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The human endometrium plays a vital role in providing the site for embryo implantation and
maintaining the normal development and survival of the embryo. Recent studies have
shown that stress is a common factor for the development of unexplained reproductive
disorders. The nonreceptive endometrium and disturbed early maternal-fetal interaction
might lead to infertility including the repeated embryo implantation failure and recurrent
spontaneous abortion, or late pregnancy complications, thereby affecting the quality of life
as well as the psychological status of the affected individuals. Additionally, psychological
stress might also adversely affect female reproductive health. In recent years, several basic
and clinical studies have tried to investigate the harm caused by psychological stress to
reproductive health, however, the mechanism is still unclear. Here, we review the
relationship between psychological stress and endometrial dysfunction, and its
consequent effects on female infertility to provide new insights for clinical therapeutic
interventions in the future.

Keywords: psychological stress, endometrial receptivity, recurrent implantation failure, human
endometrium, infertility
INTRODUCTION

Infertility is a disease characterized by the failure to establish a clinical pregnancy after 12 months of
regular and unprotected intercourse. Studies have estimated that approximately 12% of married
women have difficulty getting pregnant or maintaining a pregnancy (1). Even with the latest whole-
genome sequencing technology to select the high quality embryo, the pregnancy rate for euploid
embryo transfer has been found to be approximately 45% in the general infertility population (2, 3)
and approximately 60% in patients with donor egg embryos (4) undergoing in vitro fertilization-
embryo transfer (IVF-ET)practices. In recent years, researchers have focused on the role of
endometrium in infertility, assuming that endometrial dysfunction might contribute to a large
part of pregnancy failure. Thus, reproductive scientists have performed various procedures to
analyze the endometrium of patients with recurrent implantation failure (RIF), including
hysteroscopy, scratching of the uterine cavity before embryo transfer. Recently, the high-
throughput techniques, such as RNA-seq has been utilized to identify new biomarkers of
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endometrial receptivity to improve the clinical pregnancy rate in
IVF-ET technology. However, there have been no relevant
advances in diagnosing and improving endometrial receptivity
at the molecular level.

The human endometrium is a highly dynamic tissue that is
cyclically shed, regenerated, and remodeled. This is mainly regulated
by changes in estrogen and progesterone secreted by the ovaries,
and the endometrium is only receptive to implantation for a few
days during the midpoint of the menstrual cycle (5). Spatiotemporal
changes in the endometrium are tightly controlled by cyclic
regulation of endocrine hormones from the hypothalamic-
pituitary-ovarian axis as well as paracrine morphogens, cytokines,
and growth factors generated by the different cellular constituents of
the endometrium, including epithelial cells, stromal cells, local
immune cells, and the vasculature (6–8). Any factors that might
disturb paracrine and autocrine signaling pathways that regulate
endometrial function might cause endometrial dysfunction.
Embryo implantation and the following decidualization are
essential for a successful pregnancy. If the implantation fails,
endometrium will manifest as menstruation, followed by
regeneration and repair, to prepare for the next implantation
window (6). Studies have estimated that approximately one-third
of implantation failures occur due to embryos, and the remaining
two-thirds are attributed to poor endometrial reception and altered
embryo-endometrial dialogue (9–11).

Female infertility has been shown to be associated with high
levels of anxiety and depression. Recently, it was reported that
mental illness could also increase the incidence of infertility and
undesirable pregnancy, such as repeated implantation failure and
miscarriage (12–14). Moreover, psychological stress, depression,
and anxiety during pregnancy are thought to affect the
development of the fetus and might have a long-term impact on
the prognosis of the offspring (15). Additionally, numerous studies
have shown the efficacy of psychological interventions in reducing
psychological distress as well as in increasing pregnancy rates (16,
17). Hormones are known to regulate endometrial function in vivo,
and psychological distress might affect the secretion and regulation
of the endocrine hormones (18) (Figure 2). Furthermore,
neurotransmitters and their corresponding receptors are widely
distributed across the endometrium (19–22) (Table 1). The local
content of neurotransmitters in the endometrium and the
expression of their receptors might also interfere with the normal
function of the endometrium. Therefore, there is a high probability
that psychological stress might directly cause endometrial
dysfunction. However, the impact of psychological stress on
treatment outcomes is unclear, and the specific mechanism of
stress-induced fertility disorders is still a mystery. Here, we
mainly review the general adaptation strategies and specific
mechanisms of endometrial dysfunction caused by psychological
stress for female infertility.
THE ROLE OF HUMAN ENDOMETRIUM IN
REPRODUCTIVE HEALTH

