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Obesity is characterized by pathological adipose tissue (AT) expansion. While healthy AT
expansion enhances systemic insulin sensitivity, unhealthy AT expansion through
increased adipocyte size is associated with insulin resistance, fibrosis, hypoxia, and
reduced adipose-derived adiponectin secretion. The mechanisms causing the unhealthy
AT expansion are not fully elucidated; yet, dysregulated crosstalk between cells within the
AT is an important contributor. Evidence from animal and human studies suggests a
crucial role of the crosstalk between vascular endothelium (the innermost cell type in blood
vessels) and adipocytes for metabolic homeostasis. Arterial endothelial cells are directly
involved in maintaining normal organ functions through local blood flow regulation. The
endothelial-dependent regulation of blood flow in AT is hampered in obesity, which
negatively affects the adipocyte. Moreover, endothelial cells secrete extracellular vesicles
(EVs) that target adipocytes in vivo. The endothelial EVs secretion is hampered in obesity
and may be affected by the adipocyte-derived adipokine adiponectin. Adiponectin targets
the vascular endothelium, eliciting organ-protective functions through binding to T-
cadherin. The reduced obesity-induced adiponectin binding of T-cadherin reduces
endothelial EV secretion. This affects endothelial health and cell-cell communication
between AT cells and distant organs, influencing systemic energy homeostasis. This
review focuses on the current understanding of endothelial and adipocyte crosstalk. We
will discuss how obesity changes the AT environment and how these changes contribute
to obesity-associated metabolic disease in humans. Particularly, we will describe and
discuss the EV-dependent communication and regulation between adipocytes,
adiponectin, and the endothelial cells regulating systemic energy homeostasis in health
and metabolic disease in humans.

Keywords: adipose tissue, endothelial cells, hypoxia, extracellular vesicles, endocrine, nitric oxide
INTRODUCTION

Obesity, defined as excessive fat accumulation, is a worldwide epidemic accompanied by an
increased risk of developing cardiovascular diseases (CVDs), certain types of cancers,
Alzheimer’s disease, non-alcoholic fatty liver disease, and type 2 diabetes mellitus (T2D) (1). The
link between the increased disease risks and excessive fat accumulation is not completely
n.org August 2021 | Volume 12 | Article 6812901
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understood but appears to rely on impaired white adipose tissue
(WAT) function. WAT functions as an energy buffer that stores
and releases energy (2); however, WAT is also an essential
endocrine organ and plays a key role in regulating systemic
glucose and energy metabolism by secreting an array of
adipokines, including leptin and adiponectin (3). WAT is
recognized as a highly dynamic and heterogeneous organ, and
the adaptation to expanding WAT requires coordinated actions
of multiple cell types to ensure a healthy adipocyte environment.

The WAT adapts to the excessive energy intake through two
mechanisms 1) an increase in adipocyte number (hyperplasia)
and/or 2) size (hypertrophy) (4). The hyperplastic WAT
expansion is characterized by the formation of new adipocytes
from adipose progenitor cells, which is associated with enhanced
systemic insulin sensitivity. Hypertrophic WAT expansion is, on
the other hand, characterized by insulin resistance, dysfunctional
prolipolytic action, increased inflammation, fibrosis, and altered
adipokine secretion profile, including decreased adiponectin
levels (4, 5). Unhealthy WAT expansion is the sine qua non of
metabolic unhealthy obesity, causing ectopic lipid accumulation
in peripheral tissues such as the liver and skeletal muscle (4). The
molecular mechanisms underlying the transition from a healthy
WAT to an unhealthy pathological expansion are yet to be
elucidated. Here, we will review and summarize our current
understanding of the crosstalk between the adipocytes and the
arterial endothelial cells within the WAT and how this
communication potentially regulates systemic energy
homeostasis in metabolic disorders.
THE ADIPOSE TISSUE
MICROENVIRONMENT

