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The incidence of both type 1 and type 2 diabetes is increasing worldwide. Diabetic
peripheral neuropathy (DPN) is among the most distressing and costly of all the chronic
complications of diabetes and is a cause of significant disability and poor quality of life.
This incurs a significant burden on health care costs and society, especially as these
young people enter their peak working and earning capacity at the time when diabetes-
related complications most often first occur. DPN is often asymptomatic during the early
stages; however, once symptoms and overt deficits have developed, it cannot be
reversed. Therefore, early diagnosis and timely intervention are essential to prevent the
development and progression of diabetic neuropathy. The diagnosis of DPN, the
determination of the global prevalence, and incidence rates of DPN remain challenging.
The opinions vary about the effectiveness of the expansion of screenings to enable early
diagnosis and treatment initiation before disease onset and progression. Although
research has evolved over the years, DPN still represents an enormous burden for
clinicians and health systems worldwide due to its difficult diagnosis, high costs related to
treatment, and the multidisciplinary approach required for effective management.
Therefore, there is an unmet need for reliable surrogate biomarkers to monitor the
onset and progression of early neuropathic changes in DPN and facilitate drug
discovery. In this review paper, the aim was to assess the currently available tests for
DPN’s sensitivity and performance.

Keywords: microvascular complications, Diabetic Neuropathy, Screening, Diagnosis, Early Detection,
neuropathy biomarkers
INTRODUCTION

Diabetes is one of the fastest-growing health challenges of the 21st century, with the number of
adults living with diabetes having more than tripled over the past 20 years (1). The International
Diabetes Federation reported that in 2019, the prevalence of diabetes was 9.3% (463 million people
worldwide) with a predicted rise to 10.9% (700 million people) by 2045 (2). Furthermore, it has been
shown that over 1.1 million children and adolescents below 20 years have type 1 diabetes. On top of
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these staggering figures, are the number of people with impaired
glucose tolerance (IGT) or metabolic syndrome with 373.9
million in 2019 (7.5%) and predicted rise to 548.4 million
(8.6%) by 2045 (2).

In the UK alone, there were 4.8 million people with diabetes
in 2019. Diabetes is on the rise. Figures from Diabetes UK shows
that someone is diagnosed with diabetes every two minutes, with
5.3 million expected to be living with the condition by 2025 (3).

Diabetes is strongly associated with both microvascular and
macrovascular complications. As a result, 10% of global health
expenditure, equal to USD 760 billion, is directed toward
diabetes and its complications (2). Microvascular changes lead
to nephropathy, retinopathy and neuropathy. Among these
complications, diabetic peripheral neuropathy (DPN) is the
most common and costly diabetes-associated complication,
occurring in around 50% of individuals with diabetes (4).
Distal symmetric polyneuropathy (DSPN) (5) typically follows
a distal-proximal course and results in symmetrical symptoms
and signs between the body’s left and right sides. Common
symptoms include burning, numbness, tingling, pain and/or
weakness starting in the distal lower extremities which
progress into more extreme symptoms of neuropathic pain in
around 10-30% of affected patients (6, 7). Symptoms may be
sporadic or constant but can be debilitating and in many people
lead to depression, sleep disorders and overall reduced quality of
life (8).

The true prevalence of DPN is underestimated as its
assessment is challenging. However, DPN is recognized as the
most common complication of diabetes.

DPN is the strongest initiating risk factor for diabetic foot
ulceration (neuropathic ulcer) (9, 10), and existing ulcers may be
further exacerbated from damage to sensory neurones. Resultant
limb numbness causes ulcers to remain undetected for longer
periods (10); thus, corrective actions are not taken nor advice
sought at early stages of the disease. Often the first sign that a
person has diabetic peripheral neuropathy (DPN) is a foot ulcer,
which may lead to irreversible tissue damage, lower limb
amputation and significant morbidity.

In the UK, people with diabetes account for more than 40% of
hospitalizations for major amputations and 73% of emergency
admissions for minor amputations. A single diabetes related foot
ulcer can take over 240 days to put into remission and costs
£8,000 pa to treat. Ulcers frequently recur and eventually may
require the amputation of a lower limb. DPN is hugely costly to
our NHS (>£1.1 billion pa in direct medical costs) and to the
wider UK economy (~£4 billion), is particularly debilitating and
distressing for patients and their families and can lead to an
untimely death (11, 12), with five-year mortality ranging from 52
to 80 percent after major amputation (13).

Furthermore, with diabetes related lower limb amputations
increasing at the rate of almost 20% per annum in line with the
increasing prevalence of diabetes, there is a huge strain on NHS
budgets which are unable to keep up.

Autonomic neuropathies are a class of DPN which share similar
diffuse pathophysiology with DSPN, but differ by being largely non-
sensory (4). These typically affect the cardiovascular, urogenital and
gastrointestinal systems. Patients may also suffer from sudomotor
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dysfunction, hypoglycemia obliviousness, and abnormal pupillary
function (5). Rare forms of DPN include mononeuropathies,
polyradiculopathies and treatment-induced neuropathies (5).
These atypical forms are generally self-limiting and resolve with
medical management and physical therapy, usually over several
months (11).

In clinical settings, there are several different approaches to
assess diabetic peripheral neuropathy (DPN), and the choice of
the test will depend on the aim of testing. It is usually sufficient in
a busy clinic to establish whether a patient is symptomatic,
particularly of painful DPN (12), and whether or not they are
at high risk of foot ulceration typically through monofilament
testing. However, to fully assess damage and phenotype of DPN,
sensory deficits must be detected early. Those accurate
biomarkers are available for monitoring of DPN and for use in
clinical trials of potential new treatments.

Currently, there are no simple markers for early detection
of DPN in routine clinical practice. The measures we use are
crude and detect the disease very late in its natural history. Even
the benefits gained by standardizing clinical assessment with
scored clinical evaluations remain subjective, heavily reliant on
the examiners’ interpretations.

This paper reviews the current knowledge and the
optimal approaches for diagnosis and screening of diabetic
peripheral neuropathy.
TYPES OF NERVE FIBERS

Peripheral nerve fibers can be classified using Erlanger and
Gasser’s classification, which defines nerves based on diameter,
conduction speed, and myelination level (Table 1). A-fibers have
the largest diameter, with the thickest myelination and fastest
conduction speed, and act as sensory and motor fibers within the
somatic nervous system. They may be further divided into large
nerve fibers that have sensory and motor functions (Aa and Ab),
and small nerve fibers (Ag which has motor functions, and Ad
which may be autonomic or sensory fibers) (14).

Group B-fibers are small, with moderate myelination and
slower conduction velocities than A-fibers. B-fibers act mainly as
general visceral afferent and pre-ganglionic fibers and are found
only in the autonomic nervous system.

Group C-fibers have a small diameter, low conduction
velocity and are the only unmyelinated group. They act as
somatic, afferent fibers that carry sensory information relating
to temperature and pain, as well as having autonomic functions
such as the stimulation of the sweat glands (14).

Epidemiology
The prevalence of diabetic peripheral neuropathy (DPN)
reported in various studies ranges from 6% to 51% depending
on the population (15, 16). In the Diabetes Control and
Complications Trial/Epidemiology of Diabetes Interventions
and Complications (DDCT/EDIC) Study, the prevalence of
DPN in adults with type 1 diabetes was 6% at baseline and
increased to 30% after 13–14 years of follow-up (17). The
prevalence of DPN among adults with type 1 diabetes in the
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Pittsburgh Epidemiology of Diabetes Complications was 34%
and increased significantly with age (18–29 years: 18%; ≥30
years: 58%). It has been estimated that half of all children with
diabetes with a duration of 5 years or longer already have diabetic
neuropathy (18) and nearly 25% of pediatric patients with newly
diagnosed diabetes have abnormal findings on nerve conduction
studies (NCS), indicating nerve damage (19).

The prevalence of DPN is somewhat higher in patients with
T2DM when compared to T1DM (4). The ‘Action to Control
Cardiovascular Risk in Diabetes’ (ACCORD) (20) trial and the
‘Veteran Affairs Diabetes Trial’ (21) found that DPN was present
in 42% and 39% of adults with type 2 diabetes, respectively, at
baseline measurement. A study comparing magnetic resonance
imaging (MRI) scans of the sciatic nerve in T1DM, and T2DM
patients with DPN found that the predominant type of nerve
lesion differed between the two (22). This study found that in
T1DM, lesions were predominantly associated with poor
glycemic control and loss of nerve conduction, whereas in
T2DM lesions were associated with changes in lipid
metabolism. This raises the question of whether damage to
peripheral nerves results in different patterns of nerve damage,
and thus would require different types of preventive treatment.

Risk Factors
In both main types of diabetes, the prevalence and severity of
DPN increases with disease duration and increasing age (16). A
large study of 1172 patients with diabetes assessed for
neuropathy at baseline reported that patients who had
developed neuropathy by roughly ten-year follow-up were on
average 3.8 years older and had diabetes for 3.3 years longer at
baseline (16). Furthermore, the study found that in both T1DM
and T2DM, higher hemoglobin A1c (HbA1c) level was a
significant predictor of the development of diabetic
neuropathy (16).

In cohorts of patients with T2DM, several metabolic syndromes
such as hypertension, abdominal obesity, lower high-density
lipoprotein (HDL) levels and hypertriglyceridemia have been
consistently associated with DPN development (23), with
additional independent risk factors including alcohol abuse and
increased height (24). In a cohort of patients with T1DM, the
EURODIAB prospective complications (25) study reported similar
modifiable risk factors to those identified in T2DM, explicitly
having an association with raised triglyceride level, obesity,
smoking and hypertension. Several genes have also been linked to
an increased risk of diabetic neuropathy. Still, only ACE (encoding
angiotensin-converting enzyme) and MTHFR (encoding
Frontiers in Endocrinology | www.frontiersin.org 3
methylenetetrahydrofolate reductase) polymorphisms have been
confirmed using large patient cohorts inmultiple populations (24).
Research into the role of genetics indiabetic neuropathy is currently
limited, and many more studies are required.