The endometrium is a complex multicellular tissue that
dynamically remodels to create a microenvironment suitable
Frontiers in Endocrinology | www.frontiersin.org 2
for supporting pregnancy (39, 40). The embryo implantation
occurs in the functional layer of the endometrium, which is
regulated by changes in the ovarian hormones, mainly
progesterone and estrogen. In a healthy endometrium,
progesterone and estrogen signals are tightly coordinated to
drive a normal menstrual cycle and enhance the receptive
status of the endometrium for embryo implantation in the
implantation window. The local levels of autocrine and
paracrine molecules change during the menstrual cycle and
play an important role for directing the establishment of
uterine receptivity (41, 42). During the process of blastocyst
implantation into the uterus, the endometrium stromal bed
implanted by the blastocyst undergoes extensive differentiation,
revascularization, and recruitment of immune cells. This process
is called “decidualization”, which is essential for a successful
pregnancy (8). In humans, the rate of natural conception per
cycle is poor (about 30%), and 75% of failed pregnancies are due
to implantation disorders (43). Previous studies have shown that
impaired endometrial stromal proliferation and differentiation
are associated with recurrent miscarriage, preeclampsia,
intrauterine growth restriction, and unexplained infertility in
the clinical setting (44, 45).
The Dynamic Changes in Human
Endometrium
In humans, female reproductive physiology involves a complex
interaction between neuroendocrine and endocrine signals that
are affected by the hypothalamus, pituitary gland, and ovaries.
The hypothalamic-pituitary-ovarian (HPO) axis is a tightly
regulated system that controls the human endometrium
(Figure 1). The hypothalamus secretes gonadotropin-releasing
hormone (GnRH) pulses, which activate the pituitary to release
two gonadotropins, namely follicle-stimulating hormone (FSH)
and luteinizing hormone (LH) (46, 47). FSH and LH in turn, act
on the ovaries to stimulate follicle growth and produce high level
of progesterone after ovulation (48). During the proliferative
phase (follicle phase), an increase in the pituitary gonadotropin
levels, results in the development of follicles as well as the
selection of dominant follicles. The developing ovarian follicles
produce estrogen, which promotes the proliferation of epithelial
cells, interstitium and vascular endothelium, thereby
regenerating and thickening of the endometrium. In the
middle of the menstrual cycle, there occurs a surge in LH
gonadotropins, resulting in ovulation. Then, the endometrium
enters the secretory phase under the action of the continuously
increasing progesterone 4 (P4). The early secretory (luteal) phase
is characterized by the rupture of the follicle to form the corpus
luteum (CL), followed by the secretion of P4 to prepare for
implantation (49). During this period, the endometrial stromal
cells undergo differentiation (pre-decidualization) to prepare for
embryo implantation (50). In the middle secretory (luteal) phase
(cycle days 20–24), the elevated estrogen (E2) levels along with
P4 define the window of receptivity, which implies uterine
receptivity conducive to implantation and subsequent
pregnancy (44). Endometrial stromal fibroblasts are
transformed into specialized secretory decidual cells, which
August 2021 | Volume 12 | Article 690255
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provide essential nutrients and immune-privileged substrates
for embryo implantation and placental development. In the
late secretion phase, if there are no surviving embryos, the
superficial layer becomes denser, and leukocyte infiltration
begins 2-3 days before menstrual shedding, thus resetting
the cycle (cycle 0/28 days). On the contrary, implanted
blastocysts secrete lutealtrophic factors such as chorionic
gonadotropin to sustain the progesterone production in,
thereby supporting pregnancy.
Frontiers in Endocrinology | www.frontiersin.org 3
The Role of Endometrial Receptivity in
Embryo Implantation
Pregnancy is a physiological process involving multiple
independent and cascading performance events, such as
embryo implantation, decidualization, placental development,
and final fetal delivery (43). The successful completion of the
previous event is a prerequisite for the occurrence of the latter
event. The progesterone and estrogen secreted by the ovaries are
known to precisely control the orderly occurrence of these
FIGURE 1 | Dynamic Changes of Human Endometrium in Response to Hormones.
TABLE 1 | Potential stress mediators in human endometrium.