Adipose tissue is a heterogenous cell population and contains,
besides adipocytes, fibroblasts, stem cells, immune cells, and
endothelial cells, and their intercellular crosstalk is crucial for the
microenvironment (6). There is substantial evidence, mainly
from animal studies, that hypertrophic obesity is associated
with low oxygen tension in AT and increased expression of
hypoxia-response genes (7), including the master regulator of
hypoxia, hypoxia-inducible factor 1 (HIF1) (8). In primary
adipocytes and macrophages from lean mice, hypoxia increases
expression of inflammatory markers such as TNF-a, IL-1, IL-6,
and TGF-b, chemokine (MIF), extracellular enzyme (MMP9),
and macrophage markers (CD11 and F4/80) (7). The effect of
hypoxia on the expression of adipokines in human adipocytes
revealed increased gene expression levels of FIAF/angiopoietin-
like protein 4, IL-6, leptin, MIF, PAI-1 and vascular endothelial
growth factor (VEGF) (9). In 3T3-L1 cells, the promoter activity
of NFkappaB and TNF-a was activated by hypoxia, causing
reduced adiponectin promoter activity (7). Adipocyte-specific
knockout of Hif1b – the obligate partner of hypoxia-inducible
factors (Hif1a, Hif2a, and Hif3a) - reduced weight gain relative to
wild-type controls and showed decreased high-fat diet (HFD)-
induced obesity and glucose intolerance (10), indicating that the
adipocyte-response to hypoxia is negative.
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Oxygen tension in human WAT is challenging to measure,
and the measured levels between lean and obese are dependent
on the techniques used (11). Goossens et al. found that oxygen
tension in WAT was higher in obese, and the obese subjects had
lower WAT oxygen consumption (12). On the other hand,
Pasarica et al. found that obesity was associated with lower
WAT partial O2 pressure, and obese subjects had a lower
capillary density and decreased gene expression of WAT VEGF
(13). Despite these differences in these two studies, the obese
subjects had insulin resistance, high expression of inflammatory
cell markers, and lower WAT capillarization (12, 13). Cifarelli
et al. reported that the human AT expansion in obesity is
associated with reduced AT pO2, which contributes to
increased AT HIF-1a expression (14). These alterations
decrease the branched-chain amino acid (BCCA) catabolism
and increase the AT inflammation and fibrosis. Ultimately, this
leads to an increase in circulating BCAAs and PAI-1 causing
systemic insulin resistance (14). Very recently, Todorčević et al.
demonstrated that markers of subcutaneous AT hypoxia are
elevated in severely obese patients with obesity hypoventilation
syndrome but not in moderately obese individuals, suggesting
that in moderate obesity, AT dysfunction may not be driven by
hypoxia (15).

Capillarization is endothelial-dependent, and blockage of
vascularization in WAT causes unhealthy tissue expansion,
enhanced inflammation and fibrosis, leading to systemic
insulin-resistance (16–21). On the other hand, stimulation of
angiogenesis results in healthy WAT expansion even during
HFD-feeding and is associated with maintained insulin-
sensitivity (16–21). Collectively, it appears that the interplay
between AT cells is crucial for metabolic homeostasis and
hampered endothelial-dependent regulation of WAT blood
flow affects AT plasticity.

Using single-cell RNA-sequencing (scRNA-seq), it has
become possible to perform large-scale transcript profiling of
heterogeneous cell populations obtained from WAT from mice
(22, 23) and humans (24). scRNA-seq of the stromal vascular
fractions from visceral and subcutaneous WAT samples from
obese patients undergoing bariatric surgery classified the cells
into three subpopulations: 1) progenitors or stem cells (55%), 2)
immune cells (37%), and 3) endothelial cells (8%) (24).
Interestingly, endothelial cells could furthermore be divided
into three types of endothelial cells (EC1-3). EC1 cells express
genes (FABP4, LGALS1, RBP7, GPX3, and CD36) involved in
lipid handling machinery, while EC2 cells had pronounced
expression of canonical endothelial markers (ACKR1, SELE,
TM4SF1, VCAM1, TMEM173, PLVAP, ICAM1, PECAM1,
VWF, ADAMTS9, and TFPI). EC3 cells were highly enriched
in LYVE1 expression, which is a marker of lymphatic endothelial
cells (24). The lymphatic endothelial cells were predominantly
present in visceral WAT samples (24). Although it is beyond the
present review’s scope, it is worth mentioning that lymphatic
vessels (25) and immune cells (26) have been shown to
contribute to unhealthy obesity. For example, lymphatic
vasculature dysfunction was associated with an adult-onset
obesity phenotype (27), and ablation of macrophages, through
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transgenic expression of diphtheria-toxin receptor under control
of CD11c promoter, in mice fed an HFD normalized insulin
sensitivity and reduction in local and systemic inflammation
markers (28). Nonetheless, the vascular endothelial cells,
representing only a minor fraction of the total cell population,
have prominent physiological and biological roles in health and
metabolic disease. Importantly, endothelial dysfunction is an
early vascular abnormality in metabolic disorders, and emerging
evidence supports a critical role of endothelial cells in the
development of metabolic disorders.
VASCULAR ENDOTHELIAL CELLS
ARE CRUCIAL FOR WHOLE-
BODY METABOLISM

