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Postprandial glycemic control is an important target for optimal type 2 diabetes
management, but is often difficult to achieve. The gastrointestinal tract plays a major role
in modulating postprandial glycaemia in both health and diabetes. The various strategies
that have been proposed to modulate gastrointestinal function, particularly by slowing
gastric emptying and/or stimulating incretin hormone GLP-1, are summarized in this review.
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INTRODUCTION

The importance of glycemic control to the optimal management of diabetes has now been clearly
established (1). Glycemic control can be estimated in a number of ways – including random blood
glucose, fasting glucose, postprandial glucose, oral glucose tolerance test or OGTT [which
incorporates both fasting glucose and the glycemic response to an oral glucose load (usually
75g)] and glycated hemoglobin or HbA1c (which reflects overall glycaemia over a period of 8-12
weeks). Traditionally, the OGTT has been regarded as the ‘gold standard’ test for the diagnosis of
diabetes, although HbA1c is increasingly used. Fasting glucose is used extensively for both diagnosis
and monitoring of type 2 diabetes. Postprandial glycaemia, in contrast, has received relatively little
attention, despite the recognition of its critical importance to overall glycaemia in type 2 diabetes,
and probable relevance as an independent risk factor for macrovascular disease (2). Postprandial
hyperglycemia is usually the first defect in glucose intolerance (3). Impaired glucose tolerance,
defined as abnormal PPG (between 7.8-11.1mmol) in the presence of a normal fasting glucose i.e.,
specifically a postprandial glycemic abnormality, is regarded as a ‘pre-diabetic state’ predisposing to
type 2 diabetes. In type 2 diabetes, PPG makes a substantial contribution to overall glycaemia, as
measured by HbA1c, and is the dominant contributor (i.e. >50%) when the latter is ≤8.0% (4, 5).
The significance of targeting PPG to achieve desirable glycemic goals has been increasingly
appreciated in the last two decades. In 2001, the ADA published a consensus statement relating
to PPG and subsequently, in 2014, the International Diabetes Federation (IDF) released specific
strategies for the management of PPG excursions in type 1 and type 2 diabetes advocating the use of
dietary strategies (such as low glycemic index foods) and use of anti-diabetic medications (such as
GLP-1 agonists) which target postprandial glycaemia (2, 6). Postprandial hyperglycemia is not only
associated with microvascular disease, but probably increases the risk of cardiovascular
complications. The DECODE study reported that PPG predicted all-cause and cardiovascular
mortality better than fasting plasma glucose (FPG) in type 2 diabetes (7).
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GASTROINTESTINAL DETERMINANTS OF
POSTPRANDIAL GLYCEMIA

A number of factors impact postprandial glycemia. While these
include pre-prandial glycemia, insulin secretion and sensitivity
(hepatic and skeletal) and glucagon secretion this review focuses
on gastrointestinal factors, particularly gastric emptying, intestinal
carbohydrate absorption, and the incretin hormones gastric
inhibitory polypeptide or glucose-dependent insulinotropic
polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) (6). The
significance of the gastrointestinal tract in modulating
postprandial glycemia is dependent on glucose tolerance status.
One way of evaluating this contribution is by calculating so-called
‘gastrointestinal glucose disposal’ GIGD; the amount of
intravenously administrated glucose required to ‘copy’ the
glucose excursions after the oral glucose load - If 25g
intravenous glucose is required to copy a 75g oral glucose load,
GIGD amounts to 100 × (75 – 25)/75 = 66% (8, 9). In other words,
in this instance, the gastrointestinal tract is able to dispose of 50g
of glucose. In health, GIGD approximate 66%. However, in type 2
diabetes, GIGD is markedly reduced and may even be zero (10).
Recent studies have provided important insights into the
relevance of gastric emptying and the incretin hormones to GIGD.
GASTRIC EMPTYING

