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Background: Obesity is a major risk factor for dysglycemic disorders, including type 2
diabetes (T2D). However, there is wide phenotypic variation in metabolic profiles. Tissue-
specific epigenetic modifications could be partially accountable for the observed
phenotypic variability.

Scope: The aim of this systematic review was to summarize the available data on
epigenetic signatures in human adipose tissue (AT) that characterize overweight or
obesity-related insulin resistance (IR) and dysglycemia states and to identify potential
underlying mechanisms through the use of unbiased bioinformatics approaches.

Methods: Original data published in the last decade concerning the comparison of
epigenetic marks in human AT of individuals with metabolically unhealthy overweight/
obesity (MUHO) versus normal weight individuals or individuals with metabolically healthy
overweight/obesity (MHO) was assessed. Furthermore, association of these epigenetic
marks with IR/dysglycemic traits, including T2D, was compiled.

Results:We catalogued more than two thousand differentially methylated regions (DMRs;
above the cut-off of 5%) in the AT of individuals with MUHO compared to individuals with
MHO. These DNA methylation changes were less likely to occur around the promoter
regions and were enriched at loci implicated in intracellular signaling (signal transduction
mediated by small GTPases, ERK1/2 signaling and intracellular trafficking). We also
identified a network of seven transcription factors that may play an important role in
targeting DNA methylation changes to specific genes in the AT of subjects with MUHO,
contributing to the pathogeny of obesity-related IR/T2D. Furthermore, we found
differentially methylated CpG sites at 8 genes that were present in AT and whole blood,
suggesting that DMRs in whole blood could be potentially used as accessible biomarkers
of MUHO.
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Conclusions: The overall evidence linking epigenetic alterations in key tissues such AT to
metabolic complications in human obesity is still very limited, highlighting the need for
further studies, particularly those focusing on epigenetic marks other than DNA
methylation. Our initial analysis suggests that DNA methylation patterns can potentially
discriminate between MUHO from MHO and provide new clues into why some people
with obesity are less susceptible to dysglycemia. Identifying AT-specific epigenetic targets
could also lead to novel approaches to modify the progression of individuals with obesity
towards metabolic disease.

Systematic Review Registration: PROSPERO, identifier CRD42021227237.
Keywords: adipose tissue, obesity, dysglycemia, type 2 diabetes, insulin resistance, DNA methylation, histone
modifications, long non-coding RNAs
INTRODUCTION

Obesity is a complex multifactorial disease that results from the
interplay between environmental and genetic factors (1).
Overweight and obesity are characterized by adipose tissue
(AT) expansion, attributed either to hyperplasia and/or
hypertrophy, which eventually becomes dysfunctional (2). AT
expansion is often associated with a chronic low-grade
inflammatory state that will increase oxidative stress (3) and
may have a significant contribution for obesity-related
comorbidities development, including insulin resistance (IR)
and dysglycemia (4).

Dysglycemia states are defined as conditions of abnormal
glucose homeostasis and include impaired fasting glucose,
impaired glucose tolerance or both. Fasting plasma glucose
above 100 mg/dl and 126 mg/dl (5.6 mmol/L and 7.0 mml/L)
or hemoglobin A1c (HbA1c) above 5.7% and 6.5% are used as
biochemical thresholds to define the clinical conditions known as
pre-diabetes and diabetes, respectively (5). Type 2 diabetes
(T2D) is one of the most prevalent comorbidities among
individuals with obesity, being responsible for a great number
of adverse health outcomes (6). Dysglycemic conditions are
characterized by a continuous spectrum of glycemic imbalance
(5). From a pathological perspective, these processes are initiated
by increased resistance to insulin action in peripheral organs,
such as skeletal muscle, liver and AT (7). Consequent to a
decreased insulin-mediated glucose uptake, the pancreas is
stimulated to increase insulin secretion in an attempt to
overcome resistance (7, 8). When the pancreatic capacity to
sustain insulin hypersecretion is lost, circulating glucose levels
rise and pre-diabetes or overt T2D arise (7, 8).

Individuals with severe obesity can be defined as
metabolically healthy obese (MHO), i.e. if no evidence of
abnormal metabolic parameters is found in routine clinical and
biochemical assessments (9). However, a considerable number of
patients with obesity are also affected by obesity-related
metabolic disorders, such as pre-diabetes, T2D, hypertension
and dyslipidemia, and therefore are clinically classified as having
metabolic unhealthy obesity (MUHO) (10). For the purpose of
this systematic review, only studies that sought to evaluate the
differences between individuals with overweight or obesity in the
n.org 2
absence or presence of dysglycemia, were considered and defined
as MHO or MUHO, respectively.

The relationship between increasing body mass index (BMI)
above 25 kg/m2 or 30 kg/m2, which is the anthropometric
measurement most frequently used to define overweight and
obesity, except for Asian ethnic background populations, and
T2D is far from being linear. Obesity is a well-recognized risk
factor for T2D. The risk of developing T2D increases with
increasing BMI when compared to normal weight individuals
(10). However, despite approximately 90% of the patients with
T2D presenting concomitant overweight or obesity (11), less
than one third of the patients with severe obesity harbor T2D as
comorbid condition (12). Therefore, the relationship between
obesity and T2D is a complex one. Moreover, the risk of
cardiovascular disease and cardiovascular disease mortality,
which is the number one cause of death among individuals
with obesity, increases not only with increasing BMI, but also
with the number of metabolic abnormalities, being the highest
among patients with T2D (13). Thus, the presence of T2D
renders a more advanced disease stage to obesity, forecasting a
poorer prognosis and decreased life expectancy (13). Identifying
the triggering factors responsible for T2D development in some
individuals with obesity is clinically very relevant, because it
would allow to implement targeted intervention strategies with
the aim of preventing cardiometabolic complications in those
patients at higher risk

T2D is a multifactorial and polygenic disease with hundreds
of genetic variants identified as risk factors in genome-wide
association studies (GWAS) (14). Despite the fact that obesity
and T2D can unquestionably be associated as mentioned above,
only a few loci were identified as being related with both
conditions, such as FTO, MC4R, ADAMTS9, GRB14/COBLL1
and QPCTL/GIPR (11), suggesting that these genes may have a
particularly important role in the pathogeny of both conditions.
However, it is important to notice that single nucleotide
polymorphisms (SNPs) primarily associated with obesity tend
to have a positive correlation between the effect size on BMI and
the effect of the same SNP on T2D, yet SNPs primarily associated
with T2D have no impact on BMI per se (15). Importantly, both
GWAS and gene candidate approaches have led to the
identification of genes implicated in the pathogenesis of obesity
June 2021 | Volume 12 | Article 681649
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and/or T2D (14, 16), which are involved in critical pathways for
glucose regulatory processes, such as insulin signaling (INSR,
IRS1, IRS2) (16–20), beta-cell differentiation and insulin
secretion (PDX1, HNF4A, TCF7L2, SLC2A4, GLP1R, KCNQ1)
(16, 17, 21–24), adipocyte differentiation (PPARG, PPARGC1A,
LEP, ADIPOQ) (17, 19, 20, 25, 26), mitochondrial biogenesis and
function (PGC1) (27), lipid and glucose homeostasis (SREBF1)
(28) and cytokine signaling and inflammation (ADIPOQ) (29).

Previous studies also sought to identify genetic determinants
that could explain the diversity in metabolic phenotypes among
patients with overweight or obesity. Genetic risk scores derived
from GWAS (30) resulted in modest improvements in the
accuracy to predict T2D compared to traditional risk scores
that rely on patient characteristics, namely age, family history of
T2D and BMI, such as the FINDRISK Diabetes Score (31). Few
studies focused on MHO and MUHO, mainly due to difficulties
in patient characterization. It appears that there is no clear
association between susceptibility to develop obesity-associated
comorbidities and adiposity related genes, with some variants of
these genes having potentially cardiometabolic protective effects
(IRS1, COBLL1/GRB14, PLA2G6 and TOMM40) (32). The lack
of a clear association may be explained by the observation that
within the same gene some variants could have opposing effects
on these traits (e.g. COBLL1/GRB14) (32). However, most
recently, the first genome-wide cross-phenotype meta-analysis
of adiposity–cardiometabolic trait pairs led to the discovery of 62
loci, clustered in three groups, of which the same allele was
significantly associated with both higher adiposity and lower
cardiometabolic risk (33).

Additional factors known to modulate gene expression, such
as epigenetic marks, were hypothesized to play a relevant role in
the pathogenesis of obesity-related dysglycemia (34). The term
epigenetics refers to reversible alterations in gene activity, which
occur without altering the DNA sequence and that are heritable
(during cell divisions in somatic cells, but also through the
germline and inherited trans-generationally) (35). Epigenetic
information is laid upon the genome as epigenetic marks that
include DNA methylation, histone modifications (such as
methylation, acetylation, etc.), non-coding RNAs and
chromatin remodelers, all of which affect the chromatin
architecture and provide long-term stability of gene expression
patterns (35). Epigenetic states are tissue-specific and are
implicated in a range of cellular processes, such as cell
differentiation, genomic imprinting and chromosome X-
inactivation in females (34). Importantly, epigenetic
modifications are able to influence the cellular phenotype and
responsiveness to external stimuli (36).

Despite the fact that an association of epigenetics with obesity
and dysglycemic disorders has been known since the nineties,
the interest in epigenetic alterations associated with obesity
and obesity-related dysglycemic disorders has increased
exponentially in the last decade (37). Several studies have
focused on identifying epigenetic modifications occurring in
patients with obesity and dysglycemia states including T2D,
when compared to normal weight (NW) and/or individuals
with normoglycemia, thus providing considerable advance in
Frontiers in Endocrinology | www.frontiersin.org 3
our knowledge (38, 39). In fact, numerous DNA differentially
methylated regions (DMRs) associated with T2D were identified
in targeted or epigenome-wide association studies (EWAS),
some of which occurred in genes reported to be of particular
interest given the direct involvement in mechanisms known to
regulate glucose homeostasis (40). Consistently, increased DNA
methylation in PPARGC1A was found to down-regulate gene
expression in islet cells (41), skeletal muscle (42) and AT of
individuals at high risk for T2D (43), along with decreased
mitochondrial content (44) . Moreover , PPARGC1A
methylation was shown to be highly responsive to exercise (45)
and bariatric surgery (42). Additionally, altered DNA
methylation in ABCG1 and SREBF1 genes, involved in lipid
homeostasis, were demonstrated to be associated with down-
regulation of mRNA levels in the liver and skeletal muscle from
individuals with T2D (46). These are only a few among the large
number of genes in which epigenetic changes were reported to be
correlated with glucose and insulin concentrations, BMI and
Homeostatic Model Assessment of Insulin Resistance (HOMA-
IR) and were identified as being associated with the risk of future
T2D (40, 47).