The vascular endothelial cells are the inner most cell type of
arteries, veins and capillaries. The vascular endothelial cell
function sustains organ homeostasis by regulating vascular
tone, recruitment of blood cells, exchanging tissue factors,
forming new blood vessels, and providing organ-specific
barrier function (29). Unlike other healthy cell types,
endothelial cells generate most of their ATP from glycolysis
(30). Endothelial cells have an insulin-independent glucose
uptake through glucose transporter 1 (GLUT1) (31), and
hyperglycemia, an associated consequence of obesity, is likely
to increase the endothelial cells glucose concentration, which in
itself is enough to cause oxidative stress and endothelial
dysfunction (32). Although the endothelial glucose uptake is
insulin-independent, impaired insulin signaling in endothelial
cells can affect systemic insulin sensitivity. HFD fed mice have a
reduction in insulin receptor substrate (Irs) 1 and 2 in the
endothelial cells, and endothelial-specific knockout of Irs2
impaired insulin-induced glucose uptake in skeletal muscle
(33). A vital function of the endothelium is to induce
relaxation of the underlying vascular smooth muscle cells
through the release of nitric oxide (NO) and thereby increase
blood flow. The endothelium NO is generated primarily by the
endothelial NO synthase (eNOS), and in endothelial-specific Irs2
knockout mice, the insulin-induced eNOS activation by
phosphorylation was blocked, likely through reduced phospho-
Akt (33). eNOS-phosphorylation was restored by the stable
prostaglandin I2 analog beraprost sodium, which reestablished
glucose uptake by the skeletal muscle in the endothelial Irs2
knockouts on a normal and HFD (33). Moreover, the
antidiabetic drug metformin, which enhances whole-body
insulin sensitivity, improves endothelial-dependent relaxation
(34), indicating a critical role for endothelial blood flow
regulation for the AT.
ENDOTHELIAL-DEPENDENT BLOOD FLOW

The endothelial-dependent vasodilatation is compromised in
metabolic diseases, including obesity, and aging and is linked
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to reduced release of NO (35), increased oxidative stress (36),
decreased endothelium-dependent hyperpolarization (37), and
upregulation of released endothelium-derived contracting
factors (38), which in combination results in reduced
relaxation to vasodilatory substances such as acetylcholine in
ex vivo arterial preparations. In humans and mice, increased
body weight is associated with decreased endothelial-dependent
vasodilatory in response to vasodilatory substances (39–43).
Ingestion of food increases adipose tissue blood flow (ATBF)
(44), and an oral glucose load increased ATBF in lean but not in
obese subjects (12). The mediators responsible for this fast
adjustment of ATBF are unknown, but intervention studies
have provided evidence for the factors involved. Although
increased glucose levels enhance plasma insulin levels, insulin
micro infusion did not directly affect ATBF in humans (45).
However, the ATBF increase correlated with changes in plasma
norepinephrine (45). Plasma norepinephrine is likely to derive
from spill over of sympathetic activity in muscle and AT (46).
Norepinephrine is an endothelium-dependent arterial
vasodilator (47) and high ATBF responding subjects had
greater changes in plasma norepinephrine (44). Moreover,
pharmacological intervention studies in humans have
demonstrated that ATBF relies on the endothelial NO system
(11, 48, 49), indicating that sympathetic activity is involved in
ATBF regulation through an endothelial-dependent mechanism
in arteries. HFD treatment of mice causes a reduced eNOS
expression in WAT and transgene eNOS overexpression in
whole body endothelial cells protected against high-fat diet-
induced obesity (50). In agreement, eNOS deficient mice
exhibit systemic insulin resistance (51, 52). Although the
genetic interventions are not specific to WAT endothelium but
affects all endothelial cells, the data suggest an essential role of
eNOS regulation and endothelial health.