Gastric emptying is the physiological process by which nutrients
are transferred from the stomach to the duodenum at a tightly
regulated rate to optimize their digestion and absorption (11).
Gastric emptying is a complex coordinated process, involving the
smooth muscle of the stomach, neural networks (Auerbach’s and
Meissner ’s plexi), vagal and enteric nervous systems,
neurotransmitters such as nitric oxide, immune cells and the
gastric ‘pacemaker cells’ known as the Interstitial cells of Cajal
(ICC) (11). Ingested solid food is initially retained in the stomach
while it is ground into small fragments, the majority <1mm in
size, a process known as trituration. The food particles are then
propelled across the pylorus into the duodenum, predominantly
in a pulsatile manner. The overall rate of gastric emptying is
dependent on both the composition and macronutrient content
of a meal (12). Liquids are emptied preferentially when
compared with solids. For solid emptying, there is typically an
initial lag phase of about 20 min, while liquids empty essentially
immediately. After the sloid lag phase gastric emptying of
nutrient-containing foods (solid or liquid) typically
approximates on overall linear pattern over time, whereas
emptying of non-nutrient liquids follow a non-linear, volume-
dependent, mono-exponential pattern. Accordingly, for
nutrients, the volume of food ingested does not have a major
impact the rate, as opposed to the duration, of emptying. In
health, gastric emptying exhibits a wide inter-individual (about
1-3 kcal/min), but lesser intra-individual, variation (13).
Abnormally delayed gastric emptying, or gastroparesis, occurs
commonly in diabetes. Cross-sectional studies indicate that 30-
50% patients with longstanding, complicated type 1 or 2 diabetes
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have gastroparesis. A hallmark of gastroparesis at the cellular
level is loss of ICC (14). Conversely, gastric emptying may be
accelerated in some people with diabetes, particularly well
controlled uncomplicated type 2 diabetes (15) and adolescents
with type 1 diabetes (16). Thus, the inter-individual variation in
emptying is even wider in diabetes than health. Importantly in a
given individual the rate of emptying, whether normal, delayed
or more rapid, cannot be predicted based on clinical criteria.
Whole upper gastrointestinal symptoms including postprandial
fullness, nausea, vomiting, bloating, upper abdominal pain, and
early satiety (17) are common in diabetes (18) and patients with
gastroparesis often present with upper gastrointestinal
symptoms, the relationship between the presence of symptoms
and gastroparesis is modest at best.

Gastric emptying is a major determinant of postprandial
glycemic excursions in both health and diabetes, accounting
for a third of the variance in the initial rise in glucose. The
relationship of the rate of gastric emptying to PPG is both time
and glucose tolerance status-dependent (19). Accordingly, in
health, following an oral glucose load.

The early (30 or 60 min) rise in plasma glucose is related
directly to the rate of emptying, while the relationship to the
120 min value, which is used diagnostically is inverse, however in
individuals with impaired glucose tolerance or type 2 diabetes,
the relationship shows a ‘right-ward’ shift such that a direct
relationship is observed even beyond 60 min (19, 20).
MEASUREMENT OF GASTRIC EMPTYING

