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Tight regulation of blood glucose is essential for long term health. Blood glucose levels are
defended by the correct function of, and communication between, internal organs
including the gastrointestinal tract, pancreas, liver, and brain. Critically, the brain is
sensitive to acute changes in blood glucose level and can modulate peripheral
processes to defend against these deviations. In this mini-review we highlight select
key findings showcasing the utility, strengths, and limitations of model organisms to study
brain-body interactions that sense and control blood glucose levels. First, we discuss the
large platform of genetic tools available to investigators studying mice and how this field
may yet reveal new modes of communication between peripheral organs and the brain.
Second, we discuss how rats, by virtue of their size, have unique advantages for the study
of CNS control of glucose homeostasis and note that they may more closely model some
aspects of human (patho)physiology. Third, we discuss the nascent field of studying the
CNS control of blood glucose in the zebrafish which permits ease of genetic modification,
large-scale measurements of neural activity and live imaging in addition to high-
throughput screening. Finally, we briefly discuss glucose homeostasis in drosophila,
which have a distinct physiology and glucoregulatory systems to vertebrates.
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INTRODUCTION

The central nervous system has emerged as an important node in the coordinated control of blood
glucose homeostasis. Maintenance of euglycemia is critical for health and the regulation of energy
homeostasis. Extended periods of poor glycemic control drive disease pathology; for example,
prolonged hyperglycemia in type-1 and type-2 diabetes can cause eye, kidney, and nerve damage
over the longer term. Conversely, low blood glucose or hypoglycemia is also dangerous acutely, with
recurrent bouts leading to deficits in hypoglycemia awareness, which can result in death in extreme
but rare circumstances. Given this importance, in healthy individuals, highly sensitive feedback
systems exist to regulate blood glucose within a tight window. Appropriate regulation of blood
glucose is ultimately dependent on the correct balance between glucose ingestion, production,
utilization, and storage. This control is achieved by communication between multiple organ
systems, chiefly the gastrointestinal tract, pancreas, muscle, liver, adipose, adrenal glands, and brain.
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When combined with classical physiological approaches,
modern genetic manipulation technologies have refined our
understanding of the critical role of the brain in overseeing
glucose homeostasis and orchestrating appropriate physiological
and behavioral responses (1, 2). In addition to well described
endocrine inter-organ communication, cell populations in discrete
brain nuclei are sensitive to acute deviations in tissue glucose levels
and some are also capable of direct glucose sensing (3–6).
Furthermore, sensory innervation of organs relays relevant
information on peripheral glucose state to the brain (7, 8). By
altering autonomic outflow, the brain drives responses to these
deviations in blood glucose, helping to restore homeostasis (9, 10).

Much of what is known about crosstalk between the body and
brain is the result of experimentation in model species. A simplified
overview of the main brain regions and cell populations identified in
bloodglucose control in commonmodel species is shown inFigure1.
Comprehensive reviews on both the different species used to model
human metabolic disease and descriptions of glucoregulatory
neurocircuitry are available elsewhere (11–13). Instead, in this
mini-review, using select examples from the literature, we will focus
on the utility of different model organisms to specifically elucidate
neural circuits regulating glucose homeostasis.

Mice
Mice have emerged as the most commonly used rodent species for
neuroscience research (14). This is due, at least in part, to the suite of
transgenic tools available. Furthermore, mice are amenable to
measures of systemic glucose homeostasis, commonly glucose and
insulin tolerance tests, but glucose clamps are also possible (15–17).

The combination of genetic tools and means for real-time
measurement of changes in systemic glucose levels in mice
permits the investigation of the role of the brain in control of
blood glucose homeostasis. The ventromedial nucleus of the
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hypothalamus (VMN) has long been implicated in the neural
control of energy balance and blood glucose levels (3, 4, 18). Cre-
lox recombination has been used to elegantly dissect the role of a
defined neuronal population within this nucleus in glucose
homeostasis: using a driver line expressing Cre recombinase in
the VMN (Steroidogenic factor 1-Cre) to knock out vesicular
glutamate transporter 2 selectively in VMN neurons (19). These
mice lack VMN glutamatergic transmission and have impaired
sensitivity to fasting, insulin and 2-deoxyglucose (2-DG). Taken
together, this shows that glutamatergic transmission in VMN
neurons is an essential component for the counter-regulatory
response to hypoglycemia (CRR) (19). Thus, this approach can
be used to generate causal evidence of a specific process
(glutamatergic neurotransmission), in a defined brain area
(VMN) required for a physiological process (CRR). Similarly,
Cre-lox recombination can be used to selectively re-express a
gene in genetically defined cells in knockout animals (20, 21).
This permits testing of both necessity (knock-out) and
sufficiency (selective re-expression) of a gene of interest in a
specific cell population.