We have recently shown that mice fed an HFD developed
endothelial dysfunction, which was abrogated in mice with
global knockout of the T-type Ca2+ channel Cav3.1 (53).
Consistent with this, in hypertensive patients treated with T-
type/L-type channel blocker Efonidipine improved endothelial
function (54), and pharmacological and genetic inhibition of
Cav3.1 likewise protects against HFD-induced obesity in mice
(53, 55). Cav3.1 is, among others, expressed in AT and
endothelial cells (53), but the pharmacological and genetic
inhibition studies of Cav3.1 do not pinpoint which cell types
are involved in the phenotype. In endothelial cells, Cav3.1
interacts with eNOS (56). Nonetheless, global Cav3.1 knockout
mice fed a regular diet display eNOS activity both in vivo and in
vitro (56), and how Cav3.1 deficiency affects eNOS activity in
HFD mice is still not known.

eNOS activity is also affected by caveolin-1 (Cav-1) – an integral
membrane protein critically involved in the invagination of caveolae
from the plasma membrane. Global Cav-1 knockout mice have
endothelial dysfunction (57), and transgenic Cav-1 re-expression in
the endothelium of Cav-1 knockout mice rescues the endothelial
function (58). Cav-1 inhibits eNOS (59) and HFD-induced obesity
increases vascular Cav-1 expression and accompanies impaired
NO-mediated vasodilatation (60). In summary, the data suggest
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that adequate eNOS regulation in AT endothelial cells is important
for ATBF and whole-body energy homeostasis, and that Cav-1
appears to play a significant role.

Cav-1 is not only expressed in vascular endothelial cells but also
highly expressed in adipocytes. Recently knockout of the Cav1 gene
in mice uncovered a significant extracellular vesicle (EV)-mediated
signaling between endothelial cells and adipocytes (61).
EXTRACELLULAR VESICLES ARE
INVOLVED IN ENDOTHELIAL-
ADIPOCYTES CROSSTALK

The term EV encompasses several distinct vesicle types but can
broadly be divided into microvesicles and exosomes (62).
Microvesicles originate from the plasma membrane through
outward budding, while exosomes are created through
invagination of the plasma membrane that ultimately causes
the formation of multivesicular bodies (MVB), which through
fusion with the plasma membrane release exosomes to the
extracellular medium. The EVs all contain constituents of a
cell, including nucleic acid, lipids, and nuclear, cytosolic, and
membrane proteins (63, 64). Although the function(s) of EVs are
still unknown, the fact that all cells, pro- and eukaryotes (65),
release EVs points to their contribution to normal physiology,
and EV appears to be involved in cell-cell communication and
cellular waste management.

Extracellular Vesicles and Cell-
Cell Communication
EVs have been suggested as entities for horizontal transfer of
genetic material and proteins between cells. RNA is the
dominant form of nucleic acid in EVs, and EVs appear to be
enriched for several specific RNA species, including a number of
microRNAs (miRNAs). In agreement, it was detected early that
the correlation between cellular and EV RNA concentrations was
poor (66), hinting at an active transport of RNA molecule into
vesicles. Indeed, a short RNA motif has been identified that
guides RNA into EVs (67). Nonetheless, using the golden
standard for EV isolation – differential ultracentrifugation –
has revealed that the average number of miRNAs per EV is
low – approximate 1 miRNA per 100 EV (68). This low RNA/EV
ratio suggests that EVs and their cargo may be heterogeneous
and that some EVs carry a lot of RNA while others are non-
RNA-carriers. Consistent with this, new EV separation and
isolation techniques such as asymmetric-flow field-flow
fractionation indicate that there exists a much wider variety of
EVs than has previously been recognized (69). It should be noted
that the analysis of EVs is complicated, and current EVs isolation
techniques carry a significant risk of analysis of contaminations
such as co-precipitated RNAs and proteins (62). This is even true
for EVs isolated from serum-free medium where supplements
may carry a significant amount of miRNA (70). Interestingly,
though, in humans and mice, adipocyte-derived EV contain a
significant fraction of circulating miRNAs (71). This was
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determined using mice with adipocyte-specific knockout of
Dicer, a critical enzyme required for the conversion of pre-
miRNA molecules into a mature miRNA (71). Disruption of
the adipocyte processing of miRNAs caused significantly reduced
plasma EVs level of miRNAs (71). The circulating adipocyte EV
reduced hepatic FGF21 expression causing a decreased plasma
FGF21 level and improved glucose tolerance, indicating that the
EV miRNAs were functional (71). Collectively, it appears that
adipocyte-derived EVs mediated cell-to-cell communication that
affects distant organ function and surrounding cells.

