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Hyperinsulinemia is frequently associated with aging and may cause insulin resistance in
elderly. Since insulin secretion and clearance decline with age, hyperinsulinemia seems to
be maintained, primarily, due to a decrease in the insulin clearance. To investigate these
aging effects, 3- and 18-month-old male C57BL/6 mice were subjected to intraperitoneal
glucose and insulin tolerance tests (ipGTT and ipITT) and, during the ipGTT, plasma
c-peptide and insulin were measure to evaluate in vivo insulin clearance. Glucose-
stimulated insulin secretion in isolated pancreatic islets was also assessed, and liver
samples were collected for molecular analyses (western blot). Although insulin sensitivity
was not altered in the old mice, glucose tolerance, paradoxically, seems to be increased,
accompanied by higher plasma insulin, during ipGTT. While insulin secretion did not
increase, insulin clearance was reduced in the old mice, as suggested by the lower c-
peptide:insulin ratio, observed during ipGTT. Carcinoembryonic antigen-related cell
adhesion molecule-1 (CEACAM1) and insulin-degrading enzyme (IDE), as well as the
activity of this enzyme, were reduced in the liver of old mice, justifying the decreased
insulin clearance observed in these mice. Therefore, loss of hepatic CEACAM1 and IDE
function may be directly related to the decline in insulin clearance during aging.

Keywords: CEACAM1, hepatic insulin clearance, hyperinsulinemia, insulin-degrading enzyme, insulin secretion,
insulin sensitivity
INTRODUCTION

Aging is commonly associated with insulin resistance and hyperinsulinemia (1, 2). Although it is
hypothesized that insulin resistance may cause a compensatory hyperinsulinemia (3), it has been
demonstrated that hyperinsulinemia downregulates insulin receptors at the cellular membrane and
disrupts post-receptor intracellular signaling in its target cells, inducing insulin resistance (4, 5).
Thus, it remains unclear whether insulin resistance or hyperinsulinemia comes first during the
aging process.

In mice, genetic ablation of insulin gene (Ins2 +/-) reduced the circulating levels of this hormone,
and this reduction preserved their insulin sensitivity as they aged, compared with their controls (6).
It suggests that hyperinsulinemia might induce insulin resistance during aging. Therefore, to
n.org May 2021 | Volume 12 | Article 6794921

https://www.frontiersin.org/articles/10.3389/fendo.2021.679492/full
https://www.frontiersin.org/articles/10.3389/fendo.2021.679492/full
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:mirian.kurauti@hotmail.com
mailto:makurauti2@uem.br
https://doi.org/10.3389/fendo.2021.679492
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2021.679492
https://www.frontiersin.org/journals/endocrinology
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2021.679492&domain=pdf&date_stamp=2021-05-12


Marmentini et al. Insulin Clearance in Aged Mice
investigate the mechanisms whereby circulating insulin levels
increase with age it is important to find new strategies to
counteract this age-related disorder.

Plasma insulin levels are determined by insulin secretion, and
its removal from the circulation, known as insulin clearance.
Thus, increased insulin secretion and/or decreased insulin
clearance could contribute to hyperinsulinemia during aging.
While several studies have reported decreased insulin secretion
in aged rodents and humans (7, 8), others have reported
decreased insulin clearance in elderly (9, 10). These latter data
suggest that age-related hyperinsulinemia could be explained,
primarily, by a reduction in the insulin clearance. Therefore, to
better understand the effects of aging upon insulin clearance, the
molecular mechanisms involved in this reduction should
be investigated.