Significantly lower levels of clinical neuropathy in South
Asian patients have been reported compared to Europeans and
Afro-Caribbean (26). A recent study found that in a population
of people with type 2 diabetes, South Asians had significantly
better-preserved small nerve fiber integrity than equivalent
Europeans (27). However, this patient cohort was recruited
from primary care, and most patients had no or mild
neuropathy, so it was not representative of the diabetic
population overall. A proposed explanation for the reduced
risk was the differences in the transcutaneous partial pressure
of oxygen (TCpO2) and height between the ethnicities (27).
However, the study suggesting this explanation did not adjust for
a range of possible confounders such as obesity, and alcohol
intake, between ethnicities, all of which are established risk
factors for developing DPN. A more recent study suggested
that the variation may be due to differences in height and
adiposity between the ethnic groups, as the adjustment for
these factors rendered the difference insignificant (28).

Prevention/Treatment
There is currently no Food and Drug Administration (FDA)
approved therapy to prevent or reverse human DPN (4). The
current management approach focuses on reasonable glycemic
control, lifestyle modifications, and management of associated
pain. The reasonable glycemic control consists of not only strict
HbA1c control but also reduced glycemic variability, because
glycemic variability has recently emerged as an another measure
of glycemic control, which might constitute an additive, or even
better predictor of microvascular complications including
neuropathy than mean HbA1c levels (29, 30).

Previous studies have found that improving HbA1c levels
does affect DPN progression in patients with T2DM (20, 31). The
ACCORD study (20) found that intensive treatment caused
delay in onset of albuminuria and it reduced neuropathy,
MNSI socre, loss of ankle jerks, loss of light touch at end of
the study. The veterens study (31) assessed whether new
evidence of clinical neuropathy occurred during the period of
intensive versus normal control and had quite severe criteria for
definaitions. The Epidemiology of Diabetes Interventions and
Complications (EDIC) trial reported that intensive glucose
control significantly delayed the development and progression
of diabetic neuropathy in T1DM patients over time (17).
TABLE 1 | Classification of nerve fibers in the peripheral nervous system according to modified Erlanger and Gasser.

Classification Myelination Diameter (um) Conduction Velocity (m/s) Type Function

Aa (alpha) Yes 12-22 70-120 Sensory/motor Proprioception, touch sensory, somatic motor to extrafusal muscles
Ab (beta) Yes 5-12 30-70 Sensory/motor Proprioception, touch/pressure sensory, somatic motor to intrafusal muscles
Ad (delta) Yes 1-5 5-30 Sensory Touch and cold thermoreceptors, nociception
Ag (gamma) Yes 2-8 15-30 Motor Somatic motor to intrafusal muscles
B Yes <3 3-15 Autonomic Visceral afferent fibers and preganglionic efferent fibers
C No 0.1-1.3 0.6-2 Sensory/

autonomic
Temperature (warm receptors), pain perception, nociception, itching
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Another study, following a cohort of T1DM patients over 24
years confirmed these findings. Patients who had stable, near-
normal HbA1c levels (mean <7.0%) had significantly less
deterioration in nerve fiber function when measured using
electrophysiology and quantitative sensory methods (p<0.05
for all measures at 24 years follow-up) (32).

Attempts have been made to reduce DPN by lifestyle
interventions (24). Several studies have demonstrated a
potential for improved outcomes in patients with diagnosed
DPN through exercise regimes put in place over ten weeks (33)
to 12 months (34). Despite insignificant improvements in body
mass index (BMI), these studies reported a significant
improvement in objective nerve function measures and
reduced neuropathy symptoms. Neither of these studies
included a control group, which is essential to provide a
measure of the change in neuropathy which could be expected
over time without intervention but with the same amount of
scrutiny, for example, additional contact time with healthcare
professionals or individuals paying more attention to their health
due to taking part in a study. In the absence of a control group, it
is difficult to ensure that neuropathy improvements are
genuinely due to modifications in exercise regimes alone.

A recent comprehensive study in Japanese patients with
T2DM under poor glycemic control (HbA1c 9.6%, 81.6 mmol/
mol) at baseline assessed the impact of intensive glucose control
without hypoglycemia and found that normalizing A1c over the
two years of follow-up resulted in significant improvement in
neuropathy outcomes (35). This study also revealed that small
glycemic variability assessed by SD and coefficient of variation
(CV) of monthly measured HbA1c levels was associated with the
improvement of neuropathy outcomes. In the follow-up study of
T2DM (a median of 9.3 years), mean HbA1c levels were the main
risk predictor for the composite outcome of developing or
worsening diabetic neuropathy, whereas glycemic variability
assessed by HbA1c variability was a better risk predictor for
new incident of neuropathy (36). In the follow-up study of
T1DM the long-term glycemic variability assessed by CV and
SD of HbA1c levels was linked to DPN independent of mean
HbA1c (37). These studies indicated that the strict HbA1c
control as a long-term mean glycemic levels and suppressed
glycemic variability are required for the prevention and slow
neuropathy progression in patients with diabetes.

Screening
The American Diabetes Association (ADA) and the International
Working Group on the Diabetic Foot (IWGDF) recommends
regular examination of people with DM for the diagnosis of DPN
and loss of protective sensation using simple standard tests for the
identification of those at risk for diabetic foot ulcer (38, 39). It is
recommended that all patients with T2DM be screened for DPN
at diagnosis, and for T1DM, the screening should begin five years
post-diagnosis (40). After this initial screening, all patients should
be reviewed annually.

Nerve conduction studies (NCS) are considered the gold
standard for the diagnosis of large fibers neuropathy. The
Toronto consensus (41) recommended the use of abnormal
NCS with a symptom or sign to diagnose DPN. However, the
Frontiers in Endocrinology | www.frontiersin.org 4
need for specialist examiners and equipment renders NCS
inappropriate as a screening test. Thus, it is used only to
confirm any possible/probable DN picked up post-screening
using other measures (40).

More commonly, screening for DPN involves history taking
for neuropathic symptoms and examination of the feet, along
with a screening test (40). Traditional screening tests benefit
from being quick and easy; however, like NCS, these only assess
larger fiber function and are unable to detect any early changes in
small nerve fibers. Furthermore, two systematic reviews focusing
on the use of monofilament testing, a commonly used screening
test for DPN, described a variation of diagnostic value in the
current literature and a lack of consistency in recommended test
procedure and interpretation (42). Sensitivity for peripheral
nerve fiber damage ranged from 43-93% when using NCS as a
reference standard (43). Both review papers did not recommend
the sole use of monofilament testing to diagnose peripheral
neuropathy (43). This is just one example of the shortcomings
of current screening tests.
DIAGNOSTIC TESTS FOR DPN

While there is no single accurate definition of diabetic
neuropathy, a simple definition for clinical practice is the
presence of symptoms and/or signs of peripheral nerve
dysfunction in people with diabetes after excluding other
causes (5). Based on this, the diagnostic tests are focused on
assessing the symptoms and signs of nerve dysfunctions.

There are numerous testing methods available to assess the
peripheral nervous system’s structure and function, with each
test having its own advantages and disadvantages. Bedside tests
used to aid diagnosis of DPN—including the 10g monofilament
(Figure 1D), the Ipswich Touch Test, and vibration perception
threshold testing with the Vibratip (Figure 1E), a tuning fork, or
automated devices such as Neurobiothesiometer, are not only
reliant on patients’ subjective response but are also mainly used
to identify the loss of protective foot sensation and risk of
ulceration. As such, these tests tend to diagnose DPN when it
is already well established. Late diagnosis hampers the potential
benefits of intensified multifactorial intervention at an early stage
of the disease, which could prevent the sequelae of DPN.
Unfortunately, by the time DPN is detected with the crude
tests currently used, it is often very well established and
consequently impossible to reverse or halt the inexorable
neuropathic process. Early diagnosis and timely intervention
are thus essential in preventing the development of DPN.

Some of the most common tests and methods for diagnosis of
DN have been summarized in Table 2.

Symptoms
Various clinical scoring systems are available for DPN screening
which involve symptom scoring, sign scoring or both (Table 3).
These systems may enhance diagnostic accuracy through a
composite score of different combined tests and are useful
tools for aiding diagnosis of DPN, along with quantitative
measures. Each questionnaire has a scoring system which can
May 2021 | Volume 12 | Article 671257
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diagnose, and in some, stratify disease severity. Table 3 presents
a summary of the most commonly used questionnaires for
assessing DPN.

The Neurological Symptom Score (NSS) is a 17 question,
interview-based assessment of sensory, motor, and autonomic
function used to screen DPN (87). Still, it is considered too
extensive to be used efficiently in clinical practice. The diabetic
neuropathy score (DNS) is an adaptation of the NSS that is a
much quicker screening method, with only four questions and
still offering moderate sensitivity (79%) and specificity (78%), but
with slightly lower reliability for diagnosing DPN (45) when
using a diagnostic score of 1 or more.

Other symptom scoring systems focus only on pain and
differentiating neuropathic from other causes. Clinicians
commonly recognize pain descriptors that are used by patients
with neuropathic pain. The McGill pain questionnaire was the
first questionnaire designed to offer a multidimensional
assessment of pain, which included assessing severity or
intensity, emotional impact, and significance to the pain
sufferer (88). This questionnaire is one of the most commonly
used multi-dimensional pain scales globally. A short-form is
available for use in screening which has shown good agreement
with the original version (89).