Scintigraphy is the ‘gold standard’ technique of measuring gastric
emptying and allows the precise measurement of both solid and
liquid emptying, potentially simultaneously. The American
Neurogastroenterology and Motility Society and the Society of
Nuclear Medicine have proposed a test meal which contains the
equivalent of two large eggs, two slices of bread and strawberry
jam (30 g) with water (120 ml) and comprises 255 kcal (with a
composition of 72% carbohydrate, 24% protein, 2% fat and 2%
fiber). The meal is radiolabeled with 1mCi 99Tc sulfur colloid
(21). This meal may be suitable for a Western diet, but its
applicability globally is questionable. The limitations of
scintigraphy relate to radiation exposure and the requirement
for specialized nuclear medicine equipment and trained
personnel. The best alternative is a stable isotope breath test
which, while a notional rather than precise measurement,
correlates reasonably with scintigraphy and is non-invasive
technique without radiation exposure. Subjects consume a
meal containing a 13C labelled substrate, which is
enzymatically converted to 13CO2 in the liver and excreted
through the lungs. Breath samples are collected for 2-4 hours
postprandially. Ultrasound can also be used to measure
emptying, but is observer dependent and requires highly
trained personnel. One of the most common methods of
measuring gastric emptying in clinical trials is using the
plasma kinetics of oral paracetamol absorption. While
inexpensive and simple, it is an imprecise technique that
April 2021 | Volume 12 | Article 661877
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cannot be used to assess gastric emptying of solids and is not
recommended (22). Single-photon emission computed
tomography (SPECT), magnetic resonance imaging (MRI) and
3D ultrasound are also non-invasive procedures able to provide
true 3D images of the effect of meals on gastric volume and
gastric accommodation, but remain research techniques.
INCRETIN HORMONES

It has been known since the 1960’s that blood glucose levels are
much lower following oral, compared with administration of a
similar amount of intravenous glucose (23). This reflects the
marked increase in insulin secretion following oral glucose, a
phenomenon termed the ‘incretin effect’ (24). In late 1980s, the
factors responsible for the incretin effect, the so-called ‘incretin’
hormones, glucose-dependent insulinotropic polypeptide (GIP)
and glucagon-like peptide-1 (GLP-1) were discovered (25). GIP
and GLP-1 are gut-derived peptides secreted from specialized
entero-endocrine K (located predominantly proximally in the
small intestine) and L (located predominantly more distally in
the intestine) cells, respectively. All macronutrients have the
capacity to stimulate incretin hormone secretion although their
relative potency differs (fat and protein may be more powerful
triggers for incretin release than carbohydrates). While low in the
fasted state, plasma GLP-1 and GIP levels rise promptly
following a meal (26). Circulating GLP-1 and GIP are rapidly
degraded by the ubiquitous enzyme, dipeptidyl peptidase-IV
(DPP-IV) and renal clearance, such that their half-lives are
only a few minutes (27). The incretins both have glucose-
dependent insulinotropic properties in health and GIP may be
the dominant contributor to the incretin effect in health (28).
GLP- 1 also slows gastric emptying substantially (whereas GIP
has no effect) and suppresses glucagon, the latter in a glucose
dependent manner (while GIP may stimulate it) (29, 30). A
seminal observation was the recognition that the incretin effect is
markedly reduced in type 2 diabetes (31). Incretin hormone
secretion is essentially normal but the insulinotropic effect of GIP
in type 2 diabetes is attenuated markedly (32). While that of
GLP-1 is relatively maintained in type 2 diabetes. Intravenous
infusion of GLP-1 in pharmacological concentrations reduces
not only fasting, but also normalize postprandial glycemia in
type 2 diabetes (33). Slowing of gastric emptying is a major
mechanism to account for postprandial glucose lowering by
exogenous GLP-1, as postprandial plasma insulin levels are
usually reduced, rather than greater (34). These observations
stimulated the development and subsequent widespread use of
‘GLP-1 based’ drugs for use in the management of type 2
diabetes. The latter are of two types: 1) GLP-1 receptor
agonists and 2) DPP-IV inhibitors. Exenatide, the first GLP-1
receptor agonist, was approved by the FDA in 2005 and is a
synthetic version of exendin-4, a peptide derived from saliva of
the lizard, Heloderma suspectum, found to have ~50% similarity
with human GLP-1, with resistance to DPP-IV degradation and
relatively slow systemic clearance (35). Since then, a number of
GLP-1 receptor agonists have been developed. These are
Frontiers in Endocrinology | www.frontiersin.org 3
currently administered subcutaneously once or twice a day
(e.g., lixisenatide, liraglutide and exenatide BID) or once a
week (e.g. exenatide QW, dulaglutide and semaglutide) (19, 35,
36). An oral formation of semaglutide has recently been
developed (37, 38). Specific inhibitors of the DPP-IV enzyme
prolong the availability of endogenous GLP-1 (and GIP) and are
administered orally. A number of compounds in this class are
available (e.g. sitagliptin, linagliptin, saxagliptin, vildagliptin and
alogliptin) (19, 39, 40).
GUT BASED MANAGEMENT OF
POSTPRANDIAL GLYCEMIA (PPG)