Nevertheless, the role of epigenetic modifications in
modulating the risk for obesity-related dysglycemic disorders
is far from being fully understood. The type, strength, and rate
of epigenetic changes and how cell-specific these are, or which
individuals are more predisposed to develop it, remains to be
elucidated. This is partially because human data so far available,
with very few exceptions, is mostly derived from small patient
cohorts, or limited to whole blood (WB) analysis, although
many epigenetic modifications are known to be tissue-specific
(48). Therefore, since AT expansion and dysfunction are
known to play a crucial role in the development of several
obesity-associated metabolic comorbidities, gaining knowledge
on the AT-specific epigenetic modifications is paramount for
understanding the mechanisms of disease, which could lead to
the identification of potential targets for treatment
intervention. Importantly, the visceral adipose tissue (VAT) is
recognized for having a higher metabolic activity compared to
the subcutaneous adipose tissue (SAT), as well as by having a
greater impact on systemic metabolism via rapid release of free
fatty acids (49, 50). Additionally, the interplay of altered
metabolic and physiological states within distinct AT
territories, such as VAT and SAT, were demonstrated to be
detrimental for whole-body glucose homeostasis (49). This
evidence reinforces the pressing need to evaluate and assess
the relative contributions of distinct epigenetic modifications
observed in each AT depot in the mechanisms associated with
IR and dysglycemic states. Therefore, the aim of this systematic
review was to summarize the available data on ‘epigenetic
fingerprints’ in human AT that allow differentiation between
MHO and MUHO associated with dysglycemia states, and to
uncover the potential contribution of epigenetic-regulated
cellular pathways. In addition, we discuss the major
drawbacks of the current human models for the study of
epigenetics in AT and the limitations of epigenetic analyses in
this tissue and point out to future directions of research.
June 2021 | Volume 12 | Article 681649
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MATERIALS AND METHODS

Literature Search
Publications reporting original data focused on associations
between epigenetic marks, namely DNA methylation, histone
modifications and long non-coding RNAs (lncRNA) in AT of
subjects with MUHOwere searched on three different databases –
PubMed, Scopus and Web of Science – in December 2020. The
search was limited to human studies, written in English and
published over the last 10 years. The search strategies for the
different databases are reported in the Supplementary Table 1.

Our search strategy identified 119 papers in PubMed, 210 in
Scopus and 260 in Web of Science, resulting in a total of 589 papers
for an initial screen. Furthermore, 4 papers were identified from
reading the reference list of papers on the topic, which were not
retrieved from any of the above-mentioned database searches. After
eliminating duplicates, a total number of 409 papers were
independently screened by three researchers (ALS, TM and SA)
by reading the titles in the first instance. Discordances were resolved
with the aid of a fourth researcher (MPM). Papers reporting on
epigenetic studies in human AT in individuals with MUHO, or
individuals with obesity associated with glycemic traits were
considered relevant for the scope of this review and further
selected for full-text evaluation (n=46). After reading the full texts,
an additional number of 23 papers were eliminated due to the
following reasons: miRNAs studies (n=18), DNA methylation
quantitative trait locus (mQTL) study (n=1), no data on subjects
with altered glycemic traits (n=3), no AT (n=1) (Figure 1). Risk of
Bias was evaluated for every study by using a modified Newcastle-
Ottawa Scale for cross sectional studies (51) (Supplementary
Table 2). The protocol for this systematic review was registered in
PROSPERO (CRD42021227237) and the PRISMA Statement
guidelines were used for the reporting of the findings.

Amongst the 23 papers included in this systematic review, 19
papers reported studies on DNAmethylation, 2 papers presented
data on histone modifications and 2 papers conducted studies on
lncRNAs. Of the 19 papers that reported data on DNA
methylation in AT from individuals with MUHO, 8 papers
performed targeted epigenome studies (52–59) and 11 papers
reported genome-wide studies (60–70). The main findings on the
targeted DNA methylation studies are summarized in Table 1.

The majority of the DNA methylation epigenome-wide
studies relied on an array-based methodology, while 2 studies
used the Reduced Representation Bisulfite Sequencing (RRBS)
method for identifying DMRs (60, 66). Most studies included
adjustments for age, sex and BMI in the analysis. The findings on
the genome-wide DNA methylation studies are summarized in
Table 2 and further described in Supplementary Table 3.

After completing the data analysis of this systematic review
on AT, an additional non-systematic bibliographical search for
EWAS conducted in WB of patients with MHO and MUHO was
performed in order to understand whether common methylated
CpG sites could be identified in AT and WB.

Our search strategy found two papers focused on the
association between AT histone modifications and T2D or
altered glycemic traits (71, 72). Both papers reported cross-
sectional studies with a case control approach. The main
Frontiers in Endocrinology | www.frontiersin.org 4
findings of the histone studies are presented in Table 3.
Finally, from the 23 papers identified as meeting the criteria
for inclusion in this systematic review, two papers were found to
describe changes in lncRNA expression in dysglycemic states in
subjects with obesity (73, 74). Table 4 describes these main
findings and possible targets identified in these studies.

DMR Calls in Illumina 450K Arrays
DMRs between cases and controls were identified from the DNA
methylation studies that used the InfiniumHumanMethylation450
BeadChips (Illumina) platform. DMRs were defined as gain or loss
of methylation above the cut-off of 5%.

For the purpose of establishing the genomic distribution of the
DMRs, a single researcher (IS) used the HumanMethylation450
v1.2Manifest File (https://emea.support.illumina.com/downloads/
infinium_humanmethylation450_product_files.html) to sort the
Illumina 450K CpGs according to their UCSC RefGene_Group
category, i.e. TSS1500, TSS200, 1st Exon, 5’UTR, Body or 3’UTR.
We identified a total of 297,815 and 1,996 CpG in the 450K array
and our data set, respectively, that associated a unique
UCSCRefGene group category. IS then applied c2 tests with
Yates’ correction to each of these categories.

Functional Annotation and
Enrichment Analysis
DAVID (Database for Annotation, Visualization and Integrated
Discovery; v6.8 http://david.abcc.ncifcrf.gov/, accessed March
2021) was performed by IS to assess whether there was a
significant enrichment for particular biological processes, or
molecular functions, within the gene lists that associated
DMRs in AT of individuals with MHO or MUHO (n = 2,139
genes). Enriched gene ontology (GO) terms with a FDR < 0.05
were considered significant. These terms were then clustered
semantically using REViGO (Reduce and Visualize GO) (75),
which removes redundancy. IPA (Ingenuity Pathway Analysis)
was used by IS to identify networks significantly enriched in
genes that associated DMR changes between AT of individuals
with MHO or MUHO, as well as to predict significantly enriched
upstream regulators (i.e. Transcription Factors (TFs)) for our set
of genes. To search for enrichment of TF binding sites at DMRs,
we first retrieved the 122 bp DNA sequences (60 bp on each side
of the CpG) from the HumanMethylation450 v1.2 Manifest File.
These sequences were then analyzed using AME (Analysis of
Motif Enrichment v4.12.0 – http://meme-suite.org/tools/ame) by
selecting Homo sapiens and HOCOMOCO Human (v11 FULL)
as motif database. We then selected the average odds score as the
scoring method and Fisher’s exact test. Network visualization
was performed using IPA.
RESULTS

DNA Methylation
The DNA methylation studies included in this systematic review
included either targeted, i.e. hypothesis-driven studies, or used
unbiased methylome-wide approaches.
June 2021 | Volume 12 | Article 681649
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Targeted DNA Methylation Studies
Targeted epigenetic studies evaluated AT DNA methylation
levels of several candidate genes, either by comparing
methylation profiles of individuals with MUHO to controls, or
by performing correlation analyses between levels of DNA
methylation and glycemic/IR parameters (Table 1). Altogether,
these studies profiled DNA methylation for 14 genes with
established roles in AT and/or glycemic control, ranging from
adipokines (TNFA, ADIPOQ) to a glucose transporter (SLC2A4).
Of these 14 genes (Table 1), ADIPOQ and TNFA had gene
methylation frequency altered in MUHO (59), whilst FGF21
(58), INSR, SLC2A4 (56) and FKBP5 (57) were associated with
DMRs that correlated negatively with gene expression.
Meanwhile, MCP1 (59), HIF3A (55), LEP (53), C3 (52),
SREBF, ABCG1 (54), PIK3R1 (56) and GR (57) showed no
Frontiers in Endocrinology | www.frontiersin.org 5
differences between subjects with MUHO and NW/MHO
controls, or showed no correlation with glycemic parameters.
Association between DNA methylation with fasting glucose were
found for ADIPOQ (positive association) and TNFA (negative
association), although there is some contradicting information
regarding ADIPOQ since another study found no relationship
between ADIPOQ and any glycemic parameters (53). HOMA-IR
showed a positive correlation with methylation at INSR, SLC2A4
(56) and FKBP5 (57).

Genome-Wide DNA Methylation Studies
Most genome-wide studies included in this review sought to
evaluate DNA methylation profiles in the AT of subjects with
MUHO in comparison to a control NW/MHO group (case-
control studies) or attempted correlations between DNA
FIGURE 1 | PRISMA flowchart on the literature selection process.
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ABLE 1 | Data obtained from targeted studies assessing DNA methylation in dysglycemic states or correlated with glycemic parameters.

eference Studied groups
for DNA

methylation
analysis

Sex distribution
of respective

groups

Ages of
respective

groups (years)

Experimental
design (studied

glycemic
parameters)

Tissue Genes Main Findings (NW/MHO vs MUHO)

ADIPOQ
Subjects with MUHO had higher promoter gene
methylation frequency when compared with subjects
with MHO

Cross-sectional
There is a positive association between methylation
and fasting glucose

hang J.
t al. (59)

Uygur subjects MHO=44 F/4 M MHO=45.94 ±
10.01 Case-control

(MHO vs MUHO;
fasting glucose)

VAT
(Total) TNFA,

ADIPOQ,
MCP1

TNFA
MHO (n=48), MUHO=10 F/16 M MUHO=55.25 ±

12.48
Subjects with MUHO had lower promoter gene
methylation frequency when compared with subjects
with MHO

MUHO (n= 26) There is a negative association between methylation
and fasting glucose

MCP1
No differences between groups were found in

promoter methylation frequency

oude,
. A. et al.
3)

MHO (n=73) 40 F/33 M 34.7 ± 7.1 Cross-sectional
(fasting glucose)

VAT
(Total)
SAT
(Total)

LEP,
ADIPOQ

LEP and ADIPOQ
No association between CpGs methylation near the
proximal promoter of LEP or ADIPOQ gene locus
and fasting glucose levels in subjects with MHO

ain A. M.
et al. (55)