Signs
The Neuropathy disability score (NDS) is a commonly used
clinical examination method that assesses neuropathy signs
Frontiers in Endocrinology | www.frontiersin.org 5
(Figure 1A). Thirty-five items are used for both sides,
evaluating cranial nerve damage, muscle strength, sensation
loss and reflex delay/loss (90). However, some of the items
have demonstrated a weak relation to DPN, and the full
scoring system is too long to be used in clinical practice.
Therefore a revised NDS has been created. This system is more
commonly used and tests for four main neuropathy signs; ankle
reflex, vibration, pinprick and temperature sensation at both
sides of the largest toes. A maximum score is 10, and usually,
more than 6 is considered abnormal (91).

Composite Scoring Systems
The reliance on symptoms or signs alone may lead to low
diagnostic accuracy for the presence of DPN, and a combination
of both allows a more thorough assessment. Several scoring
systems assess both signs and symptoms of DPN to produce a
composite score. The Toronto clinical neuropathy score (TCNS)
consists of three parts: symptom scores, reflex test scores and
sensory test scores. The maximum score is 19, and the test is able
to stratify patients into no DPN, mild DPN, moderate DPN and
severe DPN depending on the overall score (92). Testing has
proven validity and reliability for diagnosing and staging DPN
compared to electrophysiology measures (92).

The Michigan neuropathy screening instrument (MNSI) is
another commonly used composite scoring system that includes
a questionnaire and a foot examination (77). Neuropathy can be
defined as seven or more positive responses to this symptoms
FIGURE 1 | Examples of nine different tests for diabetic peripheral neuropathy (DPN), (A) Physical examination and Neuropathy disability score (NDS), (B) Nerve
Conduction studies being performed on the lower leg, (C) DPNcheck device to test sural nerve conduction performed on the lower leg, (D) Monofilament screening
test sights and procedure, (E) Vibration perception threshold testing, (F) Medoc TSAII quantitative sensory testing device for thermal perception threshold,
(G) Sudoscan equipment. Hand and feet sensor plates with displaying test results, (H) Neuropad test demonstrated original blue color, (I) A punch skin biopsy to
collect samples needed for IENFD measurement, (J) An image of the corneal sub-basal nerves using corneal confocal microscopy and the CCM probe positioning
during corneal scanning.
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section alone (77). The foot examination is more frequently used
and encompasses foot appearance (including ulcers), ankle reflex
and the 128‐Hz tuning fork test (77). One study (93) found a
range of sensitivity (35-79%) and specificity (65-94%) in
comparison to NCS depending on the cut-off value used for
abnormality in MNSI. The higher specificity values indicate a
potential high diagnostic impact for MNSI scoring; however, the
lower sensitivity range indicates that milder DPN cases are likely
not to get picked up.

Scoring of symptoms and signs is convenient and easy to
perform as a method of screening for DPN. These tests are easily
interpreted, making them a useful tool in supporting decisions
on which patients should be referred on for specialist assessment.
Quantitative, objective measures should be considered when the
patient has signs and symptoms other than those rated by the
scoring test.

Large Fiber Tests
Nerve Conduction Studies (NCS)
The current ‘gold standard’ for clinical diagnosis of DPN is
through nerve conduction studies (NCS) by a trained
neurophysiologist (Figure 1B). In 2010, the Toronto Consensus,
by an expert panel recommended that one abnormal finding as part
of NCS, combined with a symptom or sign of neuropathy should be
used to confirm DPN (41). NCS has also demonstrated an ability to
predict future DPN (94).
Frontiers in Endocrinology | www.frontiersin.org 6
For reliable NCS results, close attention must be paid to
factors such as filter setting, limb temperature, and recording
location, as outcomes can be vulnerable to variations. Trials have
demonstrated that NCS consistently demonstrate excellent intra-
observer agreement (58, 95); however, a poor inter-observer
agreement between expert clinical neurophysiologists is common
(58) when no standardized, specific technique is followed. One
study (95) assessed the results of 4 neurophysiologists, from 4
different centers. Specific assessment methods were provided in a
specially prepared syllabus, and a training session was provided
beforehand. The outcome was a significant improvement in inter-
observer agreement with a standardized approach, and although
not entirely eliminated, levels of disagreement were consequently
considered clinically significant for medical practice (95).

Conversely, when considering the use of NCS in therapeutic
clinical trials, even small inter-observer variability may be
significant enough to impact results through impacting the
statistical power of a study and thus the trial’s outcomes. This
may partially explain why previous clinical trials have used NCS
as a primary outcome to detect treatment efficacy and have
reported failed outcomes (96–98). Evidence supports the use of a
single observer to repeat electrophysiological tests on each
patient in these trials.

Furthermore, Standard NCS testing is not easily applicable as
a screening tool for DPN since it is time-consuming, requires a
specialist operator and can be uncomfortable for the patient (58).
TABLE 2 | Diagnostic tests available for assessing DPN.

Nerve Fibers
Assessed

Advantages Limitations

Symptoms and
Signs

Questionnaires Large (Ab-fibers) and
Small (Ad and C-fibers)

Easy to administer. Used for monitoring
symptoms (44)

Lack of Sensitivity, accuracy and reproducibility,
Subjective (45)

NDS Large (Ab-fibers) and
Small (Ad and C-fibers)

Does not require specialist equipment,
Assesses large and small-fiber function (46)

Not sensitive or reproducible, Low correlation with
small fiber quantitative tests (47)

10-gram
Monofilament

Large (Ab-fibers) Simple, quick and inexpensive (48). No standardization of methods. Cannot detect early
neuropathy (48).

Ipswich Touch
Test

Large (Ab-fibers) Simple. Requires no specialist equipment
(49).Can test at home

Can only detect advanced neuropathy (48)

QST (Thermal and
Vibration
thresholds)

Large (Ab-fibers) and
Small (Ad and C-fibers)

Measures small and large fiber function (44)
Good repeatability (50)

Unable to differentiate between peripheral and
central abnormalities (51) High inter-operator
variability (52)

Large
FiberTests

DPNCheck Large, sural nerve
(Ab-fibers)

Quick, Easy to perform,Good sensitivity (92-
95%) compared to NCS (53, 54)

Relies on the accessibility of sural nerve (55).
Validation studies had small patient numbers (53, 54)

NCS Large (Ab-fibers) A sensitive measure of large nerve function
(56),Reproducible (57)

Doesn’t assess small fibers, Uncomfortable (58),
Does not assess early neuropathic changes

Small Fiber
Tests

Skin Biopsy
(IENFD)

Small (C-fibers) Gold standard for SNF, Quantitative,Good
sensitivity,Detects early nerve changes (59,
60)

Invasive, Risk of infection, Repeatability, Requires
trained personnel and special labs (44)

CCM Small (Ad and C-fibers) Non-invasive,Good reproducibility (61), Rapid
and objective (62, 63)

Relatively Expensive,Requires specialist equipment
and personnel,manual analysis is time-consuming
(44)

AutonomicTests Neuropad Small (C-fibers) Can be self-administered,suitable for
screeningNon-invasiveGood sensitivity (54,
64–69)

Varied interpretation of the results (54, 64–67)

Sudoscan Small (C-fibers) Non-invasive,Easy to perform Unclear if measuring sudomotor function Variable
specificity (53-92%) (70–74)

QSART Small (C-fibers) Sensitive for SFN (82%) (75) Gold standard
for measuring sudomotor function

Time-consuming, Requires specialist equipment and
trained personnel (76) Uncomfortable
IENFD, Intra-epidermal nerve fiber density; NCS, Nerve conduction studies; QSART, Quantitative sudomotor axon reflex test; CCM, Corneal confocal microscopy; NDS, Neuropathy
disability score; QST, Quantitative sensory testing; SFN, Small fiber neuropathy.
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Electrodiagnostic studies have also been identified as one of the
largest drivers of health care costs related to neuropathy
evaluation (99). Results are often found to be normal in
patients with diabetes who have early or small fiber
predominant neuropathy.
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DPNCheck
To overcome some of the shortcomings of standard NCS testing,
a novel point-of-care nerve conduction device (POCD), DPN-
Check (Neurometrix Inc., Waltham, MA) has been developed
with the potential to serve as an acceptable proxy to standard
TABLE 3 | Summary of questionnaires available for assessing DPN.