Several gut-based interventions/treatment strategies have been
proposed to minimize postprandial glycemic excursions. These
interventions can be broadly classified as i) dietary/non-
pharmacological and ii) pharmacological (Figure 1).

Dietary Approach
Nutritional/dietary management (Table 1) of postprandial
hyperglycemia is an attractive option and underutilized. It may be
of particular relevance to individuals with impaired glucose
tolerance where pharmacological therapy is not usually mandatory.

i) Nutrient Preload
A nutrient preload refers to consumption of a small amount of
macronutrient at a fixed interval (30-60 min) before a meal to
reduce the postprandial glycemic excursion. These nutrients may
reduce postprandial glucose by a number ofmechanisms including
slowing gastric emptying, stimulating the release of incretins, and
other gut peptides and reducing subsequent meal intake. Fat and
protein have been best characterized as macronutrient preloads.
Because of its higher-calorie content, fat is emptied from the
stomach and absorbed relatively more slowly (71, 72) and GLP-1
and GIP secretion are triggered by a fat preload (73, 74). Ingestion
of fat as a preload or direct small intestinal administration both
slow gastric emptying and stimulate the release of GLP-1, effects
mediated by the interaction of lipolytic products with the small
intestine, and partly by CCK. The dominant effect of fat is likely to
be via slowing of gastric emptying-this is analogous to the use of
olive oil or equivalent to slow the absorption of alcohol-containing
beverages (75) (Figure 2). Slowing of gastric emptying is not as
marked when fat is mixed with other nutrients; due to low density,
in the seated position fat may ‘layer’ on top of other nutrients and
exert little impact initially on emptying (41, 73, 74). In both health
and type 2 diabetes (42, 76) whey protein, a by-product of milk,
has been the best characterized (43). Soy, or whey-based protein
preloads may have a greater impact on postprandial glycemia than
fat (42, 77). When a whey-based protein preload is taken 30
minutes before a large meal, there is a reduction in postprandial
glucose of 28-50% is associated with increased secretion of insulin,
GLP-1, and GIP (43, 44, 78). The effects of protein are
hypothesized to be mediated primarily by amino acids (in the
case of whey leucine, isoleucine, and valine). Whey protein is
digested quickly, compared to other proteins such as casein, and is
April 2021 | Volume 12 | Article 661877
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associated with substantial incremental rise in postprandial amino
acids which triggers the release of both insulin and glucagon (79).

A potential limitation in the use of protein and fat preloads is
that they provide additional energy intake in a group where
obesity is very common. On the other hand, the preload has the
potential to suppress subsequent energy intake. Consuming oil
by itself before a meal, may also be associated with
gastrointestinal intolerance, and is unlikely to be culturally
acceptable widely. The characteristics of an ideal preload are
that it should have the capacity to slow gastric emptying, reduce
postprandial glycemia substantially and contain minimal
calories. The preload should also be inexpensive, readily
available, well tolerated and acceptable by the majority of
individuals. The effects of low-calorie preloads have also been
evaluated. The artificial sweetener sucralose (with no calories)
has no impact on gastric emptying with little, if any, stimulation
of GLP-1 [ (46–48). 3-O-methylglucose preload, a non-
metabolized substrate of SGLT1, was reported to slow gastric
emptying and stimulate GLP-1 and GIP, to reduce PPG
excursions in the first 30 minutes after a meal, when compared
with a glucose preload (46). The above studies, relating to the
effects of nutrient preloads on postprandial glucose excursions,
Frontiers in Endocrinology | www.frontiersin.org 4
are limited to acute or short-term interventions, for a maximum
period offive weeks. A longer-term intervention study reported a
significant lowering of postprandial blood glucose (~14%) and
HbA1c (0.3%), where participants with type 2 diabetes
consumed Inzone Preload (consisting only of natural food
ingredients including pea-protein, whey protein, egg albumin,
W 3/6 fatty acids, whole eggs, apple, rosehip, and sugar beet fiber)
(29% protein) 30 min before each of three meals daily for 12
weeks (80). Further studies are required.

