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Primary cilia (PC) are microtubule-based organelles that are present on nearly all thyroid
follicle cells and play an important role in physiological development and in maintaining the
dynamic homeostasis of thyroid follicles. PC are generally lost in many thyroid cancers
(TCs), and this loss has been linked to the malignant transformation of thyrocytes, which is
regulated by PC-mediated signaling reciprocity between the stroma and cancer cells.
Restoring PC on TC cells is a possible promising therapeutic strategy, and the therapeutic
response and prognosis of TC are associated with the presence or absence of PC. This
review mainly discusses the role of PC in the normal thyroid and TC as well as their
potential clinical utility.
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INTRODUCTION

Primary cilia (PC) are solitary, nonmotile microtubule-based organelles that project from the cell
surface and function similar to an antenna on the cell to sense and convey multiple extracellular
signals (1). In thyroid follicular epithelial cells, PC protrude from the apical surface into the
follicular luminal space, where they may sense the follicular luminal environment and transmit
signals to follicular epithelial cells to maintain follicular homeostasis (2). Existing data have revealed
that many signaling pathways important for development and disease, including the Hedgehog
(Hh), Wnt, and platelet-derived growth factor (PDGF) pathways, are localized to PC (3). Therefore,
a loss of PC is associated with the onset of malignancy in some human tumors.

Thyroid cancer (TC) is the most common endocrine cancer and has a rapidly increasing
incidence but relatively stable mortality. The main histological subtypes of TC are papillary thyroid
cancer (PTC), follicular thyroid cancer (FTC), poorly differentiated thyroid cancer (PDTC),
anaplastic thyroid cancer (ATC), and medullary thyroid cancer (MTC). The first four types
originate from thyroid follicular epithelial cells, and MTC arises from thyroid parafollicular cells.
PC is well preserved in PTC and FTC, and their frequency and length appear similar to those of
normal thyroid follicles. Interestingly, defects in PC genesis have been observed in ATC (4).
Additionally, oncogenic alterations, coupled to specific intracellular downstream signaling
pathways, lead to the development of different subtypes of TC. PC as a mediator of these
signaling pathways regulates TC development. Alteration in PC influences the communication
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between TC cells and the tumor microenvironment, which in
turn affected the therapeutic response and prognosis of TC.

In this review, we briefly describe the formation and structure
of PC on thyroid follicular cells and explore the potential roles of
PC in maintaining cellular homeostasis and promoting the
progression of thyroid disease.
STRUCTURE OF PC IN THE NORMAL
HUMAN THYROID GLAND

PC consist of the basal body, transition zone and axoneme. The
basal body derived from the mother centriole of the centrosome
that is composed of nine microtubule triplets (5). The axoneme is
constructed from nine parallel microtubule doublets protruding
from the mother centriole, which anchors the PC within the
plasma membrane. The transition zone is a specialized ciliary
domain that connects the basal body and axoneme backbone,
which is localized toward the membrane in a Y-shaped
arrangement known as the “ciliary gate.” This gate separates
proteins inside the PC from proteins in the cytoplasm and limits
extracellular signal transduction.

In human thyroid follicular cells, PC are present in a ring-
shaped 9 + 0 axonemal configuration, and the microtubules and
diameters of PC steadily decrease toward the distal end of the
cilia while becoming broader closer to the base of the cilium.
Dynein arms and central pair microtubules are absent (6).
Therefore, PC are non-motile structures. The length of PC
ranges between 5.0 and 10.7 mm, and the mean length is 7.3 ±
1.2 mm (7). Almost all human thyroid follicular cells displays at
least one PC that protrudes from the apical surface into the
follicular lumen, and occasionally, the presence of two PC in a V-
shaped distribution has been observed on adjacent cells. The PC
of thyroid follicular cells taking advantage of their ideal
localization coupled to specific intracellular downstream
signaling pathways regulates thyroid development.
ABNORMAL LENGTH AND FREQUENCY
OF PC IN TC