Questionnaire Assessed Type of Administration Scoring

Symptoms NSP Symptoms of
neuropathy

Clinician administered 34 categories (women)
36 categories (men)

DNS Symptoms of diabetic peripheral neuropathy Clinician administered 4 for Symptoms
(Total 4)

NSS Symptoms of
neuropathy

Clinician administered 8 for muscle weakness
5 for sensory disturbances
4 for autonomic symptoms
(Total 17)

NPQ Symptoms of
neuropathic pain

Completed by the patient Total of 12

NPSI Symptoms of
neuropathic pain

Completed by patient 10 descriptors, 2 duration
(Total 12)

McGill Pain
Questionnaire

Multidimensional symptoms of pain Clinician administered Subclass 1- Sensory
Subclass 2 - Affective
Subclass 3 - Evaluative
Subclass 4 - Miscellaneous
(Total 78)

CNE Signs of peripheral neuropathy Clinician administered 21 for sensory testing
8 for muscle strength
4 for ankle reflex
(Total 33)

Signs NDS Signs of peripheral neuropathy Clinician administered 2 for vibration sensation
2 for temperature sensation
2 for pinprick
4 for ankle reflex
(Total 10)

DNE Signs of peripheral
neuropathy

Clinician administered 4 for muscle strength
2 for reflex responses
10 for sensory testing
(Total 16)

NIS-LL Signs of neuropathy in the lower limbs Clinician administered 64 for muscle strength
16 for sensory testing
8 for reflex responses
(Total 88)

MNDS Signs of peripheral neuropathy Clinician administered 12 for sensory tests
18 for muscle strength
16 for reflex testing
(Total 46)

UENS Signs of peripheral
neuropathy

Clinician administered 11 for each side
(Total 22)

Symptoms and
Signs

DN4 Symptoms and signs of
neuropathic pain

Clinician administered 7 for symptoms
3 for signs
(Total 10)

LANSS Symptoms and signs of
neuropathic pain

Clinician administered 5 for symptoms
2 for signs
(Total 7)

TCNS Signs and symptoms of peripheral neuropathy Clinician administered 6 for symptoms
5 for sensory tests
8 for reflex tests
(Total 19)

MNSI Signs and symptoms of peripheral neuropathy Symptoms by patient
Foot examination by a clinician

15 for symptoms
8 for foot examination
(Total 23)
May 2021 |
NSP, Neuropathy Symptoms Profile; NPQ, Neuropathic Pain Questionnaire; DNS, Diabetic Neuropathy Symptom; NSS, Neuropathy Symptom Score; NPSI, Neuropathic Pain Symptom
Inventory; CNE, Clinical Neurological Examination; NDS, Neuropathy Disability Score; DNE, Diabetic Neuropathy Examination; NIS-LL, Neuropathy Impairment Score in the Lower Limbs;
MNDS, Michigan Neuropathy Disability Score; UENS, Utah Early Neuropathy Scale; DN4, Douleur Neuropathique en 4; LANSS, Leeds Assessment of Neuropathic Symptoms and Signs;
TCNS, Toronto Clinical Neuropathy Score; MNSI, Michigan Neuropathy Screening Instrument (47, 77–86).
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NCS which are time-consuming, expensive, and often require
patients to be seen in specialist clinics (Figure 1C). This test for
sural nerve conduction velocity and amplitude is much quicker
(3 minutes) to perform than conventional electrodiagnostic
testing. It has been validated in type 1 and 2 diabetes
populations through comparison with the Neuropathy
Disability Score (NDS) (55) and standard NCS (53, 54). These
studies have reported a high sensitivity of 92-95% for detecting
abnormalities (Table 4). However, these studies’ cohorts
have been small, with two of the three studies assessing very
low numbers of patients with type 1 diabetes (53, 54, 108).
Furthermore, the DPNCheck device is dependent on the
presence of an accessible sural nerve which can be anatomically
absent in up to 9% of healthy subjects (55).
Small Fiber Tests
Punch Skin Biopsy
The evidence strongly suggests that in DPN, damage to small
fibers precedes damage to large fibers (109, 110) and punch skin
biopsy is currently considered the gold-standard single test for
diagnosing small fiber neuropathy (111). A measure of intra-
epidermal nerve fiber density (IENFD) can be quantified from
these biopsies, which is a method of documenting the density
of terminal branches of peripheral nerves within the epidermis
(no/mm2). The European Federation of Neurological Societies
has published guidelines for its use in diagnosing peripheral
neuropathies (112) (Figure 1I).

Two immuno-staining methods have become the most widely
used in IENFD measurement: indirect immunofluorescence (IF)
and bright-field immunohistochemistry (BFI). Although IF is
considered a slightly more sensitive technique due to higher
signal/noise ratio (113), the two methods have excellent
correlation (114), and both can comparably detect SFN (113).
At present, age-related normative values exist only for BFI,
published by a multi-national group of 8 centers (115).

For both IF and BFI techniques, IENFs are typically counted
directly through an epifluorescence microscope’s oculars by
focusing through the optical planes (113). For IF only, the more
precise, but time-consuming technique confocal microscopy (CM)
can analyze optical sections of 3-dimensional images using
computer software (113). The two techniques have shown
excellent correlation (113), and the latter is usually used when
the more complex, second-level analysis is needed.
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IENFD measurements have been shown to detect small fiber
neuropathy with depletion of IENFD detected in patients with
normal NCS and no clinical signs or symptoms of neuropathy
(59, 60). A recent study reported low sensitivity of just 61% when
using a cut off of 4.5fibers/mm IENFD to diagnose clinical DPN
in T1DM patients (100). Earlier studies have published
significantly higher values for sensitivity (80%) (116) and
specificity (95%) (117), however, these studies were comparing
healthy controls to DPN patients rather than the test’s ability to
identify DPN in a diabetic cohort. Other studies have found a
decrease in IENFD correlating with the progression of
neuropathy and duration of diabetes (118, 119) with reports
that IENFD may also be lower in patients with painful DPN
compared to painless DPN (120).

A 5-year follow-up study investigating the progression of
DPN in T1DM and T2DM, reported a significant reduction of
IENFD in T2DM patients, with IENFD measurement being the
single most abnormal parameter (121). Overall, the reduction in
IENFD was not significant in T1DM subjects. However, the
lower number of patients in the T1DM group may explain this
finding, as this would make it more challenging to prove
statistically significant changes (121).

The main issue with IENFDmeasurements as a biomarker for
small fiber neuropathy is that it is an invasive procedure.
Obtaining a biopsy can cause side effects such as a mild
infection due to improper wound management or, less
commonly, excessive bleeding. Even though reported side
effects are rare (1.9/1000) (115), the nature of this technique
limits its practical use, particularly when a repeat biopsy is
required in longitudinal studies or clinical intervention trials.

From a screening perspective, although intra-epidermal nerve
fiber density measurement from a lower-limb skin biopsy is
considered the gold standard for the diagnosis of small fiber
neuropathy, it is invasive and therefore not suitable for routine
screening (111, 122).

Quantitative Sudomotor Axon Reflex Test QSART
The assessment of sudomotor nerve (sweat) function has also been
used to assess small autonomic c-fibers, as anhidrosis can be
characteristic of the presence of peripheral autonomic neuropathy.

The reference standard for measuring sudomotor function is
the quantitative sudomotor axon reflex test (QSART). This test
uses local sweat production, measured as a change of relative
humidity over time, during and after skin activation. Special
TABLE 4 | Summary studies for validity for four potential screening tests for DPN.

Test Fibers Assessed Validated Against Sensitivity Specificity

DPNCheck
(53, 54)

Large (Ab-fibers) NCS 92-95% 82-89%

Neuropad
(64, 66–69)

Small (C-fibers) NCS, NDS, VPT 70-97.8% 50-67%

Sudoscan
(70–74)

Small (C-fibers) NCS, Clinical Examination,
UENS, VPT, NSS

70-87.5% 53-92%

CCM
(62, 100–107)

Small (Ad and C-fibers) NCS, Clinical Examination,CASS 59-86%(CNFL)
65-82%(CNFD)
17-100%(CNBD)

61-84%(CNFL)
41-79%(CNFD)
45-96%(CNBD)
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software is used to digitalise, plot and analyze the temporal
resolution, latency, magnitude and duration of the sudomotor
response (123). However, due to highly technical demands and
relative discomfort of the examination, QSART remains mostly
limited to research centres and is not considered a potential
screening tool for DPN (76).

Neuropad
Neuropad® is a patented 10-minute screening test for the early
detection of diabetic foot syndrome and can be used as a triage
test (124). It is a unique, non-invasive, painless and simple
diagnostic screening test employing a chemical reaction to
minute quantities of sweat as a biomarker for much earlier
signs of DPN.

The test has been created to assess the sweat function (small
autonomic c-fibers) in the feet of patients with suspected
neuropathy. An adhesive pad containing cobalt salts is stuck
onto the foot’s plantar aspect and changes color from blue to
pink within 10 minutes if the sudomotor function is normal (67).
If there is a decreased function, the pad remains blue or turns
patchy in color. There is a strong association between skin
dryness, sudomotor dysfunction and diabetic foot ulcer and
the function of Neuropad. An abnormal Neuropad response is
associated with sympathetic dysfunction and clinical neuropathy
(Figure 1H).

This test’s main advantage is that patients can self-administer
at home, reducing clinical contact time and aiming to reinforce
abnormal results visually. Instructions have been confirmed as
clear for patients to follow, and the test is easy to use for most
patients (64). However, due to older age, visual and kinetic
problems, a fifth of patients still needed help when self-testing.

It has been reported as having good to excellent (70-97.8%)
(64–69) sensitivity for DPN detection (Table 4). When
comparing Neuropad to a range of different small and large
fiber diagnostic tests, strong correlation between Neuropad and
NDS (64, 69), IENFD (65), CCM (125), Sudoscan (126) and
measures of sweat gland dysfunction (127) have been reported. It
has also been identified as a useful tool for staging the severity of
neuropathy in patients with type 2 diabetes demonstrating
excellent agreement with the Michigan classification system
(128). Another significant advantage of Neuropad is its high
NPV, making it ideal to serve as a screening test primarily to
exclude DPN (68, 129, 130).

However, studies are not consistent in terms of the position of
the Neuropad on the foot and the NDS cut-off value chosen to
indicate clinical DPN presence. Furthermore, some studies
graded the Neuropad color change as a percentage (66) or
score out of 1 (65), whereas others simply classified the results
as normal or abnormal (64, 67). Standardization of elapsed time
before test result analysis is also necessary as extending the
observation period to 15 minutes may provide greater
diagnostic usefulness (131). This highlights a need for software
development that can consistently grade each test’s color change
over time to enable continuous and more accurate monitoring of
sudomotor dysfunction.

In order to address these issues and increase both the
sensitivity and particularly the specificity of Neuropad
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screening and create a continuous output, a smartphone
software app and internet based image processing system has
been developed. Neurometrics-Diab™ is a digital therapeutics
(DTx) smartphone app which uses the Neuropad™ as a
biomarker to produce a continuous record of a person’s
neuropathy to see if it is improving, is stable or is worsening
with trend-lines helping to predict outcomes. Using a
smartphone camera, patients can take a photo of their test
result which is then automatically sent to a web server where
the photo is run through a proprietary image processing
algorithm resulting in a percentage score which is recorded.
Over time a trend can be calculated. The DTx app is currently at
the advanced prototype stage. Versions for other medical
conditions are under development.