Insulin clearance has, basically, two components: hepatic and
extrahepatic clearance. Since the hepatic insulin clearance can
remove about 50 to 80% of insulin secreted, during its first
passage through the liver (11), we focus on this component. In
the liver, this process is initiated when insulin binds to its
receptor (IR). After IR is activated by insulin, an important
protein that promotes receptor-mediated insulin internalization,
namely carcinoembryonic antigen-related cell adhesion molecule
1 (CEACAM1), is activated and it associates with insulin-IR
complex, targeting this complex to clathrin-coated pits/vesicles,
triggering the endocytosis process. In the early endosome,
insulin-IR complex is destabilized and the IR may be recycled
to the cellular membrane, via retro-endocytosis, while insulin is
cleaved by the major enzyme responsible for its degradation, the
insulin-degrading enzyme (IDE) (11–13). Although IDE have
been considered an important enzyme involved with insulin
clearance, recent studies have demonstrated that liver-specific
ablation of IDE (L-IDE-KO) did not affect insulin clearance in
mice (14, 15), suggesting that other molecular mechanisms may
play an important role in this process. Indeed, mice with global
null mutation or with liver-specific inactivation of Ceacam1 gene
display hyperinsulinemia due to their impaired insulin clearance,
which in turn induces insulin resistance in these mice (16, 17).

Here, we evaluated the glucose homeostasis, insulin secretion
and hepatic insulin clearance in 3- and 18-month-old mice. We
also investigated whether the effects of aging upon hepatic
insulin clearance were related to changes in the CEACAM1
and IDE expression, as well as IDE activity, in the liver of
these mice.
MATERIAL & METHODS

Animals
Twenty male C57BL/6 mice from the University of Campinas
(UNICAMP) facilities were housed collectively (5 animals per
cage) and maintained under a light-dark cycle (12 h light and
12 h dark) with a controlled humidity and temperature until 3-
(control group, CTL, n=10) or 18-months-old (old group, OLD,
n=10). These mice were allowed to freely drink tap water and
feed a standard chow diet. The described experimental
procedures were approved by the Committee on Ethics in the
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Use of Animals of the UNICAMP (CEUA-UNICAMP, approval
number 4659‐1/2017), and were conduct in accordance with the
last revision of the National Institutes of Health (NIH) guide for
the care and use of laboratory animals.

Intraperitoneal Glucose and Insulin
Tolerance Tests (ipGTT and ipITT)
To test glucose tolerance, mice were restricted to food during
10 h before they receive an intraperitoneal administration of
1 g × kg-1 glucose load. Their blood glucose was measured before
(0 min) and 15, 30, 60 and 120 min after glucose load
administration, from the tip of their tails using a blood glucose
meter (Accu-chek®, Roche, Basileia, Switzerland). To test insulin
tolerance, mice were restricted to food during 2 h before they
receive an intraperitoneal administration of 0.75 U × kg-1 insulin
(Humulin R; Eli Lilly, Indianapolis, IN, USA), and their blood
glucose was measured before (0 min) and 5, 10, 15, 20, 25, 30
and 60 min after insulin administration.

In Vivo Insulin Clearance
The insulin clearance of mice was evaluated calculating plasma
c-peptide:insulin ratio, during the ipGTT, as previously described
(18). To this purpose, blood samples were collected from the tip of
the tail before (0 min) and after 15 and 60 min glucose load
administration. The blood samples were centrifuged (1100 g, during
15 min at 4°C) to obtain plasma, which were stored at -80°C to
posterior c-peptide and insulin measurements. These hormones
were measured using specifics enzyme‐linked immunosorbent assay
(ELISA) kits according to the manufacturer’s instructions (Mouse
C-Peptide ELISA Kit Catalog # 90050 and Ultra-Sensitive Mouse
Insulin ELISA Kit Catalog # 90080, Crystal Chem, Elk Grove
Village, IL, USA).

Glucose-Stimulated Insulin Secretion
in Isolated Pancreatic Islets
All mice were anesthetized with isoflurane and killed by
decapitation to dissect and collect tissues, such as the pancreas,
which were digested with collagenase to isolate pancreatic islets, as
described before (19). Five islets from each mouse were used to
assess the glucose-stimulated insulin secretion as previously
described (20) with minor modifications. After 1 h preincubation
in Krebs-Ringer bicarbonate (KRB) buffer containing 0.3% bovine
serum albumin (BSA) and 5.6 mmol × l-1 glucose (95% O2, 5%
CO2, pH 7.4, at 37°C), the islets were incubated for an additional
hour in the same buffer containing 0.3% BSA and 2.8 or 11.1
mmol × l-1 glucose. After this incubation, the supernatants were
collected to access insulin secretion and the remaining islets were
homogenized in an alcohol-acid solution to measure total insulin
content using the Ultra-Sensitive Mouse Insulin ELISA Kit
(Catalog # 90080, Crystal Chem, Elk Grove Village, IL, USA).