The frequency and length of PC often change when they respond
to diverse stimuli from both inside and outside of thyrocytes. In
TC, the distribution and frequency of PC are aberrantly changed,
the number of thyrocytes exhibiting one or more cilia steadily
decreases from ordinary PTC to FTC, and FTC, PDTC, and ATC
usually lack cilia (8). However, conventional PTC and follicular
variants of PTC display well-expressed PC, the length of PC is
strikingly increased, and the frequency of PC seems to be
unchanged compared with normal thyroid glands, only
oncocytic variants of PTC have a decreased frequency and
length of PC (9). More importantly, these variations of PC
appear to be associated with the progression and prognosis of
TC. Moreover, the pathogenicity of PC variations in the
experimental animals of thyroid gland was also observed. A
mouse model lacking PC showed normal folliculogenesis and
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hormonogenesis at ages of less than 7 weeks. After that, thyroid
follicles became irregularly dilated and destroyed and displayed
malignant properties (papillary or solid proliferative nodules),
papillary or solid hyperplastic nodules were considered PDTC
(2), and other types of TC were not observed.

In cell level, the frequency of PC is not different between
human normal thyroid follicular cells and PTC cell lines, but the
frequency of PC is significantly reduced in ATC cell lines (2). The
loss of PC on ATC cells was associated with TC tumorigenesis and
progression (10). However, a study from Junguee Lee et al.
demonstrated that loss of PC in PTCs results in increased
apoptosis, and it is associated with reduced tumor aggressiveness
(4). In this context, the loss of PC appears to select TC cells with
more malignant features. These discrepant conclusions require
further confirmation due to the use of different research models.

In conclusion, some possible mechanisms for the association
with PC abnormal changes and TC tumorigenesis have been
proposed (Figure 1). So the loss of PC is at least partially
associated with the tumorigenesis and progression of TC.
PC MEDIATE HH, MAPK, AND PI3K
SIGNALING IN TC

Some signaling pathways related to the occurrence, development,
invasion, and metastasis of TC are mediated by PC, and the
receptors for these signaling pathways are often localized to PC.
In the presence of Hh, Ptch1 is transported out of the cilium, and
Smo is transported into the cilium, where it promotes the
formation of the activator form of Gli. Gli protein levels
increase in the cilium, and Gli proteins are then transported
out of the cilium and into the nucleus, where they activate Hh
target genes. In the absence of Hh, Ptch1 is localized to the ciliary
membrane, Smo is excluded from the cilium, and Gli is
converted to its repressor form (11). At an early phase of TC
development, TC stroma secreted Hh ligand mediates tumor-
stroma interaction and Hh pathway are aberrantly activated,
which supports TC cell invasion, migration, and growth in non-
adherent conditions (12). Additionally, PC provide a spatially
diverse platform for mediating interaction between the stroma
and cancer cells, so PC genesis defects may disturb this
interaction mediating Hh pathway aberrant activation. These
data show that the PC-mediated Hh pathway participates in
TC tumorigenesis.

On the other hand, PC-mediated growth factor binding to
RTKs triggers the MAPK and PI3K-AKT cascades to regulate TC
cell proliferation, and elevated RTK activity also promotes RET/
RAS/BRAFmutations (13, 14). Moreover, oncogenic RAS/BRAF/
MEK pathway influences Hh pathway activation in TC cell,
generating a ligand independent non-canonical mechanism
of activation.