ii) The Impact of Macronutrient Composition and
Sequence on PPG
Macronutrient composition, sequence and timing of a meal can
impact postprandial hyperglycemia by a number of mechanisms,
which include slowing of gastric emptying. For example, fat and
protein, are both inhibitors of gastric emptying. Accordingly,
incorporation of protein and/or fat into a carbohydrate rich meal
or changing the proportion of macronutrients has the potential
to reduce PPG and thereby, HbA1c. Gannon et al. reported that
increasing the ratio of protein and fat, while decreasing ratio of
carbohydrate, leads to a 38% reduction in net mean 24-h
integrated glucose area response (including PPG) (50, 81).
FIGURE 1 | Potential mechanisms of postprandial glucose lowering of various gut-based strategies.
April 2021 | Volume 12 | Article 661877
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Another study conducted by this group demonstrated that an
increase in dietary protein from 15 to 30% is associated with a
reduction in PPG of 40% and HbA1c of 0.8% in type 2 diabetes
(51). The positive impact of protein incorporation is
hypothesized to mainly reflect its direct stimulatory effect on
insulin secretion and slowing of gastric emptying (82). The
addition of fat has been shown to slow gastric emptying and
reduce PPG levels (83), but, of necessity, increases the energy
load substantially, which has the potential to affect glycemic
Frontiers in Endocrinology | www.frontiersin.org 5
regulation adversely (53, 84). For example, one study, in healthy
and obese individuals, reported that an increase in fat intake
increase plasma insulin, while reducing insulin sensitivity (54).
In another study, in healthy subjects, consumption of high
monounsaturated fat was associated with an improvement in
insulin sensitivity when compared with a high-saturated-fat diet
(53). Nevertheless, the positive effect of monounsaturated fat on
insulin sensitivity were inconsistent when the proportion of
energy derived from total fat surpassed 38% of total energy
TABLE 1 | Dietary approaches to reduce postprandial glycaemia.

Strategy Mechanism of action Comments

A. Nutrient Preload Fat Preload Olive oil (41) Delays gastric emptying.
Triggers GLP-1 and GIP (~15 min
post intervention) secretion.

Delayed postprandial glucose peak in type 2 diabetes.
Involves extra energy intake.
May cause gastrointestinal intolerance like nausea and vomiting.
May be culturally unacceptable by individuals.

Protein Soy Protein (42)
Whey Protein (42–45)

Delays gastric emptying
Triggers GLP-1, GIP and insulin
secretion.

Reduced post meal glycaemia by 40-50% in type 2 diabetes.
Less/No extra energy intake.

Artificial Sweetener
Sucralose (46–49)

No impact on gastric emptying.
No impact on postprandial glycaemia,
GLP-1 or GIP secretion.

Studies performed in healthy individuals.
Not tested in type 2 diabetes.

B. Altering
Macronutrient
Composition

Protein (50–52) Delays gastric emptying
Triggers insulin secretion.

Reduced postprandial glycaemic excursion by 38-40%.
Reduced HbA1c by 0.8-2.2% in type 2 diabetes.

Fat (53–56) Delays gastric emptying.
Increases insulin secretion and
possibly,
insulin sensitivity.

Delayed peak blood glucose in healthy subjects.
Reduced postprandial glucose excursion.
High fat may entail extra energy intake.
May cause gastrointestinal intolerance e.g., nausea and vomiting.