Hypoxia is a potent stimulator of EV secretion. EVs released
from adipocytes cultured at 1% O2, compared to normal air with
5% CO2, and EVs from obese subjects impaired insulin-stimulated
glucose uptake in adipocytes (72). Moreover, in the initial stages of
HFD-induced AT expansion, the increased AT oxygen
consumption limits O2 availability imposing a state of relative
AT hypoxia that stimulated VEGF expression, and increased
angiogenesis and HIF1a expression (73). In 3T3-L1 adipocytes,
proteomic analysis of the EVs from the normoxic (20% O2) and
low oxygen (1% O2) cultured 3T3-L1 cells showed that 75 and 67
proteins were up- and down-regulated, respectively, by the low
oxygen conditions and that the EVs were enriched in proteins
involved in de novo lipogenesis (74). Importantly, the low oxygen-
derived EVs promoted the accumulation of lipids in recipient cells
(74). EVs from liver cells are also important for lipid
accumulation. Mice fed an HFD display rapid lipid
accumulation in the liver (within hours), and the liver has been
shown to respond to this by increased EV secretion (likely
exosomes), which target adipocytes (75). Inhibition of EV
secretion from liver cells by knockdown of Geranylgeranyl
diphosphate synthase (Ggpps) improved glucose tolerance in
HFD-fed mice but did not improve insulin resistance. The liver-
derived EVs enhance adipocyte lipid deposition by increasing
lipogenesis and inhibiting lipid oxidation through Pgc1a. Thus,
liver cells may be an early metabolic sensor of lipid overload and
respond by increased EV signaling to adipocytes (75).

In the WAT, the adipocytes are also targeted by EV derived
from endothelial cells (61). Endothelial-derived EVs transferred
Cav-1 protein to adipocytes, and, importantly, the EV-mediated
transfer was regulated by fasting and feeding (61). Fasting
increased endothelial Cav1 transfer, and this effect was blunted
in HFD treated and ob/ob mice (61). Although the glucagon
receptor expression did not differ between WAT- and lung-
derived endothelial cells (61), glucagon only increased
endothelial-derived EV secretion from WAT-derived
endothelial cells (61). An essential function of the endothelial
cells is the transcytosis of plasma components to the underlying
parenchyma (29). Crewe et al. found that cultured endothelial
cell-derived EVs were enriched in FBS-derived protein
components (61). Glucagon and insulin increased BSA (fatty
acid-free, low endotoxin) uptake in cultured endothelial cells,
and Cav-1 participated in the process but was not essential for
the glucagon and insulin-stimulated BSA uptake in endothelial
cells (61). The BSA was secreted in EVs and indicates that
endothelial cells contribute significantly to transcytosis by
uptake of plasma components and secretion in EVs (61). Thus,
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the intercellular and interorgan EV communication to and from
the WAT appears to be important for metabolic regulation.

Extracellular Vesicles as Cellular
Waste Management
Accumulating evidence suggests that EVs are part of the cellular
waste management system and shares many features with
secretory autophagy (76). For example, blockage of EV
secretion causes accumulation of harmful DNAs and activation
of cellular damage response (77). The important role of
autophagy for adipocytes and endothelial cells has been
demonstrated in experimental models. Mice with the
adipocyte-specific knockout of autophagy genes Atg3 and
Atg16L had normal weight and body composition; however,
the gene disruptions caused a massive influx of inflammatory
cells in AT even in the regular diet-fed mice (78). This occurred
without an increase in cytokines such as TNF-a, IL-6, or MCP1
(78). The knockouts developed insulin resistance and impaired
glucose tolerance, and together, suggests an essential role for
adipocyte autophagy in the development of insulin resistance
independent of obesity (78). Autophagy is also crucial for
endothelial cells. Obesity-induced endothelial dysfunction is
associated with the upregulation of endothelial autophagy
machinery (79) and vascular ceramide content (80). Exosome
production and release are modified by ceramide synthesis (81),
and, interestingly, adiponectin signaling in endothelial cells
increased exosome secretion and reduced cellular ceramide
levels (74). Thus, exosome secretion may be a critical
mechanism to reduce the intracellular accumulation of toxic
material and endothelial dysfunction through adipocyte
secretion of adiponectin.
ADIPONECTIN - T-CADHERIN-AXIS AND
CELLULAR CROSSTALK