Danish subjects
from the
EUGENE2
Consortium
MHO (n=87),
MUHO (n=50)

MHO=61 F/26 M

MUHO=25 F/25 M

F=53.9 ± 10.7

M=53.8 ± 12.0

Cross-sectional
Case-control
(MHO vs MUHO)

SAT
(Total)

HIF3A HIF3A
There were no significant differences in intergenic
DNA methylation levels between subjects with
MUHO and subjects with MHO

illmer T.
et al. (57)

Female South
African subjects

54 F 22-36 Cross-sectional
Case-control

SAT
(Total)

GR, FKBP5
GR
No correlations between DNA methylation and
glycemic traits

(n=54) (glucose, insulin,
insulin sensitivity
and HOMA-IR)

NW, MHO,
MUHO
(BMI 21.7 – 41.6)

FKBP5
Positive correlations were found for fasting insulin/
HOMA-IR and DNA methylation
In gluteal SAT, gene expression (qRT-PCR) is
negatively correlated with methylation levels, fasting
insulin and HOMA-IR and it is positively correlated
with insulin sensitivity

Global methylation in VAT is associated with obesity
but not with T2D; is positively correlated with
HOMA-IR and negatively correlated with QUICKI

DNMT3a
Expression is increased in subjects with MUHO and
is also positively correlated with global DNA
methylation

ałodobra-
azur M.
t al. (56)

NW (n=26) NW=9 F/17 M NW=47 ± 15 Cross-sectional
Case-control
(MHO vs MUHO)
(HOMA-IR,
QUICKI)

VAT
(Total)

Global
Methylation,
INSR,
PIK3R1,
SLC2A4

INSR and SCL2A4
MUHO (n=9) MUHO=6 F/3 M MUHO=52 ± 10 Promoter methylation is increased in subjects with

MUHO
qRT-PCR analysis showed a decrease in mRNA
expression in subjects with MUHO
Promoter methylation is positively correlated with
HOMA-IR and negatively correlated with QUICKI For
SCL2A4, promoter methylation is also negatively
correlated with SCL2A4 gene expression

(Continued)
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methylation changes and glycemic/IR parameters (summarized
in Table 2 and further described in Supplementary Table 3).

Correlation Between DNA Methylation With Glycemic/IR
Parameters
DNA methylation at specific loci in AT was reported to be
correlated with HbA1c levels with a strong sex bias. In men,
DNA methylation of 583 unique genes was significantly
correlated with HbA1c (69), with the vast majority showing
negative correlations. In contrast, in an all-female cohort, only 7
unique genes were significantly associated with HbA1c (69). In 2
of those genes (CYB5R3 and WSCD2), HbA1c was positively
correlated with DNA methylation, meanwhile the other 5
(TNFSF11, GRIK1/NCRNA00110, TNRC18, MEP1A and PIGL)
showed a negative correlation (69) (Table 2).

In other studies, HOMA-IR (66, 67) was associated with DNA
methylation. EHBP1L1, ACSF3, BAG6, CHST11, E2F5, ASAP2,
BOD1/CPEB4 and FASN all showed a positive correlation
between HOMA-IR and DNA methylation, whereas AXIN2,
SERPINF1, MRPL23, MAML3, RBPMS, SORBS3, FGFRL1,
CCDC92, ZBTB16, MAD1L1, TBC1D16, AFTPH/SLC1A4,
FRMD8/SCYL1 and RAP1GAP2 demonstrated a negative
correlation (Table 2).

As for correlations between DNA methylation and the
Matsuda Index, AXIN2, SERPINF1, MRPL23, MAML3,
RBPMS, CCDC92, LINC01317/LINC01320, AFTPH/SLC1A4
showed a positive correlation and EHBP1L1, ACSF3, BAG6,
Frontiers in Endocrinology | www.frontiersin.org 7
BOD1/CPEB4 and FASN showed a negative correlation (66,
67) (Table 2).

DNA Methylation Signatures in Subjects With MUHO vs
Subjects With MHO
An interesting RRBS-based study used preadipocytes derived
from MUHO cases compared to MHO cases and found evidence
for 100 DMRs, with almost half (n=44) of those DMRs showing
significant changes >20% (Table 2). Interestingly, the list of
hypermethylated genes in the group with MUHO >20% features
two major ‘erasers’ of histone modifications (KDM4B, codifying a
lysine demethylase and HDAC2, codifying a histone deacetylase).

Results from case-control EWAS Illumina-array based studies
yielded very heterogeneous findings, likely reflecting the sex, fat
depot and age-related differences between cohorts (Table 2 and
Supplementary Table 3). In total, several thousand DMRs were
identified in the AT of individuals that had MUHO, although
without significant overlap between the individual studies (60–
65, 68, 70).

We then compiled all the data from the relevant studies (60,
62, 63, 65, 68), irrespective of magnitude of DNA methylation
differences, and found statistically significant DMRs at 5648
CpGs, with a global mean change in methylation of only
-0.19% for MUHO when compared to MHO (Supplementary
Table 3). This finding suggests that DNAmethylation differences
are subtle and localized to many loci, as it might be expected for
common diseases.
TABLE 1 | Continued

Reference Studied groups
for DNA

methylation
analysis

Sex distribution
of respective

groups

Ages of
respective

groups (years)

Experimental
design (studied

glycemic
parameters)

Tissue Genes Main Findings (NW/MHO vs MUHO)

PIK3R1
qRT-PCR analysis showed a decrease in mRNA
expression

You D.
et al. (58)

(A)BMI and T2D
discordant MZ
twin pairs from
Scandinavian twin
registries
MHO (n=14)
MUHO (n=14)
(B)MHO (n=28)
MUHO (n= 28)

(A)MHO=5 F/9 M
MUHO=5 F/9 M
(B)MHO=13
F/15 M
MUHO=13
F/15 M

(A)MHO=67.6 ±
7.7
MUHO=67.6 ±
7.7
(B)MHO=74.3 ±
4.3
MUHO =74.5 ±
4.2

Cross-sectional
Case-control
(MHO vs MUHO)

SAT
(Total)

FGF21 FGF21
Hypermethylation of four CpG sites (differences of
3.5%, 3.0%, 3.7% and 2.3% annotated to FGF21 in
subjects with MUHO compared with controls)

A significant negative correlation was found between
DNA methylation in 1 CpG and mRNA expression of
FGF21

Castellano-
Castillo D.
et al. (52)

MHO/MUHO
(n=60)

47 F/23 M (41.53 ± 9.78) - Cross-sectional
Case-control
(glucose, insulin
and HOMA-IR)

VAT
(Total)

C3 C3
(56.70 ± 15.24) No correlations between DNA methylation and

HOMA-IR or glucose were found

Krause C.
et al. (54)

German cohort Cross-sectional
Case-control
(MHO vs MUHO)
(blood glucose,
HbA1c, HOMA-
IR)

SREBF1 and ABCG1
MHO (n=65) 74 F/26 M 43.08 ± 12.62 VAT

(Total)
ABCG1,
SREBF1

No differences in DNA methylation in subjects with
MUHO

MUHO (n=35) Methylation risk score is significantly different
between subjects with MUHO and subjects with
MHO (0.4644 vs -0.02802)
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TABLE 2 | Data obtained from epigenome-wide studies assessing DNA methylation in dysglycemic states or correlated with glycemic parameters.

ain Findings (NW/MHO vs MUHO)

ethylated and 47 hypermethylated in subjects with
ith MHO)

ntly methylated in over 20% when comparing subjects
ts with MHO

on in subjects with MUHO:

OX3, KDM4B, MIEF2, TBC1D1, GLUD1, THUMPD3-
A1, B4GALT1, FAM120C, HDAC2, PCF11, GGA3,
M213B, NKRF, CORT, SMIM1, LRRC37A11P and
ethylated in the promoter region, whereas STARD13,

0059 and CHN2 were hypermethylated in the intron region
istal intragenic region

n in subjects with MUHO:

MOB3A, PSRC1, RAB11FIP2, DCAF11, LINC01097,
were hypomethylated in the promoter region,
, RNF223 and ROBO3 were hypomethylated in distal
and SUGP1 were hypomethylated in the intron region and
on in the exon region

RPL6, RNPS1, DDX39B and HNRNPD exhibited a positive
gene expression and methylation and GTF3C3, PRSS12
e association

ne candidates, 6 loci were associated with either
MA-IR
/SLC1A4 was positively correlated with Matsuda index
ted with HOMA-IR. Methylation of BOD1/CEPB4 and
correlated with HOMA-IR but negatively correlated with
D8/SCYL1 and RAP1GAP2 were negatively correlated
1317/LINC01320 was positively associated with Matsuda

PEB4) of these differentially methylated genes were
ple clinical traits and further explored in the paper

ely correlated with methylation, BMI and Matsuda index
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for DNA

methylation
analysis

Sex distribution of
respective groups

Ages of respective
groups (years)

Experimental
design
(studied
glycemic

parameters)

Tissue Method Statistical
Adjustments

Andersen
E. et al.
(60)

Cross-
sectional
Case-control
(MHO vs
MUHO)

100 DMRs (53 hypo
MUHO vs subjects w

MHO (n=14)
MUHO (n= 14)

MHO=6 F/8 M
MUHO=6 F/8 M

MHO=42.1 ± 6.2
MUHO=47.1 ± 3.2

VAT (Pre-
adipocytes)

RRBS FDR 10%

46 genes were differ
with MUHO vs subje

>20% hypermethylat

C16orf45, GMPR, A
AS1, PFKFB3, IL13R
LOC339529, CIC, FA
GALNT6 were hyper
ZFP36L1, INIP, LINC
and MORN3 in the d

>20% hypomethylati

QKI, CDO1, ARMC3
SH3GL2 and KCNC
LOC286238, SPAG6
intragenic, CAMTA1
OGG1 hypomethylat

In the MUHO group,
association between
and L1TD1 a negativ

Orozco
L. D. et al.
(66)

After identifying 24 g
Matsuda index or HO

METSIM cohort
of Finnish male
subjects
MHO (n=228)

228 M 45-73

Cross-
sectional
(HOMA-IR,
Matsuda,
plasma insulin
levels, OGGT)

SAT (Total) RRBS Bonferroni
(p<10-7)

Methylation of AFTP
but negatively correla
FASN were positively
Matsuda Index. FRM
with HOMA-IR LINC
index