Sudoscan
Sudoscan™ (Impeto Medical) is another quick, simple and non-
invasive test that aims to assess sudomotor function using
‘reverse iontophoresis’ (132, 133) to measure electrochemical
skin conductance (ESC) of sweat in the hands and feet.
Compared to age-corrected standard data, a reduced ESC
result may indicate degeneration of small c-fibers that
innervate the sweat glands and, therefore, lead to reduced
sweat gland function (71) (Figure 1G).

The ESC measurements from the feet are considered more
sensitive for the detection of DPN than the hands (72), with less
variation in results (134). This is likely due to a fluctuation in the
hands’ contact on the electrodes. In contrast, the feet are aided by
gravity to maintain constant pressure on the electrodes
throughout the test. Lower electrochemical skin conductance at
the feet was also significantly associated with increasing
symptoms in a large cohort of patients with T2DM (135).

Reference values in healthy subjects are available from a
global collaborative analysis comparing different ethnic groups,
age, and gender (136). This study noted a significantly lower
hands and feet ESC for African-American, Indian, and Chinese
populations than the Caucasian population, highlighting the
need to match ethnicity groups in electrochemical skin
conductance studies. The same study also observed no
significant difference between women and men at the hands or
feet and a weak decline in ESC with increased age.

ESC measurements may also be associated with subjects’
weight (137), perhaps due to a weight-dependent change in
sensitivity of the stainless-steel electrodes, or sweat gland
density, when the subject is in the standing position. This
could also be due to the correlation between higher weight and
larger feet only (137). These hypotheses are yet to be assessed;
however, these studies’ findings emphasize the importance of
profile matching different subject groups for a weight that did not
occur in some validation studies (71, 74).

Validation studies have reported consistently good values for
sensitivity (70-87.5%) (Table 4) when using foot ESC results to
screen for DPN (70–72, 74, 132). However, there are
inconsistencies in the ESC cut-off values used for identifying
sudomotor dysfunction, ranging from 52uS (70) to 77uS (72).
This variation and inconsistencies in the neuropathy tests being
used as a reference standard are the likely cause of the extensive
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range in reported specificity of between 53-92% (70–72, 74). It
highlights the need for standardization of the classification
criteria used. Patient cohorts also differed in their severity of
DPN, with participants in one study (74) having significantly
more advanced DPN than those in the study by Smith
and colleagues (71). Therefore the test performed better in
the former.

Overall, Sudoscan appears to be a promising DPN screening
test that is non-invasive, easy to perform and eliminates the
subjective component of clinician error, demonstrating good
correlation with IENFD (137). However, there is some doubt as
the current evidence does not strongly support ESC to
distinguish between patients with DPN and control individuals
(138). Therefore, longitudinal and more extensive cohort
validation studies are needed, along with standardization of
diagnostic criteria before Sudoscan can be used as a screening
tool for small fiber neuropathy.

It is evident that progress has been made in developing point
of care devices (POCDs) which may be capable of diagnosing
DPN early before clinical signs are apparent. Neuropad,
DPNCheck and Sudoscan are newer screening tests that have
demonstrated potential for early detection, however validation
studies, thus far, have reported a range of sensitivities,
specificities depending on cohort and test used for comparison
(Table 3).

Quantitative Sensory Testing (QST)
Quantitative sensory testing (QST) has become a common
method for evaluating small nerve fiber function using thermal
threshold and thermal pain measurements and large fiber
function using vibration thresholds (52). The most common
commercial system is the Medoc TSA-II NeuroSensory Analyzer
(Medoc Advanced Medical Systems, Israel) which is used to
determine thermal thresholds, (Figure 1F). In recent years a
cheaper, more portable device has been designed, NerveCheck
(Phi Med Europe S.L., Barcelona, Spain), which has shown good
reproducibility (ICC values = 0.79, 0.71 and 0.86 for vibration,
warm and cold sensation respectively) and comparable
diagnostic accuracy (86%, 72% and 79% for vibration, warm
and cold sensation testing respectively) to established QST
equipment for the diagnosis of DPN (139).

Cold thresholds can be used to evaluate myelinated A-delta
fiber function, whereas warm thresholds are used to assess the
function of unmyelinated C-fibers. Published normative data sets
are available for heat threshold detection (140–145), and
recommendations for conducting QST in both clinical practice
and research have previously been published by The
International Association for the Study of Pain (NeuPSIG) (146).

QST has been found to have reasonable repeatability (50);
however, inter-operator and inter-patient variability depend on
several factors. Training of both examiner and patient, the
methodology of assessment, baseline skin temperature,
stimulus characteristics, location and number of stimuli sites
and duration of intervals between tests have all affected QST
measurements (52). Using standardized methodology with
extensive training has significantly reduced interobserver
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variability (147, 148). However, this may be too time-consuming
to be implemented.

When it comes to the effects of body fat on thermal detection
thresholds, there are conflicting findings. Malmström et al. (149)
failed to detect differences between obese and other groups for
cold and warm thresholds at the suprailiac site (149). In contrast,
Pryce and colleagues (150) found that obese participants had
significantly higher cold and warm detection thresholds than
normal BMI participants on the abdomen.

Two psychophysical algorithms can be used to determine
thermal thresholds. These are the method of limits and the
method of level (described in detail elsewhere (50, 151), with the
method of limits used more commonly due to it being less time-
consuming (146). Measurements determined using limits have
been reported as significantly higher than those measured by
Level, irrespective of test location (52). However, the two
methods correlate well with each other (52) and the 2013
consensus concluded that both were reliable (146). The major
difference between these two methods is the effect of reaction
time. For the method of limits, a patient has a longer reaction
time due to age or height (causing a more extended sensory
pathway) which may erroneously give a higher threshold.

Both warm and cold thresholds can be affected in patients
with DPN, irrespective of how long the course of diabetes is, but
the frequency of abnormal warm thresholds is significantly
higher (141). A study found that cold detection thresholds
significantly reduced in DM patients with no evidence of pre-
clinical, sub-clinical and clinical DPN, respectively (152). A
longitudinal study also found a significant positive correlation
between deterioration of cold detection thresholds and pain
intensity in painful DN, with warm detection thresholds also
correlating at non-significant value (153).

One major issue with the use of QST is that it cannot
differentiate between peripheral and central temperature
perception causes. It involves sensory receptors, spinal cord
pathways and termination sites in the thalamus. This means
that if there is poor concentration, a language barrier or cognitive
defect, subjects’ results may affect their subjective nature (51).
CORNEAL NERVES AS A BIOMARKER
FOR DPN

Anatomically and developmentally, the eye can be considered an
extension of the central nervous system (CNS). The cornea is the
most densely innervated tissue in the body. It is richly supplied
by a large number of sensory nerve fibers and a lesser number of
autonomic fibers (154). The cornea possesses small
unmyelinated C-fibers and myelinated Ad-fibers for sensory
innervation. These are derived from the trigeminal nerve’s
ophthalmic division and enter the corneal stroma at its
periphery, in a radial fashion parallel to the corneal surface.
As the fibers run forward toward the cornea center, they lose
their myelin sheath; a necessary step to maintain corneal
transparency (154).
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Corneal C-fibers form a delicate three-dimensional network
known as the ‘sub-basal nerve plexus’ (155), which is located
beneath the basal layer of the corneal epithelium. Mapping of the
cornea (156) has shown that this plexus forms a spiral or ‘whorl
like’ pattern. The spiral center, often called the vortex, is located
approximately 2-3 mm inferior and nasal to humans’ corneal
apex. Due to this arrangement, sub-basal nerves in the superior
and human apical cornea are oriented vertically. In contrast, sub-
basal nerves in other corneal regions may be orientated
horizontally or obliquely, consistent with their locations within
the whorl-like plexus (157)

Corneal confocal microscopy (CCM) is a non-invasive, in
vivo ophthalmic imaging technique that allows a detailed
examination of the cornea, at high magnification, on a cellular
level (Figure 1J) (158). By capturing multiple two-dimensional
images at different depths, CCM imaging can delineate the
corneal layers of the cornea (158), providing superior
magnification compared to standard slit-lamp biomicroscopy.
These properties allow CCM to acquire high-quality images of
the corneal C-fibers in the sub-basal nerve plexus. Considering
the known relationship between damage to these fibers and
diabetic peripheral neuropathy, the potential for their use as a
surrogate biomarker for DPN has been identified.

When analyzing the sub-basal nerve plexus, most studies
report results from four morphological parameters: Corneal
nerve fiber density (CNFD) which is the total number of main
nerve fibers per mm2, corneal nerve fiber length (CNFL) which is
the sum of the length of all nerve fibers and branches (mm/
mm2), tortuosity coefficient (TC) which is a unitless
measurement that uses deviation from a straight line to
measure the tortuosity of the main nerve fibers independent of
their orientation, and corneal nerve branch density (CNBD)
which is defined as the number of branches emanating from all
main nerve fibers. There is, however, a discrepancy in how this
can be quantified between studies with the established protocol
for these parameters described elsewhere (62).

Of these four parameters, CNFL has been the most frequently
used parameter for DPN, with one study reporting superior
reliability than other parameters (159). Some studies have
assessed the diagnostic performance of CCM for DPN and
reported the results for CNFL only (101, 105). Hertz et al.
(159) reported that CNFL produced the highest intra-observer
and inter-observer reproducibility (ICC of 0.72 and 0.73
respectively), with TC demonstrating the lowest (0.23 and
0.29 respectively).