This recombinationmethod can be refined with drug-inducible
forms of Cre (e.g. tamoxifen inducible cre; CreERT2). The
importance of temporal control of recombination is illustrated
in the case of leptin receptor (LepR) expression on pro-
opiomelanocortin cells (POMC cells). Embryonic deletion of
LepR from POMC cells results in mice that have a greater body
and fat mass than control animals with intact leptin signaling in
POMC cells (22). However in adult mice where LepR is knocked
out of adult POMC cells by providing tamoxifen to POMCCreERT2

mice, this phenotype is absent (23). Instead, these mice show a
hyperglycemic phenotype driven by increased hepatic glucose
production and insulin resistance, while body weight and energy
expenditure are normal (23). This reveals a glucoregulatory role of
FIGURE 1 | A simplified overview of primary brain sites regulating blood glucose identified in model organisms. This figure shows the cell populations discussed in
this review and is not an exhaustive list. Numerous brain regions have been demonstrated to contribute to glucose regulation in mice and/or rats. In zebrafish
disruption of leptin receptor signaling induces hyperglycemia. In drosophila, ablation of insulin-producing cells causes increases in hemolymph carbohydrate levels.
Abbreviations: ARC, arcuate nucleus of the hypothalamus; CA, catecholamine; CCK, cholecystokinin; DVC, dorsal vagal complex; LPBN, lateral parabrachial nucleus;
NTS, nucleus of the solitary tract; POMC, pro-opiomelanocortin; RVLM, rostral ventrolateral medulla; SF1, steroidogenic factor 1; VMN, ventromedial nucleus of the
hypothalamus. Animal images adapted from Scidraw.io. Drawings not to scale.
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LepR signaling in POMC cells in adult mice which may have been
masked by the embryonic knockout and thus highlights potential
developmental compensation as a caveat to Cre recombination
without temporal control. Furthermore, it has been shown that
a number of ventral hypothalamic cells transiently express
POMC during development but not in adulthood, including
functionally opposed agouti-related peptide (AgRP) expressing
neurons (24). Thus, by using temporally restricted Cre-
recombination, manipulations can be limited to cells of interest
in adulthood rather than all cells derived from a POMC-
expressing lineage.

In addition to the selective embryonic genetic (or inducible
adult) knockout models described above, mice are also amenable for
the selective stimulation or inhibition of defined neuronal
populations in adult animals by optogenetic or chemogenetic
methods (25, 26). For example, using chemogenetics, stimulation
of neurons in the lateral parabrachial nucleus (LPBN) identified by
their expression of cholecystokinin (CCK; LBPNCCK neurons)
causes a CCK-dependent increase in blood glucose driven by
increased plasma glucagon, corticosterone and epinephrine levels
(27). Chemogenetic inhibition of this neuronal population leads to
an attenuated blood glucose increase in response to 2-DG-induced
glucoprivation. Using this methodology to selectively inhibit the
VMN neurons, identified by their expression of steroidogenic factor
1 (SF1; VMNSF1 neurons), while stimulating upstream LPBNCCK

neurons occludes the rise in blood glucose induced by this
stimulation. This suggests that LPBNCCK neurons are involved in
hypoglycemia detection and relay this information to VMNSF1

neurons to exert compensatory changes in blood glucose. This
illustrates the power of experimental tools which enable bi-
directional modulation of neuronal populations of interest
(specific activation or inhibition) while measuring physiological
parameters. In addition, it highlights how concomitant
manipulation of pre- and post-synaptic neurons, respectively, can
demonstrate the necessity of a given projection site for the observed
effects. The same viral approach can be used to drive expression of
fluorescent proteins in genetically defined cell populations. This
expands the scope of this method to tracing anatomical circuits in
addition to probing their function. These tools also have the
advantage of being specific and targetable in adult animals,
avoiding the potential developmental adaptations and
complications associated with embryonic deletion of genes.