3 (FASN, SLC1A4, C
associated with mult

FASN
Expression is negativ

SLC1A4 - upstream
M

m

e
c

i

C

m

o

,
3
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e

H

0

i
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TABLE 2 | Continued

Findings (NW/MHO vs MUHO)

s as ed with plasma insulin levels, BMI, HOMA-IR and
and tively correlated with gene expression
on (q R) is positively associated with HOMA-IR

eam
asso with basal plasma insulin levels, Matsuda index,

ylat ISH, PDK4 and NR4A1
hyla 3 CpGs was analyzed in relation to T2D, but only
a si nt association

s wit O, 46871 differential methylated sites (DMS) were

ed - sites (corresponding to 4848 genes)
d - sites (corresponding to 3825 genes)

cts w UHO, 22046 DMS were assayed
d - ites (corresponding to 3825 genes)
d - 1 sites (no information)

ter r the DMS with reversely expressed genes (RNA
re c d. No common methylation sites were observed in
ups

ith
latio in promoters corresponding to 12 down-regulated

tion promoters corresponding to 5 up-regulated genes
wit O
ylat s in promoters corresponding to 110 down-regulated

lation corresponding to 43 up-regulated genes
EF1 GEF1, MYCN and SCARB1
ons e genes are associated with DMS in subjects with
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Reference Population
for DNA

methylation
analysis

Sex distribution of
respective groups

Ages of respective
groups (years)

Experimental
design
(studied
glycemic

parameters)

Tissue Method Statistical
Adjustments

Methylation w
Matsuda inde
Gene express

CPEB4 - upst
Methylation is
HOMA-IR

Lee K.
et al. (64)

Discovery
(A) NW (n=250)
MHO (n=200)
T2D Cohort
(B) NW (n=889)
MUHO (n=647)

(A) NW=250 M
MHO =200 M
(B) NW=442 F/447
M
MUHO =283 F/364
M

(A) NW=47.2 ± 5.9
MHO =47.7 ± 5.9
(B) NW=57.76 ±
8.38
MUHO =62.49 ±
8.64

Cross-
sectional
Case-control (
NW vs MUHO)

VAT (Total) Illumina
Infinium
Methylation
EPIC Kit

Bonferroni
(p<1.13*10-5)
Adjusted for
BMI

Promoter met
Differential me
PDK4 showed

Wang C.
et al.
(70)

Han and Kazak
Subjects
NW (n=10)
MUHO (n=8)

– – Cross-
sectional
Case-control (
NW vs MUHO)

VAT (Total) Illumina
Human-
Methylation
450K
BeadChip

None

In Han subjec
assayed
Hypermethyla
Hypomethylat

In Kazak subj
hypermethylat
hypomethylate

In gene promo
microarray) w
both ethnic gr

Han subjects
14 hypermeth
genes

5 hypomethyl
Kazak subject
150 hypermet
genes

52 hypomethy
MFSD1, ARH
Upstream reg
MUHO
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TABLE 2 | Continued

ain Findings (NW/MHO vs MUHO)

tes (associated with 538 unique genes) that exhibit
lation between subjects with MUHO and subjects with

ere distributed mainly in the intergenic and open-sea
ated with hypermethylation. CpG islands and promoter
ed with hypomethylation
own associations with the following pathways: gene
e between subjects with MUHO and subjects with MHO)

L9A1 (body, 0.06), COL11A2 (body/body, 0.15/0.05),
6)
C4 (body, -0.06) and ADAM12 (body, -0.06)

tion functions
XC4 (5’UTR, 0.05), TET1 (5’UTR, 0.06), FOXD2
NRBF2 (1st exon/5’UTR, 0.13)
R3 (5’UTr/1st exon, -0.06), GATA4 (body/body, -0.07/-
,-0.06), TXNIP1 ((3’UTR,-0.06), and ZNF714 (TSS200/
R/5’UTR/5’UTR, -0.32/-0.23/-0.22/-0.25/-0.37)

nction
F2R (body/0.06), CXCL12 (body, 0.05), CXCL13
(5’UTR, 0.06), and FGF14 (body, 0.05)
FSF14 (body, 0.05) and ADCY9 (body/body, -0.06,-0.07)
ot significant in gene ontology analysis
DACM, SCG3
MP1, MUC4, SULT1B1, HOX13, TBX5 (4CpG sites),

bjects with MUHO (discovery and validation cohorts) -

ression (qRT-PCR)

overy cohort
tion level for all 456 800 CpG sites throughout the
gatively with HbA1c (statistically significant for 1st exon,
TSS200)

11 individual CpG sites was significantly associated with
are annotated to 583 unique genes and 170 CpG sites
were mostly associated with gene bodies (25.1%),
.5%) and TSS1500 (19.2%)
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design
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glycemic
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Tissue Method Statistical
Adjustments

M

Crujeiras
A. B. et al.
(63)

Caucasian
subjects
(A) Discovery
Cohort: MHO
(n=5)
MUHO (n=7)
(B) Validation
Cohort:
MHO (n=13)
MUHO (n=11)

(A) MHO=4 F/1 M
MUHO=6 F/1 M
(B) MHO=12 F/1 M
MUHO=10 F/1 M

(A) MHO=53.2 ±
10.3
MUHO=46.5 ± 9.3
(B) MHO=45.3 ±
11.4
MUHO=48.8 ± 6.8

Cross-
sectional
Case-control
(MHO vs
MUHO)

VAT (Total) (A) Illumina
Human-
Methylation
450K
BeadChip
(B) Targeted
(ZNF714)

FDR 5%

982 individual CpG s
differential DNA meth
MHO
IR-related DMCpGs
regions, being assoc
regions were associa
Gene ontology has s
(gene region, differen

Cell adhesion
Hypermethylated - C
and CD44 (body, 0.0
Hypomethylated - M

Transcriptional regula
Hypermethylated - H
(TSS1500, 0.34), and
Hypomethylated - PE
0.07), PRDM8 (3’UTR
5’UTR;1st exon/5’UT

Signal transduction fu
Hypermethylated - IG
(TSS200, 0.09), FGF
Hypomethylated - TN
Metabolic function -
Hypermethylated - H
Hypomethylated - RA
FAMBA1
ZNF714
Hypomethylated in s
mean delta b=-0.17
Increased mRNA exp

Rönn T.
et al. (69)

(A) Males with
MHO (n=96)
(B) Females
with MHO
(n=94)
(C) Males with
MHO (n=37)
Females with
MHO (n=67)

(A) 96 M
(B) 94 F
(C) 67 F/37 M

(A) 32.4 ± 12.8
(B) 29.2 ± 4.2
(C) 52 ± 11

Cross-
sectional
(HbA1c)

SAT (Total) Illumina
Human-
Methylation
450K
BeadChip

FDR 5% Males with MHO disc
Average DNA methyl
genome correlated n
5’UTR, TSS1500 and

DNA methylation of 7
HbA1c of which 541
are intergenic. CpGs
intergenic regions (19
i
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w
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TABLE 2 | Continued

Findings (NW/MHO vs MUHO)

owed and 612 (86%) showed negative correlations
ipose NA methylation and HbA1c

gnifica lation between HbA1c and adipose tissue DNA
was s a CpG site upstream (TSS1500) of ANKRD11
h MHO tion cohort
sites A methylation significantly associated with HbA1c:
3, bo CD2, TSS1500) with a positive and five (TNFSF11,
K1/NC 110, body/TSS1500; TNRC18, body; MEP1A,
GL, 3’ ith a negative coefficient
st cor was observed for a CpG site upstream TNFSF11
se sev were significantly associated with HbA1c in Males

ing Cp in the same direction were found between BMI and

were ed with DNA methylation associated with HbA1c and
ession array) (56% of the analyzed CpG sites were unique)
corre

ive cor s

not a ed with global methylation differences in SAT
ally me d CpGs between BMI-discordant co-twins

ody, CSF3 (body, -0.04), BAG6 (promoter), CHST11
(bod SAP2 (body) - hypomethylated genes

is pos orrelated with Matsuda Index and negatively
ith ins HOMA-IR
y), SER (3’UTR), MRPL23 (body), MAML3 (body), RBPMS
BS3 ( GFRL1 (body), CCDC92 (3’UTR), ZBTB16 (body),
ody) a 1D16 (body)- hypermethylated genes
is neg associated with Matsuda Index and positively
ith ins HOMA-IR

rray a (fold change): CHST11 (0.33), ZBTB16 (-0.26), E2F5
RL1 (- SAP2 (0.17), EHBP1L1 (0.15), RBPMS (-0.29),
.52) a PL23 (0.12) were differentially expressed between
ant tw ese results were validated by qRT-PCR in another
ant co
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TSS200; P
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Correlation
mRNA exp
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Pietiläinen
K. H. et al.
(67)

(A) BMI-
concordant
twin-pairs
MHO (n=22)
(B) BMI-
discordant
twin-pairs
MHO (n=48)
Not able to
obtain AT from
4 subjects
(Original n=52)

(A) 8 F/14 M
(B) 34 F/18 M

(A) 23-36
(B) 23-36

Cross-
sectional
(glucose,
insulin,
Matsuda Index
and HOMA)

SAT (Total,
Isolated
adipocytes)

Illumina
Human-
Methylation
450K
BeadChip

FDR 25%
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TABLE 2 | Continued

ain Findings (NW/MHO vs MUHO)

for glycemic status
ces in average DNA methylation
higher within the gene body, 3’UTR, and intergenic
TSS1500, TSS200, 59 UTR, and the first exon.
ame irrespective of glycemic status

MHO vs MUHO)
d with 7046 genes were differentially methylated in
(over-represented in the gene body/enhancer regions and
TSS1500, TSS200)
rmethylated and 8873 sites were hypomethylated

ifferential methylation representing 50 T2D candidate
PPARG, KCNQ1, and TCF7L2 in subjects with MUHO
65 candidate genes for obesity were differentially

s with MUHO

s that exhibit differential DNA methylation due to
ose levels in subjects with MHO changed in the same
n in subjects with MUHO

2
hypomethylation of these genes and increased
with MUHO (microarrays)

DNA methylation profile in SAT or VAT in subjects with
e found in SAT or VAT after FDR correction

1 differentially associated expressed genes in VAT with
orrected for DMRs) identified 18 IR associated genes
9 DMS in subjects with MUHO. In VAT, four genes (CA3,
IP2B) displayed direct correlation between gene
lation

47 differentially expressed genes in SAT with the 10,746
ted genes containing a total of 336 DMS were identified in
29 genes (ABCC3, ADAMTS15, ADAMTS2, ALDH1A1,
QTNF7, CHST3, COL5A1, CPED1, CYP4X1, EDNRA,
1, NECAB1, NIPSNAP3B, PCMTD1, PTGER3, RHOT1,
D4A, SEMA3G, SH3PXD2, SCLC4A4, SYNE2, TSPYL2,
direct correlation between gene expression and
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M

Nilsson E.
et al. (65)

(A) BMI and
T2D discordant
MZ twin pairs
MHO (n=14)
MUHO (n=14)
(B) MHO (n=28)
MUHO (n= 28)