Dietary fiber (57–63) Delays gastric emptying.
Increases early phase insulin
secretion.
Delays intestinal glucose absorption.

Reduced postprandial glycaemia by 35-43% in healthy subjects
and type 2 diabetes.
Reduced HbA1c level by ~0.5%.
Dietary fiber does not involve additional energy intake.

C. Altering
Sequence of
Macronutrient
Consumption

Protein followed by
Carbohydrates (64–69)

Delays gastric emptying.
Increases release GLP-1, GIP,
Cholecystokinin (CCK) and peptide
YY. Delays carbohydrate absorption.

Reduced postprandial glycaemia by 39-50% in healthy subjects and
type 2 diabetes. Reduced postprandial insulin excursion by ~25% in
type 2 diabetes.
Does not involve additional energy intake.

Protein and Fat
followed by
Carbohydrates
(64, 70)

Delays gastric emptying rate.
Triggers GLP-1 secretion.

Reduced postprandial glycaemic excursions by 78% and 60% after l
unch and dinner respectively in type 2 diabetes. Reduced HbA1C by
0.3% in type 2 diabetes.
A B

FIGURE 2 | Gastric emptying (A) and blood glucose concentrations (B), after ingestion of a mashed potato meal when either 30 ml olive oil (oil), 30 ml water (water),
or 30 ml water with 30 ml olive oil (water and oil) was consumed 30 minutes before the meal by type 2 patients. Data are the mean ± SEM. *P < 0.05, oil vs. water;
#P < 0.05, oil vs. water and oil; ^P < 0.05, water vs. water and oil. [Reprinted with permission from Gentilcore et al. (41)].
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(53, 55, 85). Several studies conducted in healthy and type 2
diabetic individuals have shown that adding low glycemic index
carbohydrates to the diet reduces PPG by ~40% and HbA1c
levels by ~0.5% (57–60, 86–88), though the impact of a low GI or
high-fiber diet is inconclusive (53). Therefore, replacing refined
carbohydrates and added sugar with grains, legumes, vegetables,
and fruits that are rich in dietary fiber may represent an efficient
strategy to reduce PPG.

Another potential approach is to alter the sequence, or order
of consumption of macronutrients during a meal. For example,
initial ingestion of non-carbohydrate macronutrients and
ingestion of carbohydrates last has been reported to be effective
in reducing postprandial glucose excursions among individuals
with type 2 diabetes and impaired or normal glucose tolerance
(64, 89). For example, Shukla et al. reported that ingestion of
protein and vegetables before carbohydrates leads to a 39%
reduction in postprandial glycemia in individuals with
impaired glucose tolerance (64). Likewise, consumption of
meat or fish, or vegetables before carbohydrate has been
reported to reduce the postprandial glucose peak by almost
Frontiers in Endocrinology | www.frontiersin.org 6
50%, as well as delay it by 30–60min and raise the level of
GLP-1 and GIP (65, 66). However, as well as slowing gastric
emptying, Shukla et al. demonstrated that protein and fat initially
leads to higher GLP-1 levels and slower carbohydrate absorption,
and also suggested that fiber from vegetables may be responsible
(64, 67). A number of other studies support the beneficial effect
of fiber to lower postprandial glycemia (59, 61). As compared
with the preload, this approach has the indirect advantage of not
involving additional energy intake (70, 89). Along with a
reduction of PPG excursions, intake of vegetables before
carbohydrates may per se also reduce the risk of other
metabolic disorders, including cardiovascular disease (90).

Pharmacological Approach
GLP-1 Receptor Agonists
Based on their half-life, GLP-1 receptor agonists (Table 2) can be
classified, as either ‘short-acting’, or ‘long-acting’. The ‘short-
acting’ GLP-1 agonists, exenatide BID and lixisenatide, delay
gastric emptying profoundly in a dose-dependent manner. The
magnitude of the slowing of gastric emptying is also dependent
April 2021 | Volume 12 | Article 661877
TABLE 2 | Summary of the pharmacological agents targeting postprandial glycaemia.