In recent years, studies in mice have characterized sensory
neurons of the vagus nerves and their role in relaying information
on internal state from the periphery to the brain (28–33) including
cardiovascular, pulmonary, and gastrointestinal parameters. These
signals appear to exist to drive appropriate autonomic responses
(i.e., vago-vagal reflexes) in addition to modulating associated
behavior. For example, stimulation of gut-innervating vagal
sensory neurons elicits changes in gastric motility and pressure
while also suppressing food intake (28, 31, 33). Given this
evidence, the existence of a vagal sensory circuit monitoring
blood glucose, communicating this to the brain and driving both
appropriate autonomic and behavioral responses seems possible.
Vagal sensory innervation of the liver and pancreas have been
described in classical studies performed in rats (34, 35). With the
Frontiers in Endocrinology | www.frontiersin.org 3
platform already developed for functional and genetic
investigation of vagal sensory subtypes (28–32), this represents
an area ripe for investigation using contemporary neuroscience
techniques. However, a recent report suggests that the detection of
ingested glucose by hypothalamic neurons is independent of the
vagus nerve, instead this signal is relayed by spinal afferents
monitoring the hepatic portal vein (36).

In complementary studies, vagal efferent pathways regulating
blood glucose have been examined in mice. Vagal sensory neurons
from peripheral organs terminate in the nucleus of the solitary tract
(NTS), while vagal efferent neurons originate in the neighboring
dorsal motor nucleus of the vagus (DMV). Vagal efferent neurons of
the DMV are identified by expression of choline acetyltransferase
(ChAT; DMVChAT neurons). These DMV neurons are innervated
by NTS neurons, providing an anatomical substrate for vago-vagal
processes. Acute chemogenetic activation of inhibitory NTS
neurons (NTSGABA neurons (10)), which receive direct vagal
input (37), increases blood glucose by reducing the tonic activity
of DMVChAT neurons. This disinhibits hepatic glucose production
(10). Thus, the cellular architecture of vago-vagal signaling loops are
beginning to be elucidated in mice.

As described above, contemporary neuroscience technologies
allow for the selective manipulation of activity and/or gene
expression of spatially and genetically defined cell types, both
in the brain and peripheral ganglia. Combined with standard
tests of glucose homeostasis and the similarities between mouse
and human physiology (11), this presents a powerful platform on
which to examine neural circuits governing blood glucose
homeostasis. However, this species and these approaches are
not without their caveats. Strains and sub-strains of inbred mice
have demonstrably different responses to modulation of blood
glucose both in terms of glucose-stimulated insulin secretion and
glucoprivic feeding (38–40). Some of these differences arise from
known genetic mutations, for example the nicotinamide
nucleotide transhydrogenase mutation in the C57Bl6/J sub-
strain (41). As such, outbred strains may be more suitable for
some experiments to reduce the impact of single mutations on
observed measurements (38, 41).

Care should also be taken with respect to studies utilizing Cre-
lox recombination. Mice expressing Cre recombinase can have
phenotypes arising from off target recombination or integration of
Cre into a functional gene (42). As such, it is important to consider
the appropriate control groups, including littermates, to account
for this [discussed in detail in (33)]. In addition, embryonic Cre
recombination or transient expression in off target tissues may
account for a phenotype in adult animals that does not represent
the function of the gene in adult physiology. Finally, opto- or
chemogenetic manipulations may induce artificial activity patterns
that demonstrate the consequence of cellular activation, but
should be interpreted with caution as may not reflect the
“normal” function of those cells. Moreover, with chemogenetic
experiments, it is important to control for both off target effects of
chemogenetic ligands and expression of the receptor which may
have constitutive activity in the cell type of interest (43, 44). These
limitations and key experimental controls also apply to related
studies in transgenic rats (see below).
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Rats
Rats offer somemajor advantages over mice, such as their larger size
and the fact that many common strains (i.e., Sprague Dawley,
Wistar) are outbred, increasing the generalizability of the data for
human populations. This outbred nature can increase variability in
a study and combined with the size can make studies more
expensive. However, the greater size allows for collection of larger
blood sample volumes, which can be advantageous for endocrine
studies. For the advanced assessment of glucose homeostasis, it can
be beneficial to surgically implant indwelling vascular catheters in a
vein and/or an artery (i.e., jugular vein and carotid artery). This
enables repeated sampling with a continuous infusion in conscious,
freely moving rats, which is useful during hyperinsulinemic glucose
clamping (45). However, protocols for clamping in mice are highly
refined (46). From a rat, the larger blood samples volumes can be
taken without the need for concomitant replacement of blood from
donor animals (although blood cells can be re-suspended and re-
infused during a clamp). Moreover, recent advances in indwelling
vascular access buttons (VAB) have allowed for streamlined blood
sampling, maintenance of catheter patency, and attachment of
animals to the glucose clamping apparatus. This is advantageous
over harnesses, which can cause chaffing as the rat moves and/or
grows. These buttons also permit social housing immediately post-
surgery if aluminum VAB caps are used. This may improve welfare
by reducing post-surgical weight loss and improve overall recovery.
This technology has also been adapted for use in mice, with some
minor modifications.