Two other parameters that have been reported in research
studies are nerve reflectivity (160) and nerve fiber beading
(number/100 µm) (161, 162). Nerve fiber reflectivity is usually
assessed using grades as first outlined by Oliveira-Soto and Efron
(160), whereby classification can be split into four grades
according to a comparison with reference images. The number
of beadings is defined as the number of beadings in a length of
100um of sub-basal nerves within a frame (163). Both
parameters have demonstrated changes in dry eye conditions,
where patients with Sjogren’s syndrome have demonstrated
significantly higher beading than dry eye patients of other
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primary causes (164). However, both measures require
subjective judgment. Beading can be challenging to quantify and
may require special software and may have poor repeatability and
reproducibility (163).

More recently, newer corneal parameters have been
investigated. These include inferior whorl length (IWL) (165)
defined as the length of the nerves at the inferior whorl of the
superficial nerve plexus, nerve fiber width (166) and nerve fiber
area (167). These new measures have previously shown
significant differences between the non-neuropathic and
clinically neuropathic groups in DM (168) with CNFW and
CNFA, demonstrating 74% and 66% sensitivity-specificity equal
error rate point, respectively when identifying non-neuropathic
patients compared to control subjects (168). This indicates that
these new measures may have the capacity to identify individuals
with early neuropathy; however, research into these new
parameters is currently limited.

Another type of cell found in the sub-basal layer and has been
of interest in DPN research are dendritic cells. These antigen-
presenting cells of the cornea are of paramount importance.
They play a critical role in activating other immune systems in
the ocular surface, influencing both suppression and induction of
inflammation (169, 170).

Langerhans cells are usually up to 15mm in diameter and can
be seen in various forms (171). In their immature form, these
cells have small dendritic processes or lack dendrites completely
and are mainly located in the peripheral cornea’s epithelium
(172). In pathological states, Langerhans cells mature, form
interlocking dendritic processes which may comprise a net-like
structure, and migrate from the periphery into the central
cornea (172).

Cross-sectional studies have shown an increase in the
densities of Langerhans cells in the central cornea related to
conditions such as dry eye with and without contact lens wear
(171, 173) bacterial keratitis (174), thyroid eye disease (175) and
diabetes (176, 177).

CCM for the Detection of DPN
In the early 2000s, a novel study by Rosenberg and colleagues
reported the correlation between increasing severity of DPN,
corneal sensitivity and progressive loss of corneal sub-basal nerve
fibers (178). This was closely followed by a similar small study
published in 2003 (179) which found that CCMwas able to detect
abnormalities in the corneal nerves of 18 patients with diabetes
deemed to have only mild neuropathy using conventional tests.
Similarly, Midena and colleagues (180) reported a significant
decrease in corneal nerve fiber and branch number, along with
decreased beading in patients with diabetes. It should be noted that
these three studies used a light corneal confocalmicroscope, which
is the first commercially available generation of the confocal
imaging device with inferior image quality in comparison to the
methods now commonly used.

Since then, the use of corneal confocal microscopy (CCM) for
rapid, noninvasive clinical assessment of corneal nerves has
grown substantially, especially in recent years. It has proven to
be particularly useful as a diagnostic marker for detecting
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diabetic neuropathy and a range of other peripheral neuropathies
(62, 100–106, 181–186). Some of them are reviewed in this paper.

Diagnostic Performance for Clinical DPN
Several cross-sectional studies have evaluated the ability of CCM
to diagnose clinical levels of DPN in comparison to a range of
other diagnostic tests (Table 5). It must be noted that most of
these studies assessed patients with T1DM only, meaning there is
limited published data available for the diagnostic sensitivity and
specificity values when assessing patients with T2DM.

These studies used a cut-off point for the reference
neuropathy test/combination of tests to determine whether a
patient had a DPN. However, the reference test and cut-off points
varied between studies meaning there were no universal
diagnostic reference criteria. Some studies validated CCM
against a single test of nerve conduction studies (NCS) (100,
101) or neuropathy disability score (NDS) (62). In contrast, other
studies used a combination of the two (102) or NCS and clinical
examination (104, 106). A combination of diagnostic tests will
likely increase the efficiency of detecting DPN compared to one
test used alone. This is significant as some studies compare CCM
to one single test, which is not the gold standard in the case of
NDS. NCS only measures large fiber function, which is affected
later than small nerve fibers in DPN. One study (187),
demonstrated that diagnostic ability of CNFL measurement in
DM patients is significantly worse if using clinical signs and
symptoms as a reference standard in comparison to
electrophysiology, plus one sign/symptom as per the Toronto
consensus guidelines, which highlights the importance of a
standardized diagnostic reference (187).

To explore which of the many measurements derived from
CCM could best distinguish patients with and without clinical
DPN, as part of each study, the same patients were examined
using CCM, and all nerve parameters were derived. For each
nerve parameters tested, ROC curves were plotted to determine a
CCM cut-off point used to distinguish between patients with and
without DPN in the diabetic cohort only. A range of cut-off
points was studied to identify the best sensitivity/specificity value
for diagnosing DPN for each nerve parameter.

CNFL was the most commonly reported nerve parameter for
these studies, with all nine assessing its diagnostic ability and
finding significant differences between patients with and without
DPN. A range of sensitivity values between 59 and 86% was
found and a specificity range of 61-84%, depending on the cut-off
value used for diagnosis. The earliest of these studies (62),
examined patients using a Tomey confoscan CCM. It is well
known that these images are of more inferior quality, making it
more challenging to identify nerve fibers during analysis. This is
likely the explanation for the significantly lower diagnostic
threshold value reported in this study compared to the others
presented (Table 5).

For corneal nerve fiber density (CNFD) six of the cross-
sectional studies (Table 5) reported a significant reduction in
DM patients with DPN compared to both DM patients without
DPN and healthy controls (62, 100, 102, 104, 106, 107).
These studies reported sensitivity and specificity ranges as 65-
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82% and 41-79% respectively. A significantly higher cut off point
of 39.2 CNFD no/mm2 was defined in T2DM patients in the
consortium study, resulting in an increased sensitivity value to
69% (104). This may explain why its specificity is the lowest value
of only 41%, as a higher cut-off value may create more false-
positive results. It is notable that based on their cohort, Scarr
et al. (106) defined the lowest thresholds for diagnosis for both
CNFD and CNFL out of the studies using the Heidelberg retinal
tomograph (HRT) (III) CCM. This is likely due to their
significantly older-aged cohort compared to the other cross-
sectional studies as CNFD and CNFL have been shown to reduce
with age (188).

For corneal nerve branch density (CNBD), six cross-sectional
studies (62, 100, 102, 104, 106, 107) reported a significant
reduction in DM with DPN than without DPN. For diagnostic
value, the sensitivity (17-100%) (62, 102) and specificity (45-
96%) (62, 102) values were significantly more varied, suggesting
that this parameter has shown the least promise for DPN
diagnosis until now.

There are several strengths to each of the cross-sectional
studies. Three used profile-matched healthy controls (101, 102,
106), meaning that differences in measurements between the two
groups due to age should have been accounted for, giving a better
representation of changes that have occurred due to DPN.
Ahmed et al. (101) also looked at the option of combining two
corneal nerve parameters for the identification of neuropathy.
Two of the studies looked at both manual, and automated
software for DPN diagnosis (102, 106) which is significant as
automated software for analysis would be required if CCM were
to be introduced in large-scale screening.

Perkins et al. (104) in a consortiummulti-center study funded
by NIH assessed data from a large cohort of 998 subjects. This
large cohort of different ethnicities and T1DM and T2DM gave a
more accurate representation of the population of people with
diabetes instead of focusing on one specific sub-group. Another
strength of this NIH funded study was that it suggested an
alternative approach of using one lower value chosen to more
confidently rule in the presence of neuropathy (maximize
specificity) and one higher value determined to simultaneously,
more confidently rule out the presence of neuropathy (maximize
sensitivity). This combination of decision criteria aims to
minimize false positive and negative results. The study found
that using this criterion increased their sensitivity to 88% and
specificity to 89% using manual methods of analysis. However,
this method caused 57.8% of the subjects to be unclassified as
they fell between the two limits.

There were several limitations to these cross-sectional studies.
Some did not match the clinical profiles of their patients to the
control subjects. For example, the patients’ group in Alam et al.
(100) being significantly older, with significantly longer disease
duration than the T2DM group without neuropathy. Another
limitation of two of these studies (101, 106) was that only 1 image
per eye was used for analysis. One criterion for choosing this
image in the Ahmed et al. (101) study was the most nervous
frame. Using this method to choose 1 image per eye instead of
calculating an average of 3 images or more may be less time
May 2021 | Volume 12 | Article 671257
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TABLE 5 | Summary of studies assessing the clinical utility of corneal nerve parameters for the diagnosis of clinical levels of diabetic neuropathy compared to chosen reference standards.
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consuming for analysis; however, it is likely to give the false
elevation of measurements per patient instead of representing an
accurate average.

Another significant issue with these studies is that most of
them use the Toronto consensus as to the diagnostic criteria for
DPN (100–102, 104, 106), i.e. one abnormal finding as part of
NCS, in combination with a symptom or sign of neuropathy
(41). As mentioned previously, NCS assesses large fiber function
whereas CCM assesses small fiber function.

Despite the variation in results and limitations of the studies,
these findings supported the expanded role of CCM in the
assessment of diagnosis DPN as a supplement to the vast array
of neurological tests currently in use.

Early Detection of Neuropathy
As there are currently no therapeutic agents approved for DPN
treatment, early detection is essential to modify any risk factors.
Several studies have specifically investigated CCM findings in
early stages of DM and mild levels of DPN.