(A) MHO=5 F/9 M
MUHO= 5 F/9 M
(B) MHO =13 F/15 M
MUHO=13 F/15 M

(A) MHO=67.6 ± 7.7
MUHO= 67.6 ± 7.7
(B) MHO =74.3 ± 4.3
MUHO=74.5 ± 4.2

Cross-
sectional
Case-control
(MHO vs
MUHO)

SAT (Total) Illumina
Human-
Methylation
450K
BeadChip

FDR 15%

MZ twins discordant
No significant differen
Methylation level was
regions, and lower in
Differences were the

Case-control cohort
15627 sites associat
subjects with MUHO
under-represented in
6754 sites were hype

123 sites presented
genes including IRS1
127 sites representin
methylated in subjec

~91% of the CpG sit
increased BMI or glu
direction as methylat

S100A4 and SLC37A
Both cohorts presen
expression in subject

Arner P.
et al. (61)

MHO (n=40)
MUHO (n=40)

MHO=40
FMUHO=40 F

MHO=35.7 ± 5.7
MUHO=36.4 ± 6.3

Cross-
sectional
Case-control
(IS vs IR)

VAT (Total)
SAT (Total)

Illumina
Human-
Methylation
450K
BeadChip

FDR 10%
Adjusted for
BMI and Age

No changes in globa
MUHO. No DMS we

Microarrays
In VAT, merging the
the 10,217 DMS (unc
containing a total of 2
CDKN2C, DAPK2, P
expression and meth

In SAT, merging the
DMS, 223 IR-associa
subjects with MUHO
AMPD3, ATP10A, C1
GPC1, IRF8, KCNAB
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TABLE 2 | Continued

Main Findings (NW/MHO vs MUHO)

Global average methylation levels between SAT and VAT are highly correlated
(0.99)

VAT
340 DMCs, including 78 positive and 262 negative in subjects with MUHO
LCAT, FOXA2, KCNQ1 and GCKR are genes associated with obesity or T2D
FUCA1, C4orf33, PRAP1, SNX4, TMEM109, ZNF597, SLC9A2 were
overlapped with other tissues

SAT
68 DMCs, including 29 positive and 39 negative in subjects with MUHO
IRS1, LEP and ADIPOQ are genes associated with obesity or T2D
MIA2, PSMD5, PAMR1, and SUMO3 were overlapped in other tissues

DMCs in CCDC185, MTHFD2, and SUMF1 were overlapped between SAT and
VAT

RNA microarray - genes with the highest altered DNA methylation (>|5%|) and
altered expression in subjects with MUHO
SAT - DST, MGAT4C, LEP and ZNF3
VAT - BRDT, C14orf105, EDNRB, HMP19, PSG6 and SNX4
Most of these genes have not been previously related with T2D

Overall methylation did not differ according to metabolic status
In a gene candidate approach (136 sites)
Promoters of CDKN2A (12.6 ± 1.9% vs 16.6 ± 2.1%) and HNF4A (75.2 ± 3.8%
vs 70.5 ± 3.7%)) were differentially methylated in subjects with MUHO after
correction for multiple testing

In a explorative approach (26850 sites)
Promoters of ZNF668 (3.4 ± 0.5% vs 2.6 ± 0.5%), HSPA2 (12.1 ± 1.6% vs
14.8 ± 1.6%), C8ORF31 (35.1 ± 6.0% vs 26.9 ± 5.4%), CD320 (1.4% ± 0.4%
vs 1.9 ± 0.3%), SFT2D3 (67.9 ± 3.7% vs 74.5 ± 3.6%), TWIST1 (10.6 ± 0.8%
vs 12.6 ± 0.8%), MYO5A (2.6 ± 0.4% vs 3.4 ± 0.5%), were differentially
methylated in subjects with MUHO after correction for multiple testing

etabolically unhealthy and with overweight/obesity; SAT, Subcutaneous Adipose Tissue;
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for DNA

methylation
analysis

Sex distribution of
respective groups

Ages of respective
groups (years)

Experimental
design
(studied
glycemic

parameters)

Tissue Method Statistical
Adjustments

Barajas-
Olmos F.
et al. (62)

MHO (n=23)
MUHO (n=23)

MHO=16 F/7 M
MUHO=16 F/7 M

MHO=40.96 ± 6.19
MUHO=41.75 ±
9.93

Cross-
sectional
Case-control
(MHO vs
MUHO)

VAT (Total)
SAT (Total)

Illumina
Human-
Methylation
27K
BeadChip

None

Ribel-
Madsen R.
et al. (68)

Danish T2D
discordant MZ
twin pairs
MHO (n=5)
MUHO (n=5)
SAT not
available in 7
pairs (Original n
in each
group=12)

MHO=6 F/6 M
MUHO=6 F/6 M

MHO=40.96 ± 6.19
MUHO=41.75 ±
9.93

Cross-
sectional
Case-control
(MHO vs
MUHO)

SAT (Total) Illumina
Human-
Methylation
27K
BeadChip

Corrected for
multiple
testing
(Westfall-
Young
resampling
method)

NW – Subjects that are with normal weight, MHO – Subjects that are metabolically healthy and with overweight/obesity, MUHO - Subjects that are m
VAT, Visceral Adipose Tissue.
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Small changes in DNA methylation raise the question of how
impactful they might be in terms of gene expression and cellular
function. However, small DNA methylation differences across
common gene pathways may have a cumulative effect. For a
more focused analysis we used 5%, as lower cutoff limit, for DNA
methylation differences, which is an approach followed by two of
the studies reviewed here (62, 63). We identified 2494 DMRs
with differences greater than 5%, of which 204 were greater than
10% and 78 greater than 20% between subjects with MUHO and
their corresponding controls. These 2494 DMRs were mapped to
2136 unique genes, of which 983 associated gain of methylation
and 1,153 loss of methylation in the groups with MUHO in
relation to their respective controls (Supplementary Table 4).
Most of the DMRs with differences greater than 5% were found
using the Illumina 450K arrays and 1,996 could be assigned to a
specific genomic feature.

Importantly, we observed that among the AT-DMRs genes, some
were not previously strongly or unequivocally linked to adipogenesis
nor dysglycemia, so we decided to focus on the ten most differentially
methylated ones. Among these genes, 3 (FCGBP, KCNC3 and
ARMC3) were hypomethylated and 7 (HLA-DRB6, SMIM1, CAPN8,
INIP, NKRF, GALNT6 and STARD13) were hypermethylated in
MUHO (for further information see Supplementary Table 3, with
the 10 genes highlighted with an asterisk). Next, these potentially novel
genes are described in more detail.

The greatest methylation differences were identified in genes
that belong to the human leukocyte antigen (HLA) system, with
3 of the most differentially methylated CpGs belonging to HLA-
DBR6 , HLA-DBR1 and HLA-DQA1 , all found to be
hypermethylated in MUHO. HLA-DRB6 is associated with
immunological and neurological disorders such as multiple
sclerosis (76), Alzheimer’s disease (77) or chronic pain (78).
Nevertheless, given that the HLA system regulates the adaptive
immune response, it can be hypothesized that this gene may play
a role in mediating the AT inflammatory state in MUHO.

SMIM1 was found to be hypermethylated in MUHO. This
gene codifies a protein that is involved in red blood cell
formation being also an antigen in the Vel blood group (79).
This blood group is more prevalent in individuals of Nordic
ancestry and, so far, there is no known connection between this
protein and dysglycemia. It may be overrepresented in our study,
Frontiers in Endocrinology | www.frontiersin.org 14
as the study that reported this DMR was performed in a Danish
population (60).

STARD13 was another gene found to be hypermethylated in
MUHO. STARD13 encodes the protein StAR-related lipid
transfer protein 13, a Rho GTPase-activating protein closely
associated with hepatic cancer (80). Besides being linked with
actin cytoskeletal organization, this protein also seems to influence
other biological activities (81), such as insulin secretion (82), and
induction of mitochondrial phosphatidylglycerolphosphate
synthase activation in response to ceramides (83). This may be
particularly relevant in the adipocyte’s metabolic deregulation, as
ceramides play an important role in glucose uptake and
metabolism (84). ARMC1 and ARMC3 are both hypomethylated
in MUHO. ARM domain-containing proteins, such as ARMC1
and ARMC3, function in signal transduction, development, cell
adhesion and mobility, and tumor initiation and metastasis (85).
In signal transduction, this protein family is closely linked toWnt/
beta-catenin signaling pathway (85), involved in insulin sensitivity
(86) and adipocyte differentiation (87). The gene that encodes the
voltage-gated potassium channel protein KV3.3, KCNC3, is
hypomethylated in MUHO. This gene codifies a type of
potassium channel that is mainly linked to spinocerebellar ataxia
13 (88), but it also seems to play a role in adipocyte differentiation
from bone marrow-derived human mesenchymal stem cells (89).
Furthermore, there may be a link between this protein and TANK-
binding kinase 1 (90), a protein that seems to be important in AT
metabolic regulation (91). FCGBP, the gene that codifies the Fc
fragment of IgG binding protein, which binds the Fc portion of
IgG molecules, is hypomethylated in MUHO. This protein is
expressed in mucin secreting cells in tissues such as the colon,
small intestine or gall bladder (92). It is hypothesized to be
involved in anti-inflammatory processes (93), and if this role is
confirmed in the AT, it may confer some protection against the
obesity induced low-grade inflammatory state (94). Furthermore,
higher levels of FCGBP are positively correlated withM2 response,
further supporting the potential role in determining immune cell
infiltration phenotype (95). GALNT6 encodes the polypeptide N-
acetylgalactosaminyltransferase 6 (GalNAc-T6), a protein highly
associated with several types of cancer and mostly absent in
healthy tissues (96, 97). GalNAc-T6 has several identified
targets, two of which that are related with inflammation, CD44
FIGURE 2 | Pie chart representing the proportions of genomic features with associated DMRs between subjects with MUHO and respective controls with MHO.
*** indicates P < 0.0001 by c2 tests with Yates’ correction. Data derived from refs (63, 65).
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FIGURE 3 | In silico enrichment analyses of genes that associate DNA methylation changes between subjects with MUHO, compared to controls with MHO. Top
scoring biological processes (A) and molecular functions (B) enriched in genes that associate DNA methylation changes above the cut-off of 5%. For each GO term,
top three genes with the highest levels of DNA methylation changes are shown (loss of DNA methylation in green and gain of DNA methylation in red). Genes with an
associated * have been previously been connected with regulation of glucose homeostasis (see Supplementary Table 5). The size of each bubble indicates the
frequency of the GO term in the GOA (Gene Ontology Annotation) database. Lines connecting GO terms indicate relatedness and the line width indicates the degree
of similarity. (C) IPA networks significantly enriched in genes implicated in carbohydrate metabolism (see also Supplementary Table 6). Green and red depict genes
that associate DNA methylation loss and gain, respectively, in individuals with MUHO. Solid lines represent direct interactions between the two gene products and
dotted lines mean that there is an indirect interaction. The legend shown under the second network indicates the type of protein encoded by each gene. (D) TFs that
associate DNA methylation changes in individuals with MUHO and with significant enrichment of binding sites at genes harbouring differentially methylated CpGs, as
determined by AME and IPA analyses. Data derived from studies (60, 62, 63, 65, 68).
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and CD74, with the last being a specific target of this protein (96).
Both CDs (98) have been linked with AT inflammation with more
preponderance for CD44 (99). NKRF, the gene that expresses the
NF-kB-repressing factor, is hypermethylated in MUHO. This
protein directly represses NF-kB (100), an important player in
the inflammatory signaling that mediates the response to TNF-a,
thus being involved in insulin resistance (101, 102). Furthermore,
NF-kB is vital to TNF-a-induced lipolysis in adipocytes (103).
Lastly, NF-kB expression and activity change during adipocyte
differentiation (104). Finally, there are two genes that present large
methylation changes whose functions are either unknown or
unrelated to the adipocyte. These are INIP and CAPN8, both
found to be hypermethylated in MUHO. INIP is involved in DNA
repair, but its precise biological functions are unknown (105). As
for CAPN8, it belongs to the mammalian calpain protease family
(106), with a specific role in the gastrointestinal tract, where it
forms a heterodimer with CAPN9, which seems to be involved in
gastric protection (107, 108).