Class Agent Name Duration
of action

Mode of
administration

Mechanism of action Comments

Long acting GLP 1 Agonists
(19, 22, 91–97)

Albiglutide
Dulaglutide
Exenatide XR
Liraglutide
Semaglutide

Half-life
few days

Subcutaneous
injection (Once
daily; once
weekly)

Slows gastric emptying and
increase satiety.
Increases glucose-dependent
insulin secretion.
Reduces glucose-dependent
glucagon secretion.

Less impact on gastric emptying compared to
short-acting GLP-1 Agonists.
More effective in controlling fasting/preprandial
hyperglycaemia.

Short acting GLP-1 Agonists
(19, 22, 91, 92, 94, 95)

Exenatide BID
Lixisenatide

Half-life
2.4 to 8
hours

Subcutaneous
injection (Once
or twice daily)

Delays gastric emptying and
increase satiety. Increases
glucose-dependent insulin
secretion. Reduce glucose-
dependent glucagon secretion.

More effective in slowing gastric emptying and
controlling postprandial hyperglycaemia
compared to long-acting GLP-1 Agonists.
Gastrointestinal intolerance e.g., nausea,
vomiting, diarrhea, may limit uses.

GIP receptor Agonists and
Antagonists
(98, 99)

AC163794
(Pro3)GIP

Long
acting(>24
hours)

Subcutaneous
injection
(Once daily)

Enhances insulin secretion. Experiments performed only in mice models
and show significant reduction in overall
hyperglycaemia.
Data evaluating postprandial response not
available.
Human trials are awaited.

GIP/GLP-1 receptor Agonists
(22, 100–103)

Tirzepatide
(LY3298176)

Long
Acting(5
Days)

Subcutaneous
injection
(Once weekly)

Combined action of both GLP-1
and GIP as above.

Impressive dose-dependent reduction in
overall glycaemia in type 2 diabetes.
Data evaluating postprandial response not
available.

DPP-4 inhibitors (19, 39, 40,
94, 95, 104–106)

Alogliptin
Linagliptin
Saxagliptin
Sitagliptin
Vildagliptin

Long
acting
(half-life 3
to > 22
hours)

Oral (Once or
twice daily)

Prevent degradation of GLP-1
and GIP in vivo, prolonging its
action.

Has little or no effect on gastric emptying and
satiety. Modest effect to reduce postprandial
hyperglycaemia.

Amylin Agonist (19, 95, 107–
109)

Pramlintide Short-
acting
(half-life
~48 min)

Subcutaneous
injection (Three
times daily)

Delays gastric emptying and
increases satiety.
Reduces glucagon secretion.

Modest effect to reduce postprandial
hyperglycaemia. Gastrointestinal intolerance
e.g., nausea, vomiting. Required to adjust
insulin dose to avoid hypoglycemia.

Alpha-glucosidase inhibitors
(95, 110–114)

Acarbose
Miglitol
Voglibose

Short-
acting
(half-life
~2 to 4
hours)

Oral
administration
(Three times
daily)

Inhibit maltase-glucoamylase
intestinal
(a-glucosidase) and pancreatic
a-amylase which in turns delay
gastric emptying, carbohydrate
absorption and prompt GLP-1
release.