The published baseline characteristics of T1DM patients as
part of the LANDMark study (189) were that corneal nerve fiber
length was reduced in patients without clinical neuropathy,
based on the Toronto criteria. Another paper written from the
same study (190) assessed the use of CCM for distinguishing
between control patients and DM patients (156 T1DM, 75
T2DM) with and without clinical DPN. For the patients with
DPN, all cases were defined as mild (as defined by QST plus
neurophysiology). This study reported a significant reduction in
CNFL when comparing patients with and without mild
neuropathy, suggesting that CNFL changes may occur early in
the course of the disease.

One study (191) assessed the corneal sub-basal plexus in
patients with recently diagnosed T2DM (mean duration 2.1± 1.6
years). This study reported significant differences between
CNFD, CNBD and CNFL parameters when comparing the
patient cohort to the control group, with CNFD emerging as
the most sensitive in detecting corneal nerve pathology; indeed
21% of the patients fell below the 2.5th percentile of the control
group. For this study, high-adapted software produced an image
composed of an image stack. It reconstructed a combined mosaic
image with an expanded field of view compared to standard
imaging using CCM. This software is also able to correct for
artefacts. As this method is not widely used, there is no direct
comparison to other studies. To our knowledge, no other studies
are assessing recently diagnosed patients with DM (<2 years
duration). It must also be considered that in this study, even
though patients were diagnosed newly, there may have been a
delay in diagnosis, which could have varied between patients.

Another study assessing early nerve changes assessed patients
with impaired glucose tolerance (IGT) (192). This study reported
evidence that CCM may detect changes in nerve parameters
before established diabetes. They reported that in patients with
IGT, CNFD and CNBD were significantly reduced with 40.5% of
subjects with IGT having significant small-fiber damage based on
CNFD reduction compared to control subjects. This agreed with
a decrease in IENFD and significantly higher warm thresholds
and vibration perception thresholds in the same cohort (192).
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Langerhans Cells in DPN
The dominant antigen-presenting cells in the cornea and ocular
surfaces are Langerhans cells (LCs) and Dendritic cells (DCs)
which are derived from the bone marrow and can stimulate both
primary and secondary T and B-cell responses (169). It has been
shown that Corneal confocal microscopy provides a non-
invasive means to readily demonstrate Langerhans cells (LCs)
in the cornea of healthy subjects and a range of inflammatory
ophthalmic conditions (Figure 2) (174, 193). Some studies
demonstrated that the number of LCs increases in Diabetic
Neuropathy (177, 194–196); however, the LCs activation
mechanism is still unclear.

Zhivov et al. (176) assessed the corneal basal epithelial layer
and the sub-basal nerve plexus for the presence of LCs in healthy
subjects and found that 31% of subjects had LCs present.
Tavakoli and colleagues (177) were the first to assess
Langerhans cell density with differing severities of diabetic
neuropathy (based on NDS scoring compared to controls).
This study found a significant increase in the proportion of
individuals with LCs in patients with T1DM and T2DM (73.8%)
compared to control subjects (46.1%). The study also found that
LC density was significantly increased in the patients with
diabetes (17.73 ± 1.45) compared to control subjects (6.94 ±
1.58). However, with progression of neuropathy, patients with
moderate and severe neuropathy showed a reduction in the LC
density in comparison to patients with mild neuropathy and
were not significantly different from control subjects. This may
suggest that LCs have a role in the early phase of nerve damage.
This study only focused on Bowman’s layer which has been
shown to have a lower density of LCs in comparison to the
epithelial layer (197), so is not an accurate representation of
overall LC density in the central cornea. Another limitation of
the study was that the Tomey Confoscan CCM was used for
imaging which has been shown to underestimate LCs density
compared to newer the Heidelberg HRT III CCM (176) and
cannot differentiate mature from immature LCs (176).

A more recent study, used the HRT (III) CCM to assess the
density of LCs in a cohort of children and adolescents with
diabetes and found a higher percentage of patients (85.9%) and
controls (69.1%) with LCs present when compared to the
Frontiers in Endocrinology | www.frontiersin.org 15
previous two studies (176, 177). This study was also able to
distinguish between mature and immature cells by classing LCs
of less than 50 µm in length, without dendritic structures as
immature cells and those greater than 50 µm with dendritic
structures were considered as mature cells. A significant increase
in mature and immature cells was found, and a correlation
existed between CNFD and LCs density (198). However, this
study only assessed a specific age-group of the diabetic cohort, so
it does not represent the whole diabetic population. Overall,
studies investigating LCs density in patients with diabetes are still
limited, and more information is required to conclude the effect
of diabetes on LCs.

Comparing CCM and IENFD
Studies have found CCM to be comparable with measures of
IENFD from biopsies in their diagnostic performance for
detecting patients with clinical levels of DPN (100, 102)
(Figure 3). Both studies found no significant difference in their
diagnostic efficacy in patients with T1DM.

An older study using the Tomoscan confocal microscope
(110) also concluded that both IENFD and CCM assessment
accurately quantify small nerve fiber damage in patients with
diabetes. Intraepidermal and corneal nerve fiber lengths were
also both further reduced in patients with painful compared with
painless diabetic neuropathy.

In comparison, one study’s findings, using HRT (III) CCM
were notably different (191). This study reported that CCM and
IENFD were both able to detect nerve fiber loss in recently
diagnosed type 2 diabetes, but mainly in different patients. They,
therefore, suggested a possible patchy manifestation pattern of
small fiber neuropathy. Only 2.7% of the patients had both
abnormal CNFD and IENFD. Abnormal CCM with normal
IEND was noted in 20.5% of the diabetic group and 11.0% for
vice versa. No correlation between the CCM measures and
IENFD was observed. There are possible explanations for these
contradictory findings. Firstly, the cohort of patients in this study
was all patients with T2DM, all of who had been newly diagnosed
(known diabetes duration of ≤1 year). The disease duration was
significantly less than that of Chen et al. (102) (DPN+ 39 ± 14
DPN- 23 ± 15 years) and Alam et al. (100) (DSPN+ 37.2 ± 13.1
FIGURE 2 | Images from Bowman’s layer of the cornea at (A) T2DM with mild neuropathy; (B) moderate neuropathy; (C) Healthy Control Subject (yellow arrows
show LCs and red arrows indicates main corneal nerve c nerve fibers).
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DSPN- 17.2 ± 12.0 years). These two studies also used
comparisons between patients with and without clinical DPN
to compare IENFD and CCM, whereas Ziegler et al. (191) only
compared patients with T2DM to healthy controls. Lastly,
Ziegler et al. used a different location for the IENFD biopsy.
This was taken from the lateral calf in comparison to the dorsum
of the foot. This more proximal site may have been at less risk
IENFD changes or may present a different pattern of loss, as
DSPN is known to follow a distal-proximal course.

One issue with the comparison of IENFD with analysis of the
corneal sub-basal nerve plexus is that intra-epidermal nerves
consist of both unmyelinated C-fibers (90%) and myelinated A-
delta fibers (10%) (199), which are both included in the
measurement for IENFD. In contrast, the sub-basal nerve
plexus is made up of C-fibers only. This means that a direct
comparison cannot be made between the two measurements.
Although the A-delta fibers only make up 10% of the total
number in the epidermal layer, they may be affected differently
in DPN than the unmyelinated C-fibers, affecting the
overall results.

Longitudinal Studies for Application of
CCM for Assessment DPN
Longitudinal studies suggest that CCM has good predictive value
for subsequent DPN (187, 200). Longitudinal analysis of a T1DM
cohort showed a mean 1-year change in CNFL was -1.6% in
patients with unstable T1DM, while healthy volunteers showed a
5% increase per year (200).

As part of a 4-year follow up study, a study (103) (Table 5)
found that three corneal nerve parameters were all significant
predictors for the development of DPN, with a baseline CNFL
of <14.9mm/mm2 being the strongest single predictor when
Frontiers in Endocrinology | www.frontiersin.org 16
compared to 11 other small and large fiber tests. Other studies
(105, 201) also reported an association between lower baseline
CNFL and DPN development. Pritchard et al. (105) (Table 5)
found a significant association with longer diabetes duration,
higher triglycerides, worsening retinopathy and nephropathy,
impaired sensation to temperature and vibration and slower
peroneal and sural nerve conduction velocities. However, studies
with larger cohorts and patients with type 2 diabetes are needed
to confirm these studies’ findings and a more extended period of
monitoring. Studies should also ensure a set number of follow-
ups over a set period as for Lovblom et al. (103) more than half of
the patients had just one follow up visit, meaning that true
progression is statistically challenging to prove.

Another prospective study specifically looked at a group of
patients with IGT (202). They found that in subjects with IGT,
lower baseline CNFD, CNBD, CNFL, and lower mean dendritic
length of IENF were the strongest predictors of progression to
T2DM over three years. Although significance was not recorded,
there appeared to be very similar baseline HbA1c measures
between those patients who remained IGT vs those developing
T2DM over the three years follow up (42.8 ± 1.2 and 42.4 ±
1.0 respectively(mmol/mol), suggesting that corneal nerve
parameters may have been stronger predictors of conversion to
T2DM in comparison to baseline HbA1c. Those subjects who
returned to normoglycemia showed a significant improvement in
their CCM parameters while IENF length continued to decline
during the same period. These findings may suggest that corneal
nerve fibers regenerate quicker than IENF when glycemic control
is improved.