Another recent technological advancement is the development
of fully implantable glucose telemetry devices for continuous
glucose monitoring in freely moving unrestrained rats (47). This
permits glucose monitoring for up to 75 days and requires
implantation of a ~2g device with a sensor tip placed in an artery.
It shouldbenoted that glucosemeasurements candiffer between tail
vein and arterial glucose, depending on the model of choice (48).
These devices can also be adapted for use inmice; however, the cost
of the telemetry devices and the advanced surgical procedures
required have prevented widespread adoption of this technology,
which is only likely to be beneficial for chronic studies.

The rat is a particularly useful model to study the neuroendocrine
regulation of the CRR to acute and recurrent hypoglycemia,
particularly the Sprague-Dawley and Wistar rats, which have been
the workhorse of the hypoglycemia field for the last 30 years. The
hyperinsulinemic-hypoglycemic clamp, together with insulin-
induced hypoglycemia and 2-DG induced glucoprivation, have
been extensively used in Sprague-Dawley rats to investigate CRR,
glucoprivic feeding and impaired awareness of hypoglycemia (49–
56). This latter aspect of hypoglycemia “awareness” can be studied
using a conditioned place preference test, which has so far been
validated in rats but not in mice (57), largely because of the more
rapid induction of defective counter-regulation in rats and their
tractability for behavioral tests. The species differences between rats
and mice in the adaptation to recurrent hypoglycemia are important
considerations when designing a study and have been previously
discussed in detail elsewhere (58). Seminal studies in rats revealed the
presence of glucosensors in the hindbrain that can mount responses
to restore blood glucose in the face of a glucoprivic challenge
Frontiers in Endocrinology | www.frontiersin.org 4
independent of forebrain structures or when the cerebral aqueduct
is blocked (59, 60). Secondly, chemical lesion studies of
hypothalamus-projecting catecholaminergic neurons implicates
these cells as a class of neurons underlying glucoprivic feeding (61).
However, evidence suggests that hindbrain-limited recurrent
glucoprivation does not alter CRR (62), suggesting that adaptations
to hypoglycemia that cause defective CRR are likely forebrain-
mediated. Studies by the Levin lab mapped expression of the key
glucosensor, glucokinase (GK), to neurons that exhibited both
glucose sensing and non-glucose sensing properties (63). In
support of the physiological data described above, they also noted a
relative lack of GK expression in the NTS, despite neurons in this
region playing a key role in neuroendocrine and behavioral responses
to hypoglycemia (64). Other key components of glucosensing
originally described in the beta-cell have also been shown to play a
role in hypoglycemia detection in rats. For example, pharmacological
and genetic manipulation of VMN ATP-sensitive potassium
channels (KATP) (65) or AMP-activated protein kinase activity (66,
67) can alter CRR in healthy, recurrently hypoglycemic and
diabetic rats.

With the advent of genetic technologies and the ease of applying
these approaches to mice, rats have been somewhat side-lined in
neuroscientific research (14). However, the first Cre-driver rat lines
were described a decade ago and many more are now available (68,
69), including some which have been used to demonstrate control of
blood glucose by defined neuronal populations (70). In a pair of
recent studies, chemogenetic receptors were expressed selectively in
anatomically distinct subgroups of catecholaminergic neurons
(identified by expression of tyrosine hydroxylase [TH]) in the rat
ventrolateral medulla (VLMTH neurons). This was achieved by
injection of Cre-dependent viral vectors into TH-Cre rats (68, 70,
71). Selective activation of these VLM-neuronal subgroups
(distributed along the rostro-caudal axis) differentially increased
food intake and corticosterone levels, but only in combination was
activation sufficient to increase blood glucose (70). This anatomically
precise modular viral transduction was facilitated by the larger size of
the rat brain relative to the mouse; in a comparable study using
similar methodology in dopamine-beta-hydroxylase-Cre mice the
whole VLM was transduced and chemogenetic activation increased
blood glucose (72). In a follow up study, again in TH-Cre rats, the
same group showed that repeated glucoprivation by daily injection
with 2-DG reduced the effects of chemogenetic stimulation of
VLMTH neurons on food intake and corticosterone release.
Importantly, repeated chemogenetic activation of these neurons
blunted food intake and the corticosterone response to a single
bout of glucoprivation, suggesting that prior activation of this neural
circuit by any means, is sufficient to blunt subsequent activation (71).