Western Blot Analyses
Liver samples were also collected to evaluate protein expression
by western blot as previously described (21). In this study, the
primary antibodies and their respective dilutions used, in this
study, were as follow: anti‐IDE 1:500 (Catalog ab32216, Abcam,
Cambridge, UK); anti-CEACAM1 1:500 (Catalog 14771, Cell
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Signaling, Danvers, MA, USA); and anti-a-Tubulin 1:30000
(Catalog T5168, Sigma-Aldrich, St Louis, MO, USA).
IDE Activity Measurements
Liver IDE activity was measured using the SensoLyte 520 IDE
Activity Assay Kit according to the manufacturer’s instructions
(Catalog AS‐72231; AnaSpec, Fremont, Canada). Total IDE
activity was calculated as described before (18) and normalized
per mg of total protein content determined using the Bio-Rad
Protein Assay Dye Reagent Concentrate (Catalog #5000006, Bio-
Rad, Hercules, CA, USA).
Statistics
Normal distribution of the data and homogeneity of variance
were tested, and to compare data from CTL and OLD groups
(CTL vs OLD) Student’s unpaired t-test was applied. These
statistical analyses were performed using Prism software
version 8.0.1 for Windows (GraphPad Software, La Jolla, CA,
USA). The sample size (n) used for the statistical analysis of each
group was described in the figure’s legends. All data were
presented as the mean ± standard deviation (SD) and were
considered significantly different if the p-value was equal or
lower than 0.05 (p ≤ 0.05).
RESULTS

Aging Did Not Change Fasting Blood
Glucose and Plasma Insulin Levels
Eighteen-month-old (OLD) mice had increased body weight and
reduced gastrocnemius muscle pad without change in the
perigonadal fat pad, compared with 3-month-old (CTL) mice,
as shown in the Table 1. In addition, fasting blood glucose and
plasma insulin levels were not different between the groups.
Aging Increased Glucose Tolerance
Without Changing Insulin Sensitivity
To evaluate glucose homeostasis, intraperitoneal glucose and
insulin tolerance tests (ipGTT and ipITT) were performed.
During the ipGTT, OLD mice presented decreased blood
glucose levels at 15 and 30 min (Figure 1A). Also, the area
under the curve (AUC) was lower, compared with CTL mice
(Figure 1B). Although the OLD mice displayed increased
glucose tolerance, their insulin sensitivity was similar to that
observed in the controls (Figures 1C, D).
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During the ipGTT, blood samples were collected and the plasma
was used to measure c-peptide and insulin levels at 0, 15 and
30 min after the glucose load (Figures 2A, B). Although plasma c-
peptide levels were similar between groups, plasma insulin levels
were significantly higher in the OLD at 15 min, compared with
CTL group, provoking a reduction in the c-peptice:insulin ratio at
this time point (Figure 2C). It seems that insulin secretion was not
altered, since plasma c-peptide was similar between groups, but
the hepatic insulin clearance was reduced in the OLD group, as
judged by their lower AUC of plasma c-peptide:insulin ratio,
compared with the CTL’s ratio (Figure 2D).

Aging Did Not Alter Glucose-Stimulated
Insulin Secretion in Isolated
Pancreatic Islets
Corroborating the similar plasma c-peptide levels between the
groups, during the ipGTT, glucose-stimulated insulin secretion
was not significantly different in isolated pancreatic islets (Figure
3A), although insulin content was higher in the OLD, compared
with CTL group (Figure 3B).

