, chronic
paternal high-fat diet feeding, prior to conception, in rodents
leads to impaired insulin secretion and glucose tolerance in their
offspring, including altered expression of imprinted genes (145),
indicating that both these epigenetic changes and beta cell
dysfunction can be passed on to the next generation via the
male germline. Similar findings have also been documented in
children who were conceived by obese fathers, with evidence for
altered expression (and methylation) at imprinted loci (IGF2,
PEG3, MEG3, PLAGL1 and NNAT) in F1 offspring (146, 147)
(Figure 2).
FIGURE 2 | Under- or overnutrition influences imprinted gene expression not only in the individual (F0 generation) but also in the next generation (F1). This may
occur indirectly via pre-conceptual changes in the germ cells (upper left panel) or via direct exposure in utero (and potentially the subsequent (F2) generation via
direct exposure of foetal germ cells to nutritional alterations in utero, upper middle panel). F1 offspring that have been directly or indirectly exposed to a suboptimal
nutritional status in early development have been shown to develop beta cell dysfunction in adulthood (lower left panel). In the F0 generation, overnutrition has been
shown to alter imprinted gene expression in pancreatic beta cells via changes in DNA methylation at key regulatory genomic regions. We therefore hypothesise that
changes in nutritional status affects the monoallelic expression of imprinted genes that is observed in ‘normal’ conditions (upper right panel) via alterations to CpG
methylation, with an example illustrated in the lower right panel (closed circles – methylated CpGs, open circles – unmethylated CpGs). With their known functional
role in beta cells, deregulation of imprinted gene expression via the diet would, therefore, lead to beta cell dysfunction. It will be interesting to determine the relative
contribution of imprinted gene deregulation on the observed beta cell dysfunction in the F1 generation due to nutritional status in the F0 generation.
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CONCLUSIONS AND FINAL
PERSPECTIVES

The expression of imprinted genes is heavily influenced by
epigenetic mechanisms such as DNA methylation. Multiple
lines of evidence demonstrate that imprinted genes are critical
for beta cell function and that they are nutritionally regulated in
these cells. Misexpression of imprinted genes is associated with
both rodent models of diabetes and T2D islets, with evidence that
altered methylation and/or expression at these loci by the diet can
be passed on to the next generation either in utero or via gametic
cells. Using imprinted gene loci, with their well understood
epigenetic control and functional importance in beta cells, will
help us to understand the type and genomic distribution of
epigenetic marks that are established in response to
overnutrition. Indeed, the plasticity of the epigenome enables
both a flexibility in response to environmental factors (e.g. diet)
and also a potential target for epigenetic-modifying drugs that
may be used to enhance insulin secretion. Epigenetic editing at
imprinted loci has already been shown to be a promising tool to
promote beta cell expansion (80) and epidrugs directed as
specific molecular targets e.g. methyltransferases, that preserve
beta cell functional identity during periods of suboptimal
nutritional status, represent an exciting therapeutic possibility
for T2D. We therefore need a better understanding of the diet-
induced epigenomic changes responsible for misexpression of
imprinted (and non-imprinted) genes that negatively impact
beta cell function. This would enable us to test the ability of
specific epidrugs to target and inhibit these pathways in beta cells
in the face of nutrient excess. Indeed, if modification of
epigenetic status at imprinted loci is proven to be a reliable
Frontiers in Endocrinology | www.frontiersin.org 6
biomarker for reduced beta cell function, this approach could be
employed to assess the effect of specific dietary components/
macromolecule content on insulin secretion in model systems. A
key question for the future is also whether any epigenomic
changes observed at the beta cell level are preserved in other
cells (e.g. blood cells, subcutaneous adipose tissue) that can easily
be sampled from patients. In this scenario, we could harness
these molecular alterations to better predict future diabetic
outcomes in patients and intervene in disease progression prior
to long term hyperglycaemia and beta cell failure.
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