Zebrafish
Vertebrate genetics, embryonic development, and metabolic
diseases can be modelled in zebrafish (73, 74), given the well
conserved organ systems, lipid metabolism, hormone secretion,
and glucose homeostasis (75–78). Indeed, zebrafish are emerging as
a complementary model to understand analysis of glucoregulatory
organs, like the liver (79–81), muscle (82, 83), adipose (84, 85), and
pancreas (86, 87). Their small size and high fecundity also make
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them suitable for compound screening (88) for regulators of beta
cell mass and metabolism (89–97). Additionally, the major brain
regions, while morphologically different, are well conserved in
zebrafish (98, 99). Notably, the small size and optical
transparency of larval zebrafish allows for in vivo activity
recording of all neurons (100–102), and subsequent mapping of
their anatomical brain regions (103, 104).Analogous neural circuits
governing animal behavior can be found in zebrafish; including, the
feeding and sleep/wake cycle associated neurotensin and
hypocretin/orexin secreting neurons in the hypothalamus (105),
the stress-associated hypothalamic-pituitary-adrenal axis (106),
and learning and memory centers (107, 108).

While zebrafish behavioral research has been prolific, there have
been few studies on the neural regulation of glucose homeostasis.
Nonetheless, as in mammals, both leptin receptor and the central
melanocortin systems are present in the zebrafish hypothalamus
(109–111). The role of leptin in the maintenance of energy
homeostasis is well studied in mammalian models (112, 113).
Leptin receptor knockout (lepr-/-) zebrafish display altered glucose
homeostasis, increased beta cell mass, but normal adiposity, feeding
and fertility, highlighting potentially important differences in the
function of this hormone in zebrafish compared to mammals (109).
Two leptingenes (lepaand lepb) exist in zebrafish. Incontrast to lepr-/-

zebrafish, lepa-/- zebrafish display hyperglycemia, mild obesity,
increased appetite, and decreased aggression (114). Therefore, it
remains to be determined whether loss of leptin signaling in
zebrafish can fully recapitulate mammalian phenotypes.

In the peripheral nervous system, recent studies have
demonstrated the innervation of zebrafish pancreas early in
development (115, 116). Our understanding of the neural
regulation of glucoregulatory organs and the respective sensory
feedback loops will be advanced by future studies in zebrafish
combining optogenetic (117) and chemogenetic (43) approaches
to control neural signaling and detailed in vivo analysis of the target
organ of interest on the single cell level. Targeting the desired neural
populations in zebrafish will be guided by topographic mapping,
which has been elegantly studied for the vagusmotor nucleus in the
hindbrain (118–120), and retrograde neural tracing (121).
Additionally, the GAL4-Upstream Activating Sequence (UAS)
system provides a flexible toolbox for driving the expression of a
range of transgenes in zebrafish in a tissue specific manner (122).
Changes in glucose homeostasis could also be investigated in larval
and adult zebrafish. Tracking changes in circulating glucose levels
within the same animal remains difficult; however, due to the
relatively low housing costs and high fecundity, glucose tolerance
tests could be conducted in zebrafish by sampling different animals
at various time points following exposure to a glucose bolus (75).
Zebrafish could provide new insights in brain-body
communication, especially on a single cell level, with live animal
studies that are difficult to achieve in other vertebrate models.

Drosophila
Despite stark differences in physiology, namely the absence of an
organequivalent to thepancreas and thepredominantcirculationof a
non-reducing sugar trehalose instead of glucose, the invertebrate
Drosophila has been used as a model organism to study diabetes
(123). Crucially, these flies can distinguish nutritive sugars (e.g. D-
Frontiers in Endocrinology | www.frontiersin.org 5
glucose) from non-nutritive sugars (e.g. L-glucose) independent of
taste, indicating the existence of glucosensing mechanisms (124). Of
interest to readers of this review, the drosophila brain contains a
population of insulin-producing cells proposed to be functional
equivalents of pancreatic beta cells in other species (125). When
these cells are ablated in drosophila larvae the predominant
phenotype is reduced growth. However, these larvae also show
elevated carbohydrate (combined trehalose and glucose) levels
(125). Ablation of these insulin-producing cells (IPCs) in adult flies
increases hemolymph glucose levels in addition to other phenotypes
including longer lifespan and stress resistance (126). These cells also
share signal transduction mechanisms with mammalian beta cells
including excitability increased by glucose and/or closure of theKATP