Aging Decreased Hepatic CEACAM1
and IDE Expression
To investigate the molecular mechanism whereby aging
decreases hepatic insulin clearance, we evaluate the expression
of proteins involved with this process. The expression of the
transmembrane protein involved with the endocytosis of the
insulin-IR complex, CEACAM1, was decreased in the liver from
the OLD mice compared with controls (Figure 4A). Also, IDE,
an important enzyme that degrades insulin, had its expression
(Figure 4B) and activity (Figures 4C, D) reduced in the liver
from the OLD, compared with CTL mice.
DISCUSSION

Hyperinsulinemia is related to aging and may be the consequence
of an increase in insulin secretion and/or a decrease in its
clearance. In our previous study, while insulin secretion was
increased, insulin clearance did not change in 10-month-old
mice compared with 3-month-old mice (22). Here, 18-month-
old mice displayed similar insulin secretion, whereas hepatic
insulin clearance was lower to that found in the 3-month-old
mice. These data suggest that with advancing age, b-cells from
pancreatic islets may lose their ability to maintain a higher insulin
TABLE 1 | Metabolic parameters of control and old mice.

Metabolic parameters (units) CTL OLD

Body weight (g) 23.81 ± 0.642 (n=10) 29.47 ± 1.173 (n=10)*
Skeletal muscle pad (% of body weight) 0.578 ± 0.041 (n=10) 0.470 ± 0.023 (n=10)***
Fat pad (% of body weight) 1.058 ± 0.160 (n=10) 1.121 ± 0.352 (n=10)
Fasting glycemia (mg × dl-1) 107.1 ± 10.52 (n=10) 99.7 ± 15.85 (n=10)
Fasting insulinemia (ng × ml-1) 0.172 ± 0.029 (n=10) 0.175 ± 0.057 (n=10)
May 2021 | Volu
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secretion. To compensate, hepatic insulin clearance is reduced,
probably due to a lower expression of CEACAM1 and IDE,
associated with a decreased IDE activity, in the liver.

Although several studies have demonstrated impairment on
glucose tolerance with age (23, 24), here, the OLD mice had
improved glucose tolerance (which might be explained by the
elevated plasma insulin level, as shown in Figure 2B), and had no
change in the insulin sensitivity (Figures 1C, D). These data
contrast to those reported in our previous study using 10- and 3-
month-old mice (22). Ten-month-old mice displayed glucose
intolerance, insulin resistance and hyperinsulinemia, compared
with their controls. Thus, it seems that 18-month-old mice are
metabolic different from 10-mont-old mice. Indeed, the body
weight of 10-mont-old mice is higher than 18-month-old mice
(36.05 ± 1.546 g vs 29.47 ± 1.173 g). Also, the perigonadal fat pad
weight (%of bodyweight) seemed to be increased in the 10-month-
oldmice comparedwith their controls in the previous study (CTL=
1.738 ± 0.238 g vsOLD = 2.861 ± 0.495 g, p = 0.075), whereas here,
this increase was not observed (CTL = 1.058 ± 0.160 g vs
OLD =1.121 ± 0.352 g, p = 0.610). These differences may explain
the glucose intolerance and insulin resistance observed in the 10-
month-oldmice used in our previous study, comparedwith the 18-
month-oldmice usedhere, since the increase in visceral fat padmay
raise the risk for insulin resistance (25, 26).

The paradoxical normal insulin sensitivity, found in the OLD
mice, led us to ask whether age-insulin resistance is an obligatory
Frontiers in Endocrinology | www.frontiersin.org 4
finding. We found the answer in studies with centenarians (90-
100 years old) that have a preserved insulin action compared
with aged subjects (<80 years old) (27). These studies show that
age-related insulin resistance is not an obligatory finding in the
elderly, and this may be found in other species, including
rodents, as we described here.

Although age-related hyperinsulinemiawas previously associated
with increased insulin secretion (22, 28), here, insulin secretion in the
OLD mice was similar to that found in their controls. It is possible
that, in these 18-month-old mice, b-cells are in decline of their
function, and the compensatory hypersecretion of insulin, that
probably have occurred earlier, may not be observed at this stage.
Decreased expression of the glucose transporter 2 (GLUT2) (29),
decreased Ca2+ influx (18), mitochondrial dysfunction (30) and
chronic low-grade inflammation (31), observed in aged b-cells,
might be the molecular mechanisms involved with the decline in
insulin secretion that occurs with age.

Since insulin secretion was not altered in the OLD mice
compared with their controls (Figure 3A), the hyperinsulinemia
observed in the former, after a glucose load (Figure 2B), could be
due to an impaired hepatic insulin clearance as suggested by the
lower c-peptide:insulin ratio, during the ipGTT (Figures 2C, D),
in the OLD mice, compared with controls.