In Silico Bioinformatic Analyses Across Studies With DMRs
>5% in Subjects With MUHO vs Subjects With MHO
We observed that DMRs between subjects with MUHO and their
respective controls, irrespective of their direction of change,
Frontiers in Endocrinology | www.frontiersin.org 16
tended to have a skewed distribution, with a significant
depletion around the promoter regions (Figure 2).

Next, in order to understand the biological meaning of the set
of genes that associated DNA methylation changes in subjects
with MUHO, we applied DAVID functional annotation, followed
by REViGO clustering (see Methods and Supplementary
Table 4). Using this approach, we found significant enrichment
of several GO terms, including signal transduction, positive
regulation of GTPase activity and calcium ion binding
(Figures 3A, B), suggesting a potential role for altered
intracellular signaling in AT in the pathogeny of obesity-related
IR/T2D. Further supporting this potential link, we found that
several genes belonging to these GO terms and associating larger
DNA methylation differences between subjects with MUHO and
their respective controls, have been previously linked with traits
such as IR, glucose intolerance and dyslipidemia in rodents, or
have been associated with T2D in humans through genetic studies
(Figures 3A, B and Supplementary Table 5).

To understand further the potential roles of the genes that
associate DNA methylation changes in subjects with MUHO, we
then used IPA and performed network analysis (see Methods).
We identified 25 networks enriched in our gene set
(Supplementary Table 6), two of which are implicated in the
TABLE 3 | Data obtained from studies assessing histone modifications in dysglycemic states or when correlated with glycemic parameters.

Reference Population
for histone
analysis

Sex
distribution of
respective
groups

Ages of
respective
groups
(years)

Experimental
design (studied

glycemic
parameters)

Tissue Method Main Findings (NW/MHO vs MUHO)

Jufvas A.
et al. (72)

NW (n=14) NW=14 F NW=64.4 ±
8.7

Cross-sectional
Case-control

SAT
(Isolated
adipocytes)

SDS-PAGE and
Immunoblotting

Subjects with MUHO present 40% higher
H3K4me3 than L subjects or subjects with MHO

MHO (n=19) MHO=19 F MHO=60.2 ±
11.4

(NW/MHO vs
MUHO) Subjects with MHO present 37% lower

H3K4me2 than L subjects
MUHO
(n=10)

MUHO =8 F/2 M MUHO =55.2
± 15.2 No significant differences between groups for

H3K9me2
Castellano-
Castillo D.
et al. (71)

NW (n=10) NW=6 F/4 M NW=54.40 ±
13.93

Cross-sectional
Case-control

VAT (Total) Chromatin
immunoprecipitation
assay

Increased H3K4me3 in E2F1, LPL, SREBF2,
SCD, PPARG and IL6 promoters in subjects
with MUHO vs L subjects

MHO (n=10) MHO=7 F/3 M MHO=40.50 ±
8.34

(NW/MHO vs
MUHO) Positive correlation between H3K4me3 in gene

promoters and HOMA-IR, glucose and insulin
for E2F1, LPL, SREBF2, SCD, PPARG and IL6

MUHO
(n=9)

MUHO=6 F/3 M MUHO=47.11
± 8.28

Positive correlation between H3K4me3 in TNF
gene promoter and glucose

Decreased mRNA expression of LPL, SCD and
PPARG in subjects with MUHO vs L subjects
Increased mRNA expression of TNF and IL6 in
subjects with MUHO vs L subjects

Positive correlation between gene expression
and insulin and HOMA-IR for LEP, IL6 and TNF.
IL6 expression was also positively correlated
with glucose
Negative correlation between gene expression
and insulin and HOMA-IR for SREBF2 and SCD
NW – Subjects that are with normal weight, MHO – Subjects that are metabolically healthy and with overweight/obesity, MUHO - Subjects that are metabolically unhealthy and with
overweight/obesity; SAT, Subcutaneous Adipose Tissue; VAT, Visceral Adipose Tissue.
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carbohydrate metabolism (Figure 3C). Importantly, in one of
these networks, ERK1/2 is the main central node, a pathway
which has been implicated in the development of IR associated
with obesity and T2D (109–111). The second network has several
more discrete nodes highlighting intracellular trafficking, such as
EXOC6, which has been implicated in the GLUT4 translocation
in response to insulin signaling (112) and SDF4/Cab45 that has a
central role in sorting specific cargo molecules at the trans-Golgi
network (113).

We then searched for upstream regulators that might be
implicated in the occurrence of DNA methylation changes in AT
samples of subjects with MUHO. To this aim, we used two
computational approaches. First, we used AME and identified 187
TF motifs significantly enriched within sequences of DNA centered
on DMRs (see Methods and Supplementary Table 7). Using IPA,
we then identified 230 TFs significantly enriched as upstream
regulators of genes that associate DMRs in AT samples of
subjects with MUHO or MHO (see Methods and Supplementary
Table 4). Forty-seven TFs were common between the two
computational approaches and seven of these associated DMRs
(Figure 3D). These seven TFs are predicted to regulate 149 of the
genes in our dataset (Supplementary Figure 1) and include ETS1
(114, 115) SPI1/Pu.1 (116, 117) and SMAD3 (118), which were
previously linked with glucose homeostasis.

Altogether, our bioinformatics analyses suggest an important
role for altered intracellular signaling as a key event in the
development of IR/dysglycemia in some individuals with
overweight/obesity and highlight the potential implication of a
network of TFs in the pathogeny of obesity-associated T2D.

Correlation Between DNA Methylation in AT and in WB
To identify the extent to which the DMRs are specific to AT, on a
second stage we then performed a non-systematic search in
PubMed for papers describing DNA methylation in WB of
subjects with MUHO (39, 40, 46, 61, 62, 69, 119–128). 27 genes
associating methylation changes above 5% in AT were also found
to carry DMRs in WB, with 8 common CpGs, each located in a
single gene, showing concordant methylation patterns in WB and
AT: hypermethylation in subjects with MUHO at cg14642338
(PAMR1), cg09419670 (PSMD5), cg21053323 (SUMO3) and
cg17878506 (TBC1D4); hypomethylation at cg02707176
(PCDHGA1/PCDHGA4), cg20050113 (SLC9A2), cg19693031
(TXNIP) and cg00117018 (ZNF251), with an overall correlation
coefficient R2 = 0.88 (Supplementary Table 8).

Interestingly, five of these genes have not been previously
linked to dysglycemia and will be discussed in more detail
(Supplementary Table 8). PCDHGA1/PCDHGA4 are genes
from a cluster that codifies protocadherin gamma proteins.
These cell-adhesion molecules are typically associated with
brain neuron synapses, but no association has been found with
AT biology or glucose sensitivity (129, 130). PSMD5 codifies the
proteasome 26S subunit S5B. Since MUHO is commonly
associated with a low-grade chronic inflammation and
dysregulation of cellular proteostasis, this gene could potentiate
the MUHO phenotype by its role in proteasome 26 assembly.
SLC9A2 codifies a sodium ion-proton exchanger. This
transporter has mostly been associated with the gastrointestinal
Frontiers in Endocrinology | www.frontiersin.org 17
tract and the kidney, regulating cellular pH and volume, with
data suggesting that it is mostly localized in the apical epithelial
membrane (131, 132). This transporter might be involved in the
transport of short chain fatty acids (133), which are speculated to
modulate glucose metabolism in humans (134). Also, its role in
renal physiology could also intervene in other diabetes
comorbidities, such as nephropathy. SUMO3 codifies a protein
of the small ubiquitin-related modifier family, thoroughly
described in post-transcriptional protein modification,
especially in the context of various diseases where T2D is
included (135). SUMO3 was associated with the modification
and translocation of ATF5, a transcription factor that has also
been previously associated with ß-cell survival (136), from the
centrosome, promoting the cell cycle progression (137). ZNF251
codifies a protein of the zinc finger family. Zinc finger proteins,
while being commonly associated with DNA recognition and
interaction, are currently known to interact with a plethora of
biomolecules, therefore possessing a wide range of functions
(138). However, the role of ZNF251 in human physiology is
currently unknown. Even so, this gene has been associated to the
promotion of lung cancer through activation of the ERK
signalling pathway (139). This signalling pathway is closely
associated with AT biology and glucose sensitivity, so one may
posit that this gene could affect the MUHO phenotype by the
ERK signalling pathway (109).

Histone Modifications and Long
Non-Coding RNAs
Histone modifications have important effects in several biological
processes associated with gene expression, DNA replication and
chromatin compaction, among others. Methylation of specific
lysine residues, such as H3K4, are generally associated with
active transcription, while a transcriptional repression is
observed when the methylations occurs at H3K9 (140).
Although the number of studies performed so far comparing
AT of subjects with MUHO or MHO is small (Table 3), they
demonstrated differences in levels of specific histone
modifications, both in terms of global levels (72), as well as at
the promoters of key genes implicated in adipogenesis, lipid
metabolism and inflammation (71). Additionally, levels of
H3K4me3 at specific promoters correlated with HOMA-IR,
glucose or insulin levels (71) (Table 3).