Another observational follow up study (203), examined a
small cohort of patients with diabetes (15 T1DM and 10 T2DM)
at baseline and follow-up at two years. At follow up, an
FIGURE 3 | Corneal confocal microscopy images of the corneal, sub-basal nerves (A–C). Healthy control (A) shows numerous corneal main nerve fibers (green arrowheads)
with branching nerves (blue asterisks). CCM images of patients with diabetes and mild (B) or severe (C) neuropathy demonstrate reduced corneal nerves and branches. Skin
biopsies (E, F) immunostained. Healthy control (E) shows numerous intraepidermal nerve fibers (red arrowheads) with a well-developed subepidermal nerve plexus (yellow
arrowheads). A diabetic patient (F) demonstrates reduced subepidermal and minimal intraepidermal nerve fibers. Scale bar = 100 mm. (E, F) adapted from (186).
May 2021 | Volume 12 | Article 671257

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Carmichael et al. Advances in Diagnosis of Diabetic Neuropathy
improvement in glycemic control, cholesterol levels and blood
pressure were found and increased CNFD, with a significant
correlation between a decrease in HbA1c and CNFD. This
demonstrated that improvements in HbA1c might lead to
morphological repair of corneal nerve fibers, however, due to
the small sample size and mixing of T1DM and T2DM in
analysis, it is unclear if these differences are occurring in both
types. It must also be noted that this was not planned as an
interventional study, meaning there were no placebo controls or
randomization, which would need to take place to confirm or
reject these findings.

CCM has been used to investigate the sub-basal nerve plexus
changes in patients with T1DM post-simultaneous pancreas and
Kidney (SPK) transplant. Tavakoli et al. (186) assessed 15
patients at 6 and 12 months SPK transplant and found a
significant improvement in all CCM parameters at 12 months.
Symptoms, neurophysiology, quantitative sensory testing and
skin biopsy results remained unchanged in the same patients. A
similar, earlier study using an older CCM model also reported
similar findings, with CNFD and CNFL increasing significantly
after just six months (204). These studies may demonstrate that
CCM can provide a novel non-invasive means to evidence early
nerve repair missed by currently advocated assessment
techniques. However, an alternative interpretation of this data
could be that corneal nerves respond well to the restoration of
insulin and normoglycemia. In contrast, other peripheral nerves
do not; therefore, CCM may be measuring something unique
that is not an accurate biomarker of the condition of
peripheral nerves.

CCM Application in Clinical Trials
Several DPN intervention trials have focused on large fiber
function and have generally had ineffective outcomes. More
recently, some studies have instead focused on CCM measures
as markers for clinical trials of potential new treatments. In a
recent pilot trial of seal oil omega-3, polyunsaturated fatty acid
supplementation in patients with type 1 diabetes (disease
duration 27 ± 14 years) over 12 months (205), there was a
significant increase (30.4%) in corneal nerve fiber length, with no
change found in NCS velocity or sensory function. Those
subjects at high risk for future DPN and those with already
diagnosed DPN (as determined by a Toronto clinical neuropathy
score of ≥ 1) showed the best treatment response. This study was
a single-arm, open-label, proof of concept trial; therefore, no
placebo group was used, which is necessary to reduce a
trial’s bias.

Another study to determine whether the peptide, ARA 290,
improves metabolic control and neuropathic pain in patients
with type 2 diabetes used CCM measurements as a co-primary
endpoint. This study found that ARA 290 treatment was
associated with an increase in corneal nerve fiber density
correlated with changes in neuropathic symptoms (206). This
study was a double-blind, placebo-controlled investigator-
initiated phase II clinical trial whose inclusion criteria were
patients with T2DM who also had small fiber neuropathy
symptoms. Whether allocation to the treatment and placebo
groups was randomized was not discussed in the article. This
Frontiers in Endocrinology | www.frontiersin.org 17
study’s limitation was that patients assigned to both groups
generally had excellent metabolic control (HbA1c = 7.3 ± 0.4
and 6.9 ± 0.2 for treatment and placebo groups respectively),
which does not truly represent the clinical population of patients
with T2DM. It may be that this treatment is less or more effective
for patients with poor metabolic control, comparatively. Finally,
disease duration was also not mentioned, so it was unclear if
there was a significant difference between the two groups.

These trials may be evidence that, like small fiber damage
occurring before large fiber damage, small fibers are also the first
to start regenerating after damage. Trials over a longer period,
including other small fiber neuropathy measures, are required
before these findings can be confirmed.
CONCLUSIONS

There is an un-met need for a simple, reliable and accurate test
for the early detection of diabetic peripheral neuropathy (DPN)
which may help reduce the incidence of ulcers and amputations
in people with diabetes which remains at an all-time high and
increases by between 25-20% per annum. Current tests for DPN
in primary care require HCPs to conduct and detect late
neuropathy. Many people with diabetes do not have an annual
foot check despite it being one of the most important of the 8
care processes mandated by NICE. In fact over 500,000 people in
England alone never have an annual diabetes related foot
examination. This places them at risk of having a first
presentation with an active foot ulcer in A&E. Early diagnosis
of DPN is critical since early damage to the small nerve fibers in
the feet of people with diabetes can be stopped from progressing
and even reversed while late signs of DPN and in particular lack
of vital protective sensation in the feet cannot be reversed.
Although a common and much feared complication, over 30%
of people with diabetes remain unaware.

Diabetes UK consistently state that 80% of diabetes related
foot complications are preventable yet no practical solution to
this huge problem has been proposed. The only primary care test
recommended by the National Institute of Health and Care
Excellence (NICE) is the 10g Semmes Weinstein monofilament
examination (SWME) which is a crude, inaccurate and subjective
test for lack of sensation in the feet of people with diabetes -
defined as ‘late neuropathy’ which cannot be reversed. Its
evidence base is poor and outside NICE it is regarded as a
particularly poor test for DPN.

Early diagnosis and timely intervention are thus essential
in preventing its development. Whereas measurement of
urinary albumin excretion and fundoscopic examinations
serve as objective tests for early nephropathy and retinopathy
respectively, a comparably objective, accurate test which is
unbiased by the patient’s subjective response is lacking for DPN.

Currently advocated diagnostic tests either focus on large
nerve fibers, thus are not sensitive to early abnormalities, are too
time-consuming and/or are too invasive to be used for
repeated measures.

More recently, a number of non-invasive tests have been
developed as surrogate measures of DPN. Of these, CCM has
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shown great potential for the detection of small fiber neuropathy,
the earliest manifestation of DPN. CCM has also demonstrated
promising prognostic utility and has demonstrated early
nerve regeneration post-SPK surgery and as part of several
clinical trials.

Given that CCM is a rapid and non-invasive test, it is suitable
for large-scale screening for DPN, and advancements in
automated analysis software would further improve its
promising potential.

In conclusion, there is no optimal biomarker and ideal
endpoint available for DPN at the current time. Hence, there is
an urgent need to identify the most accurate early biomarker of
nerve damage to diagnose DPN in patients’ clinical care better
and, in particular, to permit a precise evaluation of future
therapies in clinical trials. The global effort among scientists
and clinicians, and researchers in the field should address these
shortcomings to reduce incidence of complications and to
achieve this; the search should continue for better and sensitive
tests, screening, and early detection. We need to improve our
systematic evaluation of the evidence and promote—from each
translational step to the next—the biomarkers with the best
evidence and performance at different populations. This will
Frontiers in Endocrinology | www.frontiersin.org 18
require evaluation of the wider biomarker research agenda. Such
evaluation may also benefit more from fostering international
collaborations rather than from the fragmented efforts of small,
opportunistic studies. “We must learn to measure what we value
rather than valuing what we can easily measure”.
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ACCORD Action to Control Cardiovascular Risk in Diabetes
ACE Angiotensin-Converting Enzyme
BFI Bright Field Immunohistochemistry
BMI Body Mass Index
CCM Corneal Confocal Microscopy
CNBD Corneal Nerve Branch Density
CNFA Corneal Nerve Fiber Area
CNFD Corneal Nerve Fiber Density
CNFL Corneal Nerve Fiber Length
CNFW Corneal Nerve Fiber Width
CNS Central Nervous System
CTBD Corneal Total Branch Density
DAN Diabetic Autonomic Neuropathy
DN4 Douleur Neuropathique en 4
DNE Diabetic Neuropathy Examination
DNS Diabetic Neuropathy Score
DPN Diabetic Peripheral Neuropathy
DSPN Distal Symmetrical Polyneuropathy
EDIC Epidemiology of Diabetes Interventions and Complications
ESC Electrochemical Skin Conductance
HbA1c Glycated Hemoglobin
HDL High-Density Lipoprotein
HES Hospital Eye Service
HRT Heidelberg Retinal Tomograph
IENFD Intra-epidermal Nerve Fiber Density
IF Indirect Immunofluorescence
IGT Impaired Glucose Tolerance
IWL Inferior Whorl Length
LANSS Leeds Assessment of Neuropathic Symptoms and Signs
LC Langerhans Cell
LDL Low-Density Lipoprotein
MNDS Michigan Neuropathy Disability Score
MNSI Michigan Neuropathy Screening Instrument
MRI Magnetic Resonance Imaging
MTHFR Methylenetetrahydrofolate Reductase
NCS Nerve Conduction Studies
NDS Neuropathy Disability Score
NeuPSIG International Association for the Study of Pain
NEURODIAB Diabetic Neuropathy Study Group of the European Association for

the Study of Diabetes
NIS-LL Neuropathy Impairment Score in the Lower Limbs
NPQ Neuropathic Pain Questionnaire
NPV Negative Predictive Value
NPSI Neuropathic Pain Symptom Inventory
NSS Neuropathy Symptoms Score
QSART Quantitative Sudomotor Axon Testing
QST Quantitative Sensory Testing
SFN Small Fiber Neuropathy
T1DM Type 1 Diabetes Mellitus
T2DM Type 2 Diabetes Mellitus
TC Tortuosity Coefficient
TCNS Toronto Clinical Neuropathy Score
UENS Utah Early Neuropathy Scale
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