It is important to be aware that the c-peptide:insulin ratio can
be used to measure hepatic insulin clearance when the c-peptide
clearance does not change between the experimental groups.
A B

C D

FIGURE 1 | Effect of aging upon glucose and insulin tolerance. (A) Blood glucose and (B) its AUC before (0 min) and 15, 30, 60 and 120 min after 1g × kg-1

intraperitoneal glucose administration (ipGTT, n = 10 CTL and 10 OLD). (C) Blood glucose and (D) its AUC before (0 min) and 5, 10, 15, 20, 25, 30 and 60 min after
0.75U × kg-1 intraperitoneal insulin administration (ipITT, n = 9 CTL and 9 OLD). CTL, 3-month-old mice; and OLD, 18-month-old mice. Data are presented as the
mean ± standard deviation (SD). Student’s unpaired t-test was used to compare the groups (*p ≤ 0.05 vs CTL).
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As observed in isolated pancreatic islets, insulin secretion in the
OLD was not different from that found in the CTL group (Figure
3A). Since c-peptide is co-secreted with insulin at 1:1 molar ratio,
the secretion of this hormone was not different between
the groups. Considering this similar secretion of c-peptide,
and the similar c-peptide kinetic, observed during the ipGTT
(Figure 2A), we can assume that the c-peptide clearance does not
change between the groups, validating our hepatic insulin
clearance measurements.

During the ipGTT (Figure 2B), we observed lower hepatic
insulin clearance only 15 min after the glucose load. This data
suggests that this impairment only emerges during a glucose
stimulation. We believe that in the fasting state, the liver of the
OLD mice can properly handle a small amount of insulin secreted
by the pancreas. However, when glucose stimulates insulin
secretion, the liver of the OLD mice cannot handle the excess of
insulin that reaches this organ, as the liver of the CTL mice.

Although several studies have considered IDE as the major
enzyme involved with hepatic insulin clearance, recent studies
using L-IDE-KO mice suggest that other molecular mechanisms
must be more important to modulate hepatic insulin clearance,
such as CEACAM1 expression (14–16). Here, 18-month-old
mice that displayed lower hepatic insulin clearance, had a
decreased CEACAM1 expression in the liver, compared with
their controls (Figure 4A), similar to the data found in
Frontiers in Endocrinology | www.frontiersin.org 5
18-month-old rats (Supplementary Figure S1). Corroborating
these data, the hepatic expression of CEACAM1 did not decrease
when insulin clearance was not significantly changed in the 10-
month-old mice (Supplementary Figure S2).

During the process of hepatic insulin clearance, CEACAM1 is
phosphorylated at specific tyrosine residue (Tyr 488) by the activated
insulin receptor. This phosphorylation allows CEACAM1 to
associate with insulin-IR complex, via Shc (SH2-containing adapter
protein), targeting this complex to clathrin-coated pits/vesicles by
interaction with the adaptor protein-2 (AP2) complex (13, 32),
thereby triggering the endocytosis process. Therefore, although we
evaluated CEACAM1 expression, it is important that further studies
also investigate its activation by measuring the tyrosine
phosphorylation of this protein in the liver of aged rodents.

In addition to changes in CEACAM1, changes in IDE function
might be also associatedwith alterations in hepatic insulin clearance.
Previously, in 10-month-old mice, lower hepatic IDE activity was
compensated by the higher expression of this enzyme, maintaining
insulin clearance similar to that found in the 3-month-oldmice (33).
However, considering that 12‐month-old rats (older than 10-
month-old) (34) showed a decrease in the hepatic IDE expression
compared with their young controls, we speculated that this could
alsooccur in the 18-month-oldmice.As expected,we confirmed this
effect of aging (Figure 4B), whichmight contribute to the decreased
hepatic insulin clearance observed in these OLD mice.
A B