LncRNAs are known to play important roles in modulating
the cells’ transcriptional landscapes, for example by recruiting
other epigenetic marks (141). Both targeted (74) and genome-
wide approaches (73) compared the expression of lncRNAs in
the AT of individuals with MUHO to that of individuals with
MHO, which provided proof-of-principle for altered lncRNA
expression, particularly in SAT (Table 4). Although the number
of differentially expressed lncRNAs identified so far is small,
some of these, such as GAS5 (74), ENSG00000235609.4 and
CATG00000111229.1 (73) have been functionally validated and
demonstrated to play specific roles in processes such as
regulation of INSR gene expression (GAS5), adipocyte
differentiation and adiponectin release (ENSG00000235609.4
and CATG00000111229.1) (Table 4).
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TABLE 4 | Data obtained from studies assessing lncRNA expression changes in dysglycemic states or when correlated with glycemic parameters.

Reference Population
for lncRNA
analysis

Sex distribution
of respective

groups

Ages of
respective
groups
(years)

Experimental
design (studied

glycemic
parameters)

Tissue Range of
analysis
for AT

samples

Main findings Predicted/tested targets
of the registered lncRNAs

(MHO vs MUHO)

Gao H.
et al. (73)

MHO (n=40) MHO=40 F MHO=36 ± 6 Cross-sectional VAT (total) Genome
Wide

Two cohorts were analyzed
in this article: the first
checking non-obesity vs
obesity; the second
subjects with MHO vs
subjects with MUHO being
based on a previous work
from Arner et al. (61). This
report will be based on the
results from the second
cohort

CATG00000111229.1
In silico analyses and data
from stimulated and non-
stimulated lipogenesis/
lipolysis have shown that
this lncRNA affects
inflammation pathways
In vitro analyses have
shown that this lncRNA is
positively correlated with
PPARG, INSR, KLF15,
SREBF1, IGF1R, PPARA,
MAPK1, PPARD, SREBF2,
SCAP, ATP7B, THRB and
FASN pathways; and that is
negatively correlated with
MAP4K4, SYVN1, TFGFB1,
ACOX1, STAT3, INSIG1,
STAT1, POR and INSIG2
signalling pathways

MUHO
(n=40)

MUHO=40 F MUHO=36
± 6

Case-control SAT (total) No expression differences
were found in VAT samples
(FDR<0.05)

(MHO vs
MUHO)

44 lncRNAs in intergenic
regions were found to be
differentially expressed in
SAT samples in subjects
with MUHO, but only 16
were manually curated for
posterior analysis (ROC
plots)

CATG00000087873.1,
CATG00000106343.1,
CATG00000111229.1,
ENSG00000229961.1,
ENSG00000249378.1,
ENSG00000256551.1

ENSG00000235609.4

Expression is increased in
SAT, in subjects with
MUHO (average AUC range:
70.5% to 76.6%)

In silico analyses and data
from stimulated and non-
stimulated lipogenesis/
lipolysis have shown that
this lncRNA affects lipid
metabolism pathways

CATG00000000027.1,
CATG00000085516.1,
ENSG00000226891.2,
ENSG00000229108.1,
ENSG00000235437.3,
ENSG00000235609.4,
ENSG00000236849.1,
ENSG00000250237.1,
ENSG00000253434.1,
ENSG00000259820.1

In vitro analyses have
shown that this lncRNA is
positively correlated with
PPARG, INSR, KLF15,
IGF1R, PPARA, PPARD,
PPARGC1A, FAS and
TFAM pathways; and that is
negatively correlated with
MAP4K4, SYVN1, TFGFB1,
ACOX1, STAT3, KDM5A
and INS signalling pathways

Expression is decreased in
SAT, in subjects with
MUHO (average AUC range:
70.7% to 78.3%)

It was shown that
approximately 500 genes
are affected by the former
lncRNAs, with 10% being
shared in between. Both are
positively correlated with
PPARG, INSR, KLF15,
PPARA and PPARD
signalling pathways and
negatively correlated with
MAP4K4, SYVN1, TGFB1
and ACOX1. However,
some of the genes
associated with these
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DISCUSSION

In this review, we systematically appraised and discussed the
published epigenetic changes identified within the AT, namely
DNA methylation, histone modifications and lncRNAs,
associated with obesity-related IR/dysglycemic traits and T2D.
Our integrative approach, based on bioinformatic analyses,
highlighted a number of additional avenues for future research,
such as new signaling pathways, novel TFs and blood-based
DNA methylation biomarkers that can discriminate between
MHO and MUHO individuals.

Hypothesis-driven DNA methylation studies on selected
genes provided some good, albeit limited, links between
dysglycemia and levels of DNA methylation. Across the
reviewed studies, three genes (FGF21, INSR and SLC2A4)
associated hypermethylation around the promoter region in
subjects with MUHO versus subjects with MHO. DNA
methylation at the promoter regions of these genes showed a
negative correlation with expression of the corresponding genes
(56, 58). Importantly, these targeted studies found significant
correlations between glycemic parameters (such as fasting
Frontiers in Endocrinology | www.frontiersin.org 19
glucose or HbA1c), insulin resistance measurements (such as
HOMA-IR) or insulin sensitivity measurements (such as the
Matsuda index or QUICKI) with levels of DNA methylation for
ADIPOQ, TNFA, FKBP5, INSR and SLC2A4 (56, 57, 59). These
comparisons draw some parallels between glucose levels and
DNA gene methylation changes in several tissue types from in
vitro studies (142, 143). Along those lines, all five genes are
related to the cellular responses to insulin: INSR encodes the
insulin receptor (56), ADIPOQ encodes an insulin sensitizer
(144), TNFA encodes a cytokine linked to insulin resistance
and was found to be elevated in the serum of subjects with T2D
(145), SLC2A4 encodes GLUT4 that is the major glucose
transporter in adipocytes (146) and FGF21 encodes a
hormone-like protein with insulin sensitizing actions in
adipocytes (58).

Most EWAS in the context of obesity performed so far
focused on assessing DNA methylation levels in WB. These
DNA methylation studies have uncovered several DMRs located
in or near genes known to be implicated in body weight
regulation or glucose homeostasis, which presented significant
correlations with BMI (147). Interestingly, data suggests that
TABLE 4 | Continued

Reference Population
for lncRNA
analysis

Sex distribution
of respective

groups

Ages of
respective
groups
(years)

Experimental
design (studied

glycemic
parameters)

Tissue Range of
analysis
for AT

samples

Main findings Predicted/tested targets
of the registered lncRNAs

(MHO vs MUHO)

pathways were differentially
associated with each
lncRNA. Inhibition of both
was associated with
decreased lipolysis,
adipogenesis and release of
adiponectin

A crosscheck and validation
with real-time PCR were
made with data from the
first cohort, where 3
lncRNAs expression
patterns were determined

CATG00000000027.1

ENSG00000235609.4,
CATG00000000027.1

In silico analyses and data
from stimulated and non-
stimulated lipogenesis/
lipolysis have shown that
this lncRNA affects lipid
metabolism pathways

Expression is decreased in
SAT, in subjects with
MUHO (p<0.01)
CATG00000111229.1

Expression is increased in
SAT, in subjects with
MUHO (p<0.001)

Shi Y. et al.
(74)

NW/MHO
(n=6)

– – Cross-sectional
Case-control
(MHO vs
MUHO)

VAT
(Isolated
adipocytes)

Targeted
(GAS5)

GAS5
Expression is decreased in
subjects with MUHO in both
samples (p<0.0001)

In vitro analyses have
shown that GAS5
modulates positively the
insulin pathway in human
adipocytes and
preadipocytes by serving as
a riboactivator in the INSR
promoter (first assessed
through an in silico analysis)

NW/MUHO
(n=6)

SAT
(Isolated
adipocytes)
June 202
1 | Volume 12 | Article 68164
NW – Subjects that are with normal weight, MHO – Subjects that are metabolically healthy and with overweight/obesity, MUHO - Subjects that are metabolically unhealthy and with
overweight/obesity; SAT, Subcutaneous Adipose Tissue; VAT, Visceral Adipose Tissue.
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these DNA methylation changes associated with BMI are a
consequence rather than the cause of obesity (39). In addition,
a methylation risk score calculated across loci associated with
BMI, was found to be strongly predictive for future T2D risk,
while methylation patterns observed in peripheral blood cells
and other tissues suggest that altered ‘systemic’ methylation is a
signature of T2D (148). Furthermore, a large number of these
epigenetic signatures tend to occur in genomic regions where
genes that are involved in processes related to glucose
homeostasis, such as insulin signalling or glucose/lipid
metabolism, are located (149). Our analyses also led to the
identification of eight differentially methylated CpGs,
associated to eight genes, which have tightly correlated changes
between MUHO and MHO individuals in WB and AT. Three of
these genes – TBC1D4, TXNIP and PAMR1 – were previously
implicated in dysglycemia (150–152). However, the remaining
five genes (PCDHGA1/PCDHGA4, PSMD5, SLC9A2, SUMO3
and ZNF251) to the best of our knowledge, have not been
mechanistically associated with dysglycemia. We speculate that
these genes could highlight new molecular pathways relevant for
AT dysfunction and progression to dysglycemia. Additionally,
since these DMRs are strongly correlated between AT andWB, it
is possible to envisage that these could be potentially useful
biomarkers when considering to develop a CpGs panel to predict
the risk of future T2D in MHO.

We, like others, reasoned that investigating epigenetic
signatures in peripheral tissues that are metabolically relevant
for the pathogenesis of obesity-related metabolic complications,
and specifically in the AT, could provide further insights into the
role of epigenetic modifications for the mechanisms of the disease
(153). Indeed, the limited number of studies performed so far,
and described here, highlight distinctive epigenetic signatures in
AT of individuals with MUHO compared to AT of individuals
with MHO. In contrast to the limited scope of targeted studies,
EWAS studies that compare groups of individuals with MUHO
and a control population tend to paint us a fuller picture of the
epigenetic landscape. Therefore, our analytic approach was to
focus on collating all the data, mostly from the EWAS studies
reported to date, with the aim of generating potentially
meaningful data, in spite of issues related to the high variability
between studies. Indeed, despite the heterogeneous nature of
the studies reviewed, particularly in terms of selection criteria of
the cohorts and tissue types (total SAT/VAT or isolated
adipocytes from SAT/VAT, or pre-adipocytes derived from
VAT), we catalogued over two thousand DMRs at the cutoff
5%. Interestingly, the majority of the strongest DMRs (>30%)
were located at genes that have not been previously linked with
adipogenesis or dysglycemia. Among these, three DMRs were
located at genes encoding components of the human leukocyte
antigen (HLA) system, classically associated with the risk for type
1 diabetes (154), such as HLA-DBR1 and HLA-DQA1, both
hypermethylated in MUHO. Other genes that associate strongly
hypermethylated DMRs in MUHO include HLA-DBR6,
STARD13, GALNT6, NKRF, INIP and CAPN8. Genes that
associate strongly hypomethylated DMRs in MUHO include
ARMC3, MOB3A, KCNC3 and FCGBP. These genes are
Frontiers in Endocrinology | www.frontiersin.org 20
implicated in a wide range of activities, from ion transport, to
signal transduction and transcriptional regulation (86, 90, 100,
104). Their study in the context of AT biology may provide new
clues about the mechanisms leading to MUHO.