Stress gene Location and phase of present Potential function References

BDNF Human endometrium Regulate endometrial cells proliferation (23)
NR3C1 Uterine epithelial cell line Immune cell trafficking and embryonic development (24)
NPY Decidua Immunoreactive of fetal membranes (25)
HSPA5 Human endometrium Response the paracrine and autocrine factors (26)
MAPK Human endometrium Immunomodulatory, regulate stress adaptation and endometrial remodeling (27)
PAR2 Human endometrium Endometrial remodeling (28)
NET Late proliferative epithelium Decidualization (23, 29)
EMT Secretory stroma Decidualization (23, 29)
VMAT2 Proliferative stroma and secretory epithelium Proliferation and decidualization (23, 29, 30, 31)
PMAT Proliferative stroma Stromal proliferation (23, 29, 30, 31)
PNMT Human endometrium Uterine activity during pregnancy and parturition (22, 32)
COMT Human endometrial stroma Inhibit endometrial stroma cell proliferation (22, 33)
MAO-A Human endometrium Embryo implantation and endometrial receptivity (34, 35)
MAO-B Human endometrium Endometrial receptivity (34)
ADRA2C Human endometrium Unclear (36)
Opioid receptor Human endometrium Proliferation and decidualization (37, 38)
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events. Here, we emphasize the research progress of implantation
from the perspective of the endometrium, which is usually a
barrier to implantation.

For more than 80 years, scientists have been interested in
investigating endometrial receptivity, leading to an in-depth
understanding of embryo-endometrial cross-talk and
implantation-related processes. In humans, the endometrium
receptivity is optimum during the mid-luteal phase of a regular
cycle, thus, the LH surge before ovulation occurs between days 6-
10 (51, 52). The endometrium is composed of two major tissue
compartments: epithelial cells and stromal cells. During the
receptivity establishment stage, the epithelial and stromal cells
undergo proliferation and differentiation to adapt to embryo
implantation as well as post-implantation embryonic
development. The receptivity of the endometrium is a complex
process that facilitates the attachment, invasion, and
development of the embryo. After ovulation, there occur an
increase in the levels of progesterone and local cyclic adenosine
monophosphate (cAMP). Endometrial stromal fibroblasts
transform into specialized secreting decidual cells. The
decidual process passes through different phenotypic changes
to support the receptivity of the endometrium, embryo selection,
and finally, pregnancy resolution (6). Previous studies have
shown that several molecules are expressed and silenced in the
uterus during the peri-implantation period, which guides the
sequential proliferation and differentiation of different cell types
in the uterus (45, 53–55). Further analysis has shown that defects
in uterine receptivity, such as failure of epithelial clearance and
aberrant expression of uterine receptivity-related genes, are the
main causes for implantation defects (56, 57).

Potential Factors Affecting
Endometrial Function
Molecular evidence indicates that locally produced signaling
molecules, including cytokines, growth factors, homeobox
transcription factors, lipid mediators, morphogens and ovarian
hormones, act as autocrine, paracrine, and juxtacrine factors to
determine the uterine receptivity (58). In this section, we discuss a
novel signaling network involving cytokines, homeotic proteins,
and morphogens upon implantation. The principal hormones that
guide uterine receptivity are ovarian P4 and E2. P4 is produced by
the CL in the ovary, and it facilitates embryo implantation and
maintenance of pregnancy. In the peri-implantation period before
embryo attachment, P4 signaling mediates uterine epithelial
growth arrest and stroma proliferation, which is called uterine
proliferation-differentiation transition (PDS). Uterine PDS is an
important hallmark of uterine receptivity. Some genes, such as
HAND2 and BMI1, participate in uterine PDS by modulating P4-
PR signaling (59). In mice, estrogen and progesterone act through
the estrogen receptor (ER) and progesterone receptor (PR)
expressed in the nucleus. Both receptors have two different
subtypes, namely ERa/ERb and PRA/PRB (60). Both subtypes
of PRs are expressed in the uterus (61). Gene knockout of PRA
and PRB in female mice results in infertility, mainly due to
multiple functional defects of the ovary and uterus, however,
these functions are normal in female mice lacking PRB alone,
Frontiers in Endocrinology | www.frontiersin.org 4
indicating that progesterone-mediated uterine function is mainly
mediated by PRA (62–64). ERa and ERb are also expressed in the
uterus of mice (61), ERa–/– uteri are hypoplastic and unable to
support implantation, whereas ERb–/– uteri retain biological
functions that allow normal implantation (65, 66). This suggests
that ERa plays a dominant role in the uterus. Although gene
knockout of ERb does not cause reproductive defects, studies have
shown that they may still be involved in the pregnancy process.
For example, the expression of ERb in the endometrium suggests
that it might regulate changes in angiogenesis and vasodilation
(67, 68). Correspondingly, women with infertility exhibit a
significantly reduced expression of ERb (69, 70). In addition to
nuclear receptor transcription factors, such as ER and PR, studies
on knockout mice have shown that multiple transcription factors,
including Hox family transcription factors, Msx transcription
factors, and Kruppel-like transcription factors, also regulate
uterine receptivity (71–78). In the reproductive system, Hox
genes are known to be widely involved in the development of
mouse and human reproductive systems, and consequently in the
maintenance of early pregnancy.