channel (127, 128). This suggests that the brain may be the principal
glucoregulatory site in drosophila although the functional
importance of this to insect physiology is debated (123). The brain
is not the sole site of glucose regulation in the drosophila however,
since the drosophila equivalent of glucagon is produced by a group of
neuroendocrine cells in the corpora cardiaca ([CC] analogous to the
mammalian pituitary) (129). It was recently shown that both IPCs
and CC cells are regulated by a pair of glucose excited neurons in the
dorsolateral portion of the drosophila brain (130). These neurons,
identified by co-incident expression of corazonin and short
neuropeptide F, project to both IPCs and CC cells to stimulate
insulin secretion and suppress glucagon secretion respectively (130).

Drosophila offer a low-cost high-throughput screening
platform for disease-related genes. A recent relevant example is
the description of a suite of behavioral assays in drosophila where
neural expression of genes associated with appetite regulation,
identified from genome wide association studies [GWAS], were
disrupted (131). With available GWAS data, large-scale reverse
genetic studies could potentially be adapted in drosophila to
study genes regulating blood glucose (132).

To summarize, drosophila have distinct physiology from
mammalian species and, while there is evidence for glucoregulatory
neurocircuitry, it appears that these circuits are distinct from those in
mammals, instead, resembling something closer to pancreatic cell
types. Thismaypreclude the use of drosophila to providemeaningful
insight specifically into the control of glucose homeostasis by the
brainbutcouldbeauseful reversegenetic screening tool forgenes that
impact systemic glucose homeostasis.

Experimental Models of Diabetes
While it is beyond the scope of this review to discuss in great detail
the strengths and weaknesses of these model organisms to
recapitulate features of human diabetes (11) we can briefly outline
these here (summarized in Figure 2). A range of mouse and rat
strains with known, spontaneous, mutations are available each with
distinct phenotypes that model type 1 or 2 diabetes, with and without
obesity. Complementary to these lines, disease states can be induced
by feeding with a high-fat, high-sugar diet, injection with
streptozotocin or repeated bouts of hypoglycemia. The effectiveness
of these protocols varies between mice and rats (and within strains of
these species) with C57BLJ/6 mice being especially prone to diet-
induced obesity (DIO) while inbred rat strains show both resistance
or susceptibility to DIO (133, 134). Similarly, rats more readily
develop impaired awareness of hypoglycemia with fewer
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hypoglycemic bouts required for induction than mice (58). Non-
mammalian species including zebrafish and drosophila also have
transgenic strains that can model some facets of human disease,
however, their distinct physiology from humans means that these
models do not recapitulate human disease as faithfully as rodent
models (135, 136).
CONCLUSION

A wide variety of approaches in diverse model species has begun to
identify pathways by which the brain communicates with peripheral
systems to control glucose homeostasis. The strengths and
weaknesses of these models are summarized in Figure 2. The
toolbox for manipulation and monitoring of genetically defined
cell types in rodents affords the ability to characterize neural circuits
in a high degree of detail. However, these techniques are not without
their caveats and careful experimentation and selection of control
groups is required (42, 137). The hyperinsulinemic-euglycemic
clamp remains the gold standard technique for assessing whole-
body insulin sensitivity in vivo (138). Not only is vascular
catheterization less technically challenging in the rat compared to
the mouse, but mice require infusion of donor blood to replace
erythrocytes and sustain hematocrit during clamping procedures,
which results in larger colony number and more complex
experimental design (137). Independently of rodent model choice,
however, blood glucose assessments must take into consideration;
strain (40, 139), age (140, 141), sex (142–144), fasting length (137,
145) and husbandry (146–148) as all of these parameters
differentially impact glucose homeostasis and the translatability of
Frontiers in Endocrinology | www.frontiersin.org 6
each model to human physiology (discussed in detail in 7,9). Non-
mammalian species, while having critical distinctions in their
mechanisms of glucose homeostasis, particularly with respect to
the brain, offer unique opportunities afforded by their genetic
tractability, lower cost, and fecundity. In particular, zebrafish offer
a powerful platform for genetic manipulation, live imaging, neural
recording, and high throughput screening with some comparable
neuroendocrine processes to mammals. Ultimately, the use of
model organisms permits investigation into brain-body
interactions underlying glucose homeostasis with a level of detail
not achievable using studies in humans.
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