Since PC are the carrier of these signaling proteins, and they
integrate Hh and RTK signaling crosstalk to coordinate thyroid
hormone synthesis and development. Changes of PC directly
affect these related pathways, which is associated with
tumorigenesis and TC development.
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PC PROTRUSION AND RESORPTION
AFFECT TC CELL FATE

PC protrusion and resorption are tightly coordinated with the
cell cycle; in addition, the coupling of both ciliogenesis and the
cell cycle depends on the centrosome, and the role of
the centrosome shifts from cell division to ciliogenesis (15).
Cells become quiescent, or proliferating cells enter G1 phase
(16), the centrioles from the centrosome begin to migrate to the
cell surface and subsequently form the basal body, and assembly
of PC is initiated; the PC then extend from the basal body into
the follicular lumen. In dividing cells, PC are resorbed before S
phase or during G2 phase (17). Subsequently, the centrosome
forms the mitotic spindle, and the cell enters mitosis.
After mitosis, centrosomes are again available to assemble PC,
either in G0 or in early G1 phase (18). Utrilla confirmed this
process in thyroid cells (7). These findings suggest that
ciliogenesis and the cell cycle appear to regulate each other via
mutual crosstalk.
PC PROTEINS AFFECT TC PROGRESSION

PC proteins related to Aurora kinase A, NIMA-related kinases
(Nek), Polo-like kinase (Plk1), and spermatogenesis-associated
protein 4 (Spata4) have been identified as critical for the
regulation of both cilia and the cell cycle. Aurora kinase A,
which is localized to the centrosome and radial microtubules in
PC (19), is highly or weakly expressed in TC tissues and cell lines,
and this abnormal expression induces thyrocyte malignant
transformation. Moreover, activation of Aurora kinase A in
late G2 phase triggers spindle assembly and PC disassembly,
and it becomes inactivated at the completion of mitosis.
Overexpression of Aurora kinase A generally implies a poor
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prognosis and is a new molecular target in TC therapy (20). Nek,
which is localized to PC and centrosomes, inhibits ciliogenesis
and promotes spindle assembly, and it may contribute to the
coordination between ciliogenesis and cell cycle progression (21).
Overexpression of Nek 1 in classical and follicular variants of
PTC has a high specificity and sensitivity and is often related to
aggressiveness. Therefore, Nek 1 may contribute to the
identification of malignant features during TC diagnosis (22).
Plk1, which is localized to the transition zone of PC, rapidly
evokes PC resorption and regulates cell cycle progression at the
G2-M phase transition (23, 24). Plk1 expression is only
occasionally observed in normal thyrocytes, but overexpression
of Plk1 is more frequently detected in smaller PTCs,
microcarcinomas, and incidental carcinomas. Overexpression
of Plk1 may be an early event in PTC progression (25). Spata4
is a spermatogenesis-associated protein associated with thyroid
hormone in fish (26), and spata4 knockdown leads to an arrest of
cells in S phase and causes a decrease in the number of cilia in
human retinal epithelial cells (27). The orderly regulation of
these PC proteins between ciliogenesis and the cell cycle
determines the survival of TC cells.

We focused on how PC proteins are linked to cell cycle
progression and ciliogenesis in TC. Although the mechanisms by
which TC cells lose their cilia are unknown, Aurora kinase A,
Nek, Plk1, and Spata4 are associated with cilium disassembly and
cell cycle regulation.
DRUGS WITH EFFECTS ON PC

The effects of drugs on PC in human cell lines and experimental
animal models of TC have not been identified, but U0126
inhibits the elongation of cilia, ganetespib causes the loss of PC
in experimental animal models of other diseases (28, 29).
FIGURE 1 | Structure of the PC and signaling pathways involving cilia in the human thyroid gland and TC. In normal thyroid gland cells, the PC acts as the sensor
and regulator of the outside cell signaling. In TC cells, the PC was absent. Absence of the PC block the signal from outside and neighbors, and disturb the signal
pathways inside cells, thus lead to uncontrolled cell cycle process and tumorigenesis.
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Additionally, the administration of U0126 and ganetespib
effectively inhibits the proliferation of different histological
types of TC cells (30, 31). Evidence for the association of
U0126 and ganetespib with PC should be investigated in TC.