Although each individual DMR is unlikely to have a big
influence on gene expression, particularly those that associate
smaller DNA methylation differences, it is possible that their
cumulative effects could have a significant impact on progression
to dysglycemia (34). Since most of the DMRs catalogued in our
review were identified using the Infinium HumanMethylation450
BeadChip platform (63, 65), we tested whether they showed a
similar distribution to that of the probes included on this array.
We observed a significantly smaller proportion of DMRs around
the gene promoters in cases with MUHO compared to controls.
Whether or not this is a general feature of AT from MUHO
subjects representing for example specific demethylation events at
promoter regions or defects in targeting methylation to specific
promoter regions, this will need to be established in multiple and
larger cohorts. It will be important also to establish if the relative
‘loss’ of promoter DMRs has an impact on gene expression.
Promoter DNA methylation is traditionally associated with
repression of gene expression. Nonetheless, there are exceptions
to this rule, and hypermethylation induced transcriptional
activation has been document in a range of conditions and cell
types (155). Although gene body methylation is highly conserved
across eukaryotic species, the understanding of its function is still
incomplete, and may play a role in alternative splicing or as a
“fine tuning” mechanism of gene expression (156, 157). Because
the data on gene expression in the studies included in this review
was incomplete, we could not assess directly the relationship
between the DMRs and gene expression. Nonetheless, we set out
to perform bioinformatics analyses on the set of genes that
associated DMRs above the cutoff of 5%. Both DAVID and IPA
analyses highlighted alterations in several key intracellular
signaling pathways. Among these, we identified a significant
enrichment of genes implicated in signal transduction mediated
by small GTPases. Several small GTPases, such as those from the
Rho family, many of which associate DMRs in our study, have
been already linked with glucose uptake in AT and with IR (158).
Calcium homeostasis, enriched in genes associating DMRs in our
study, has been also implicated in a myriad of cellular and
subcellular dysfunctional networks found in the context of
obesity and diabetes (159). ERK1/2 signaling (109, 111) and
intracellular protein trafficking (101) were also linked
previously with insulin signaling. Our search also identified a
network of TFs predicted to regulate transcription of a large
fraction of genes that associated DMRs and seven of these TFs
were associated with DMRs themselves. While some of these TFs
are strongly linked with glucose homeostasis, others, such as
ELF1, IRF8 and RUNX1, are yet to be studied in this context. It
has been reported that the binding site for ELF1 is
overrepresented in the promoters of genes up-regulated during
adipogenesis of human adipose-derived stromal cells (160). Both
IRF8 (161–163) and RUNX1 (163) have been implicated in the
pro-inflammatory immune response. It is known that AT
inflammation plays an important role in the development of
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insulin resistance (3). Understanding the mechanisms by which
the seven TFs identified in our analysis could target DNA
methylation changes to specific regions requires further studies.
Emerging evidence suggests that TF occupancy can mediate
active turnover of DNA methylation by local recruitment of
DNMT and TET enzymes implicated in the addition and
erasure of DNA methyl groups, respectively (164, 165). As
these TFs are involved in complex regulatory pathways and
impact a great number of genes, more attention to their
potential role in the pathogenesis of obesity and obesity-
associated dysglycemia is warranted.

The search for genetic-based risk factors is particularly
affected by the high degree of clinical heterogeneity that exists
within each group of healthy or unhealthy individuals, but also
because metabolic markers of ‘health’ that define these two
groups vary greatly across current human studies and cohorts.
In spite of these pitfalls, major insights into the identification of
genetic pathways that may help uncoupling adiposity to
cardiometabolic comorbidities have come from GWAS studies
(32, 33). Huang et al. (33) identified 62 loci of which the
adiposity-increasing allele was also associated with a favourable
effect on cardiometabolic risk factors. Interestingly, we found
that 10 of these genes (ADCY9, ARAP1, CLIP1, CREBBP, GFI1,
IRS1, JAZF1, NCOR2, PPARG and PSORS1C1) are differentially
methylated between subjects with MUHO and subjects with
MHO in our systematic review lists. Another approach that
may lead to the identification of gene variants that link increased
adiposity with reduced risk of cardiometabolic is a more indirect
one (32). Accordingly, GWAS studies aimed to discover genes
involved in body fat % identified variants in or near IRS1,
COBLL1/GRB14, PLA2G6, TOMM40 loci of which the body fat
% increasing allele had protective effects on cardiometabolic
outcomes. Interestingly, GWAS studies for obesity or T2D
show relatively little overlap, with a screen using the GWAS
Catalog (https://www.ebi.ac.uk/gwas/) leading to the
identification of 89 gene variants common to both. Of these 89
genes, 8 (SUGP1, MACROD2, RPTOR, FAIM2, LEPR, HS6ST3,
TMEM1 and KCNQ1) were found differentially methylated
between subjects with MUHO compared to subjects with
MHO in our review lists.

Histone modifications are important epigenetic marks, with a
regulatory role in numerous cellular events. These modifications
can either promote or repress DNA transcription, and act
through two main mechanisms, by affecting chromatin
structure or protein binding (140, 166). Moreover, histone
lysine methylation may activate or repress transcription
depending on its position and methylation state (mono, di or
trimethylation) (167). The scarcity of histone modifications
studies in AT is related to technical difficulties. Indeed, the
high lipid content renders AT as an extremely challenging
tissue to work with. Clear associations were found between
H3K4me3 enrichment in key genes and their expression (E2F1,
LPL, SREBF2, SCD, PPARG and IL6) (71), illustrating that
histone methylation could have an important role in obesity
and T2D, by affecting various pathways associated with
metabolic disease. The preliminary work discussed in this
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review indicate a great potential, but also highlight the need
for genome-wide characterization of histone modifications in
human AT to better understand their role in MUHO.

Unique lncRNA expression profiles in AT of individuals with
obesity were found to correlate with distinct glycemic states (73,
74). These lncRNAs intervene in the glucose regulation pathways
and are suggested to be implicated in the pathology of insulin
resistance and T2D by modulating pathways involved in
adipogenesis, energy metabolism, inflammation or insulin
sensitivity (168, 169). GAS5, comprised of 12 exons, belongs to
the 5’-terminal oligopyrimidine class and codifies not only the
respective lncRNA, but also miRNAs, small nucleolar RNAs and
PIWI-interacting RNAs (170, 171). The lncRNA transcript was
suggested to interact with the promoter of the INSR gene as a
riboactivator, allowing transcription factors to bind more easily,
leading to overexpression of this gene (74). GAS5 lncRNA was
also previously reported to interact directly with the chromatin
in other contexts, such as being a riborepressor of the
glucocorticoid receptor in starvation or growth arrest (172).
ENSG00000235609.4 and CATG00000111229.1 are novel
intragenic lncRNAs and their role in the adipose physiology is
largely unknown. Different AT depots and diferent cell
populations may have specific patterns of lncRNA expression
(173). Hence, it is critical to perform more studies on the role of
differentially expressed lncRNAs in the different AT depots and
on different cell populations comprised within the AT, in order
to understand their functions. It is equally necessary to obtain
more data on how these expression patterns vary with time and/
or after clinical interventions, such as exercise, diet, drugs and
even bariatric surgery, which could prove to be useful
therapeutical targets for controling IR and T2D.

There are a few limitations to this systematic review that
should be acknowledged. First, the number of studies
characterizing epigenetic marks in the context of obesity-
associated dysglycemia is very limited, and there are even
fewer studies that used AT for such analyses. This limitation is
particularly striking for studies on histone modifications and
lncRNAs. Second, there is a great heterogeneity in patient
characteristics analyzed across the studies, with high variability
of anthropometric features, surrogate measurements used to
define dysglycemia and different ethnic backgrounds. Third,
the methodological approaches used by these studies were
diverse and the magnitude of DNA methylation changes is
overall small. Fourth and most importantly, gene expression
was not assessed in the majority of these studies, hampering the
possibility to evaluate the putative biological consequences of
the DMRs.

In summary, the question on why some individuals with
obesity are metabolically ‘healthy’, while others are metabolically
‘unhealthy’ is a complex one, mainly because there are a number
of risk factors that have to be present or absent to define an
individual as healthy or unhealthy. Those risk factors include
environmental factors (e.g. physical activity, diet and smoking),
demographic factors (e.g. sex, ancestry, age) as well as genetic
factors. Based on our current analysis we propose that genome-
wide epigenetic studies in AT have considerable promise as an
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additional approach to identify alleles that can be associated with
protective and/or detrimental risk of IR and dysglycemic states,
thereby contributing to the uncoupling of adiposity from its
cardiometabolic comorbidities. Additionally, we propose that
careful comparison between DNA methylation signatures in
WB and AT in individuals with MUHO may lead to the
development of new biomarkers with predictive power for
progression of MHO towards metabolic complications. The
advantage of using epigenetic marks for these studies is that
they are powerful readouts of environmental influences on gene
expression, thus potentially acting as links between genetic risk
factors and environmental ones. However, the work performed
in this systematic review also highlights the need to conduct
more robust studies in AT of larger cohorts of individuals with
MHO and MUHO. In addition, and to our knowledge, genome-
wide transcriptome analyses have not been performed in AT in
these two groups of interest, and epigenome screens at the level
of regulatory elements, such as enhancers, are also missing. In
our view, these are important future directions.
CONCLUDING REMARKS

In summary, despite several major limitations, our systematic
review led to the identification of a catalogue of epigenetic
modifications, particularly DMRs, which highlighted several
signaling pathways that are dysfunctional in AT of individuals
with MUHO compared to AT of individuals that have MHO.
Our approach also led to the identification of a network of TFs,
some of which are novel in the context of AT biology.
Additionally, we identified a small panel of individual CpGs
that associate DNA methylation changes in WB and AT in
individuals with MUHO versus MHO. Further studies are
required to validate these findings and to assess whether they
could lead to a better prediction of individuals with obesity at
higher risk of developing T2D. This review also underscores the
knowledge gap concerning histone modifications and lncRNA in
obesity related-dysglycemia. Therefore, additional studies are
needed, particularly those focusing on epigenetic mechanisms
other than DNA methylation, and most importantly addressing
how these affect gene expressions and dysregulate metabolic
pathways leading to T2D.
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