Reduce postprandial glucose and HbA1C.
Gastrointestinal adverse effects common.
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on the baseline rate of emptying. It is not surprising, therefore,
that ‘short acting’ GLP-1 agonists target postprandial
hyperglycemia. It has been conventionally believed that long-
acting GLP-1 receptor agonists, such as exenatide QW and
liraglutide, are much more effective in targeting fasting, rather
than postprandial, hyperglycemia and have little, if any, effect on
gastric emptying. This concept was supported by the observation
that continuous intravenous stimulation of the GLP-1 receptor is
associated with tachyphylaxis i.e. lesser slowing of gastric
emptying (91, 92, 115). However, it is now recognized that this
concept is incorrect; both exenatide QW (116) and liraglutide
(117) have been shown to slow emptying with sustained use,
although the magnitude of their effect may be less than that of
‘short acting’ agonists. Given that modest slowing of emptying
may have a major effect on postprandial glucose this is of
relevance to their use in the management of type 2 diabetes (116).

Some limitations of the strategy of using GLP-1 agonists for
modulating gastric emptying and enhancing incretin secretion
should be recognized: i) GLP-1 agonists should probably not be
used in patients with existing gastroparesis. In the LEADER
study, ‘delayed gastric emptying’ was reported three times more
frequently in the liraglutide than the placebo group (93)
ii) Gastrointestinal adverse effects, particularly nausea,
vomiting and diarrhea, may limit tolerability. Unfortunately, in
the majority of studies these have been assessed by participant
self-report which is known to be unreliable (118) iii) the
insulinotropic actions of GLP-1-based therapy necessitates
adequate endogenous insulin secretory capacity iv) GLP-1
agonists are contraindicated in the rare case of medullary
thyroid carcinoma. While recent observational studies and
meta-analyses have failed to establish a causal relationship
between GLP-1 agonists and acute pancreatitis, this remains
potential issue (94, 119). A post-hoc analysis of the LEADER trial
showed that the GLP-1 receptor agonist, liraglutide, to have an
increased risk of gallbladder or biliary tract related events
compared with placebo (120). It should be noted, however,
that this trial was not specifically designed to assess the risks of
gallbladder event rates with liraglutide.

GIP-Based Medications
There is some renewed interest in GIP-based drugs, especially
when co-administered with GLP-1 (GIP/GLP-1 co-agonists) with
studies suggesting that both GIP agonism and GIP antagonism
may facilitate weight loss in type 2 diabetes. The effects of GIP-
based drugs on gastrointestinal motility remain to be studied.
However, given that GIP does not impact gastric emptying, it
Frontiers in Endocrinology | www.frontiersin.org 7
appears unlikely that an effect of GIP agonism is unlikely
(22, 100).

DPP-IV Inhibitors
DPP-IV inhibitors (e.g. sitagliptin, vildagliptin, saxagliptin,
linagliptin, and alogliptin) reduce both pre- and postprandial
glucose (95) but have minimal, if any, effect on gastric emptying
(104). Postprandial glucose-lowering by DPP-IV inhibitors may,
however, be potentiated by a nutrient preload (121) a strategy
which warrants additional exploration (105).

Acarbose
Acarbose, and other alpha-glucosidase inhibitors, such as
voglibose, delays the production of monosaccharides from
complex carbohydrates by inhibiting the alpha-glucosidase on
the brush border membrane of the small intestine (122) to
diminish postprandial glucose excursions (110, 122, 123).
However gastrointestinal adverse effects are common (111).

Pramlintide
The synthetic analog of amylin, which is co-secreted with insulin
in the pancreatic beta cells, pramlintide, reduces postprandial
glucose in part by delaying gastric emptying. It may also enhance
satiety (107, 108, 124).
CONCLUSIONS

Modulating gastrointestinal motility (especially slowing gastric
emptying) and stimulating the incretin system are major targets
for management of postprandial glycemia. A number of
strategies, dietary as well as pharmacological, have been
introduced. Regarding simple dietary approaches have shown
promising results in small studies and larger trials are required to
establish efficacy. On the other hand, pharmacological strategies,
such as GLP-1 agonists are prescribed widely for type 2
management, but their use is largely empirical. There is a need
for studies to evaluate their efficacy under various glycemic
conditions and the relationship of the effects of these drugs on
glycemic control with those on gastric emptying in an attempt to
provide more targeted and personalized management.
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