Adiponectin is an adipokine, which acts in an autocrine/
paracrine and endocrine fashion (82) and is highly expressed
in human and mouse AT (82, 83). Various adipokines may play a
key role in AT biology, on systemic metabolism or tissue
crosstalk such as leptin, however, in this review we are only
focusing on adiponectin. Typically, plasma concentration of
adiponectin is high and in the micromolar range. Low
adiponectin levels are reported in humans with metabolic
diseases such as obesity and T2D (84) and are inversely
correlated with insulin resistance (85) and fat mass in humans
(86). Moreover, decreased levels of adiponectin are also reported
in coronary artery disease (87) and myocardial infarction (88).
Thus, reduced circulating adiponectin levels can reflect
metabolic perturbations and can potentially serve as a critical
marker of WAT fitness.

Adiponectin belongs to the C1q-like superfamily of protein,
and its structure consists of a 22 collagen repeats and a C-
terminal C1q-like globular domain (82). Endogenous
adiponectin forms homo-oligomeric structures consisting of
trimers, dimers of trimers, and 4- and 5-mers of trimers that is
Frontiers in Endocrinology | www.frontiersin.org 5
referred to as low molecular weight (LMW), medium molecular
weight (MMW), and high molecular weight (HMW),
respectively, complexes (89, 90) with different biological
functions through binding of surface receptors (91–93).

Activation of the adiponectin receptors AdipoRs (94–96) and
calreticulin (91) have importantmetabolic and immunological roles.
Skeletal muscle is an important site of insulin-mediated glucose
uptake; thus, considerable emphasis was placed on studying the
possible metabolic effects of adiponectin on muscle. In cultured
muscle cell lines, adiponectin improves insulin sensitivity (97),
increases glucose uptake (63, 98) and increases fatty acid oxidation
(63, 64). Inmousemodels of obesity andT2D, physiological doses of
adiponectin enhanced insulin sensitivity (99). In muscle,
adiponectin acts through AdipoR1 to activate AMPK (100). The
anti-inflammatory effects of adiponectin have been demonstrated in
different cell studies. Treatment of human macrophages with
adiponectin revealed that adiponectin inhibits mature
macrophages’ phagocytic activity, and adiponectin also inhibited
the lipopolysaccharide (LPS)-induced TNF-a production and TNF-
amRNA expression (101). In line with this, another study showed
that treatment of peritoneal macrophages with recombinant
adiponectin enhanced transcript levels of a marker of the M2
phenotype such as IL-10 (102), indicating that adiponectin
promotes macrophage polarization toward an anti-inflammatory
M2 phenotype. In the liver, adiponectin binds to AdipoR1 and
AdipoR2 to suppress hepatic glucose production and glycogenolysis
(103), leading to reduced plasma glucose levels. Decreased hepatic
glucose production can possibly be explained by studies showing
that adiponectin suppresses the key regulators involved in
gluconeogenesis, including phosphoenolpyruvate carboxykinase
and glucose-6-phosphatase (104, 105).

In addition to adiponectin’s beneficial effects on muscle and
liver, it is also protective through its effects on the vascular
endothelium (106). In the vascular endothelium, adiponectin
acts through AdipoR1 and AdipoR2 to increase NO production
through AMPK, which activates eNOS, leading to vasodilation
(106). In addition to AdipoR1 and AdipoR2, endothelial cells
also bind adiponectin through T-cadherin expression.