C D

FIGURE 2 | Effect of aging upon plasma c-peptide:insulin ratio (insulin clearance) during the ipGTT. (A) Plasma c-peptide, (B) insulin, and (C) c-peptide:insulin ratio
at 0, 30 and 60 min after 1g × kg-1 glucose load administration, and (D) AUC of plasma c-peptide:insulin ratio (n = 10 CTL and 9 OLD). CTL, 3-month-old mice; and
OLD, 18-month-old mice. Data are presented as the mean ± standard deviation (SD). Student’s unpaired t-test was used to compare the groups (*p ≤ 0.05, **p ≤ 0.00
and ***p ≤ 0.001 vs CTL).
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Even though, the contribution of IDE for the modulation of
insulin clearance remains controversial. It was suggested that this
enzyme in the liver contributes to modulate insulin sensitivity
(14, 15). Indeed, pathological conditions related with insulin
resistance, such as obesity and type 2 diabetes, are frequently
associated with lower hepatic IDE expression and activity (18, 35,
36), while physical exercise, which improves insulin sensitivity, is
Frontiers in Endocrinology | www.frontiersin.org 6
associated with higher hepatic IDE expression and activity (37–
39). In line with these data, insulin resistance observed in 10-
month-old mice was accompanied by a lower hepatic IDE
activity compared with their young controls (22). However, in
the present study, the reduction in the IDE activity in the liver
from 18-month-old mice (Figures 4C, D), was not associated
with insulin resistance. It is possible that the impairment on
A B

C D

FIGURE 4 | Effect of aging upon hepatic CECAM1 and IDE expression, and upon hepatic IDE activity. Protein expression of (A) CEACAM1 and (B) IDE in the liver
from the mice and its representative immunoblotting images (CEACAM1, n = 10 CTL and 10 OLD; IDE, n = 10 CTL and 10 OLD). (C) Kinetics of the IDE activity
assay in liver of mice. Fluorescent intensity at Ex/Em = 490/520 nm was continuously recorded, every 5 min, during 60 min. 5‐FAM concentration was calculated
using a standard curve and normalized per mg of total protein. (D) IDE activity was calculated as previously described (18) and normalized per mg of total protein in
the liver (n = 10 CTL and 10 OLD). CTL, 3-month-old mice; and OLD, 18-month-old mice. Data are presented as the mean ± standard deviation (SD). Student’s
unpaired t-test was used to compare the groups (*p ≤ 0.05 and **p ≤ 0.001 vs CTL).
A B

FIGURE 3 | Effect of aging upon glucose-stimulated insulin secretion in isolated pancreatic islets. (A) Insulin secretion per islet after 1 h incubation with 2.8 or 11.1
mmol × l-1 glucose. (B) Total insulin content per islet (n = 10 CTL and 10 OLD). CTL, 3-month-old mice; and OLD, 18-month-old mice. Data are presented as the
mean ± standard deviation (SD). Student’s unpaired t-test was used to compare the groups (***p ≤ 0.001 vs CTL).
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hepatic IDE activity might precede insulin resistance, but to
confirm this hypothesis a time-course study is necessary.

Taking into account all data from 10- and 18-month-old mice,
one effect of aging is consistent, hepatic IDE activity reduceswith age.
This effect was also observed in 18-month-old rats (Supplementary
Figure S3) and this may be involved with an impaired glucose
homeostasis, frequently observed in aged subjects. Previously, we
suggested that an increased expression of the inducible nitric oxide
synthase (iNOS), observed in the liver from 10-month-old mice,
should be linked to the reduction in the hepatic IDE activity, because
it was reported that nitric oxide (NO) inhibits insulin degradation by
IDE (40, 41). Here, the expression of iNOSwas not increased, in fact,
it was decreased in the liver from 18-month-oldmice comparedwith
controls (Supplementary Figure S4), suggesting that other
molecular mechanisms must be involved in the impairment on
IDE function in the liver of these OLDmice (35, 42).

In summary, insulin clearance reduces with age and this may
contribute to age-related hyperinsulinemia. Although previous
studies suggest that IDE is not involved in the modulation of
hepatic insulin clearance, in control and obese mice, our finds
suggest that during aging this enzyme might have a role in this
modulation, as well as, the CEACAM1. Therefore, to investigate
the molecular mechanisms whereby aging reduces IDE and
CEACAM1 function, in the liver, might be helpful to
understand how insulin clearance is affected by age.
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