Drugs targeting PC have been assessed in patients with TC,
and the findings from clinical trials show that doxorubicin,
paclitaxel and docetaxel have modest antitumor activity in
patients with advanced, nonmedullary TC (32). Carboplatin is
recommended as a treatment for ATC in clinical practice
guidelines in oncology (33). The administration of these drugs
for TC may provide a clinical benefit in adjuvant settings.
Doxorubicin induces cilium formation in breast fibroblasts
(34), paclitaxel causes cilium elongation in the quail oviduct
(35), and docetaxel decreases cilia numbers in olfactory cells (36).
In addition, carboplatin induces PC disassembly in sensory cells
(37) and has been used to treat TC. Some RTK inhibitors have
been recently approved for use in clinical practice, namely
sorafenib and lenvatinib, have been approved for differentiated
thyroid cancer (DTC) and PDTC, and vandetanib and
cabozantinib have been approved for MTC (38), but their
effect on PC has not been reported.

Anticancer drugs with documented effects on PC have been
proposed. These drugs induce PC disassembly, restore
ciliogenesis, lengthen PC, and prevent the accumulation of
Smo in PC. They have been assessed in TC in preclinical and
clinical studies, considering these factors will formulate rational
therapeutic strategies for TC.
IS RESTORING CILIA A PROMISING
THERAPEUTIC STRATEGY IN TC CELLS?

Although controversy exists regarding whether the length of PC
is modified in PTC, the frequency of PC in TC cells is usually
decreased. In addition, ATC and MTC exhibit loss of PC, and
dysfunction of PC in TC cells is associated with tumorigenesis
and malignancy. More importantly, in Hh pathway-dependent
cancers, there is loss of PC as a mechanism of resistance to Smo
inhibitors (39). Accordingly, restoring cilia may be a promising
therapeutic strategy in TC (40).

There have been some pre-clinical examples of restoration of
PC as a therapeutic target, such as restoration of PC by HDAC
inhibitors in cholangiocarcinoma reduce cholangiocarcinoma
cell growth (41–43). In addition, the use of HDAC inhibitors
to treat TC has been well described, although they failed to trigger a
major response against PTC, ATC, and MTC in clinical trials,
HDAC inhibitors produced encouraging results in PTC, ATC,
and MTC cell lines (44–46). Compounds (gefitinib and
dexamethasone) that are able to restore cilia have been verified
in cell lines of multiple human cancers (such as pancreatic, kidney,
breast, and lung cancers) (47). Gefitinib shows limited effectiveness
in patients with advanced TC (48), and dexamethasone exerts
antiproliferative effects on a human MTC cell line (49).

It is hard to say that the restoring of cilia by those drugs was a
primary effect or a secondary effect. However, several drugs with
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effects on PC have been tested in different human cell lines of TC,
which indicate a possible application of these drugs in clinical
studies. Future studies are required to evaluate the effects of these
drugs on PC of TC.
CONCLUSIONS AND FUTURE
PROSPECTS

Based on the findings described above, PC play a role in
sustaining thyroid follicular cell polarity, differentiation, and
proliferation and feature signaling pathways associated with
TC. PC undergo cycles of assembly and disassembly that
control TC cell survival, and PC loss in TC cells is usually
linked to tumor aggressiveness in the clinic. PC in thyroid cells
appear to function as tumor suppressors, and treatments that
restore PC may be a potentially promising therapeutic strategy
for TC. Preclinical and clinical studies will be required to test the
roles of PC in the occurrence and progression of TC.

In the future, the relationship between ciliogenesis and
pathological differentiation of TC tissue should receive
increasing attention. Studies of the effects of potential
oncogenic genetic mutations on PC formation may further
reveal the mechanisms underlying TC pathogenesis, and
powerful omics analyses have the potential to provide key
insights into the role of PC in TC. Therefore, larger studies are
required to assess whether the absence of PC drives TC
transformation or is a secondary effect of tumorigenesis,
which will be critical when considering ciliotherapy as a
potential strategy.
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