As described above, adiponectin increases endothelial
exosome secretion, and this effect is mediated through the
binding of adiponectin to T-cadherin (107). T-cadherin is a
member of the cadherin family, but in contrast to the other
family members, it lacks a C-terminal intracellular domain and is
attached to the extracellular side of the plasma membrane
through a glycosylphosphatidylinositol (GPI)-anchor (108).
There is strong in vivo support for the adiponectin/T-cadherin
interaction from human and murine studies. Thus, genome
wide-association studies (GWAS) for plasma adiponectin levels
suggest the CDH13 (the gene encoding T-cadherin and outside
of the ADIPOQ locus) is strongly linked to adiponectin levels
(109), and CDH13 single nucleotide polymorphisms (SNPs) are
linked to increased adiponectin plasma levels in humans (110,
111). In mice, T-cadherin deficiency causes 3-fold increased
plasma adiponectin levels (112). T-cadherin is expressed in the
heart, skeletal muscle, aorta, and vascular endothelium (112–
114). Adiponectin in its hexameric and HMW – but not trimeric
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and globular-forms bind T-cadherin (92, 115), and the T-
cadherin expression tissues are also the site for the
accumulation of HMW and hexameric adiponectin in mice
(112–114, 116, 117), suggesting critical biological functions of
the adiponectin binding to T-cadherin. Adiponectin and T-
cadherin knockout mice have lower plasma exosome levels,
and viral overexpression of adiponectin caused increased
plasma exosome levels (107). The mechanisms and cellular
signaling pathways that are involved are still unknown. It has,
however, been shown that oligomerization of membrane-
anchored stimulates their sorting of cargo into exosome (118,
119); thus, the binding of the cellular attached T-cadherin to
adiponectin might cause T-cadherin oligomerization,
internalization, and sorting into the multivesicular bodies
(MVBs) before being released as exosomes. Thus, the crosstalk
between adipocytes and endothelial cells involves EVs; however,
this crosstalk’s biological significance is still largely unknown but
could be an important mechanism mediating tissue-crosstalk
and endothelial health. Further research should be undertaken to
investigate if other adipokines also play a key role in crosstalk
mediated by EVs.
CONCLUDING REMARKS AND
FUTURE PERSPECTIVES

The WAT microenvironment is critical for a whole-body
metabolism; thus, gaining a mechanistic understanding of the
Frontiers in Endocrinology | www.frontiersin.org 6
crosstalk between the different cell populations in WAT is
crucial. The endothelial cells are important for regulating
WAT blood flow, and inadequate blood flow may cause
hypoxia in the WAT and reduced adiponectin secretion
(Figure 1). The reduced adiponectin secretion may cause
reduced EV secretion from endothelial cells and thereby
accelerate the development of endothelial dysfunction and
decreasing adipocyte function further (Figure 1). The reduced
adipocyte function affects multiple organs, e.g., through
decreased adiponectin signaling in skeletal muscle, liver and
the heart, and targeted treatment that restores the adipocyte/
endothelial crosstalk in WAT may thus provide therapeutic
opportunities that improve whole-body metabolism.

Since the crosstalk involves physiological adaptations, such as
changes in blood flow, and molecular changes, the investigations
are heavily dependent on integrated models. In line with this, the
exact role of EVs for WAT biology regulation also requires
integrated models and needs the development of new
experimental tools. The effect of EVs is often inferred from
correlation studies, and tools that block exosome signaling in a
cell-specific manner are still not available. The use offluorescent-
tagged proteins that are transferred from endothelial cells to
adipocytes has convincingly shown that transport does indeed
occur between different cell types in vivo (61); however, to obtain
information on EV function directly, cell-specific manipulation
of EVs needs to be established. Possible solutions could be to use
single-cell assays such as CD63-pHluorin (120, 121) and in vivo
models for tracking intercellular EV communication (122). The
FIGURE 1 | Adipocyte and endothelial crosstalk in adipose tissue contribute to regulation of whole-body glucose and lipid metabolism: In this working
hypothesis, endothelial cells regulate blood flow adequately to adipocytes, which secrete adiponectin that communicate locally with endothelial cells and with distant
organs such as muscle, liver, and heart. Adiponectin stimulates EV secretion from endothelial cells, ensuring their health e.g. through cellular waste management, and
stimulates muscle, liver, and heart metabolism, improving systemic metabolism. EVs from adipocytes and endothelial cells may also target other cell types. Other
adipocyte-derived factors, and overall endothelial health also contributes to regulation of whole-body glucose and lipid metabolism. Figure created with BioRender.com.
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tagged EVs will allow for cell-specific quantification of EV release
rate and enable the identification of genetic and pharmacological
interventions that interferes with EVs.

From a translational perspective, cells – including adipocytes
and endothelial cells – release EVs to the circulation and provide
non-invasive access to organs within the body. We have shown,
using paired samples of human kidney and urine samples, that
the EVs protein abundance is not a reliable marker of its tissue
abundance (123). Nonetheless, the AT-derived EVs may be used
to monitor clinical intervention studies and for early detection
and differentiating of individual subjects based on whether or not
they have healthy or unhealthy obesity. The identification of
adipocyte- and endothelial-specific EV markers will provide an
approach that enables the non-invasive interrogation of crosstalk
between the cell-types in humans, enabling the translation of the
findings from animal models to humans, and thereby provide
Frontiers in Endocrinology | www.frontiersin.org 7
new treatment options for alleviation of the negative health
impacts of obesity.
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