Many important signaling pathways are known to regulate
cell proliferation, differentiation, and apoptosis, as well as
endometrial function. Different from most mammals, before
the establishment of endometrial receptivity, human
endometrial stromal cells (HESCs) initiate differentiation (pre-
decidualization) stimulated by progesterone in the absence of
embryos (6, 44, 50). The increased levels of progesterone and
local cAMP promote the process of transformation of HESCs
into specialized secretory decidual cells, which is a key step in the
establishment of endometrial receptivity. The activity of adenylyl
cyclase in the endometrium is higher than in the myometrium,
CL, or fallopian tube (79). Unlike other types of cells, the
continuous increase in intracellular cAMP concentration is
critical to the decidualized status in HESCs (80). PKA
signaling establishes a feed-forward mechanism, including the
selective down-regulation of regulatory PKA subunits during the
decidualization of HESCs (81). Other major pathways and
kinases activated during the differentiation of HESCs include
the WNT/-catenin and JAK-STAT pathways (82–84), Notch
signaling pathway (85), ERK1/2 pathway (86, 87), AKT
pathway (also known as protein kinase B) (88) and c-Src
pathway (89). Meanwhile, stress-induced signaling pathways,
such as the JNK and p38 pathways, are completely inhibited
when HESCs differentiate into decidual cells (90). Experimental
evidence from knockout mice has suggested that Wnt4 might be
involved in the proliferation of uterine stromal cells (91). Bone
morphogenic protein (BMP), a member of TGF-b signaling,
functions through related receptors expressed on the cell
membrane. The TGF signaling pathway is known to be
involved in regulating the differentiation of uterine epithelial
cells (92). ALK3, a member of the BMP protein receptor family,
the uterine conditional knocked out ALK3, leading to the
continuous proliferation of the uterine epithelium. During the
establishment of the endometrial receptive state, the microvillus
did not disappear, leading to the abnormal establishment of the
receptive state and the failure of implantation (92, 93).
August 2021 | Volume 12 | Article 690255
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THE SPECULATIVE MECHANISM OF
STRESS-INDUCED ENDOMETRIAL
DYSFUNCTION

The previous section describes that the HPO axis-mediated
secretion of hormones determines the functional differentiation
and response of the endometrium. Also, various paracrine and
autocrine regulatory molecules combined endocrine hormones
drive the functional differentiation of the endometrium during
the menstrual cycle. Any factors that lead to changes of paracrine
and autocrine that regulate endometrial function will cause the
dysfunction of the endometrium. In recent years, studies have
suggested the role of psychological stress in triggering
unexplained infertility and miscarriages may be associated with
dysfunction of the hypothalamic-pituitary-adrenal (HPA) axis.
The abnormal abundance of neurotrophic factors, sex steroids,
metabolic and/or inflammatory cytokines can cause alterations
in neurotransmitters, intracellular signaling, gene transcription,
and translation. Epigenetic change is a regular and natural
occurrence in the regulation of gene expression and activity. It
has been proposed that epigenetic changes also contribute to the
short-term and long-term imbalances in neuronal function and
behavior (15, 94), which may interfere with the normal
functioning of the endometrium. The World Health
Organization recognizes that women and men suffer
considerable psychological pain when they encounter
reproductive health problems, including low self-esteem,
isolation, loss of control, lack of sexual performance, and
depression. The psychological symptoms associated with
infertility are consistent with those associated with other
diseases, such as cancer, cardiac rehabilitation, and high blood
pressure (95). Studies performing the stress in pregnant mice
have enabled the exploration of the potential mechanism of
stress-induced abnormal pregnancy in mice. Next, we review the
role of hormones and local micro-environmental changes in
stress-related endometrial dysfunction.

Psychological Stress Interferes With the
Secretion of Endocrine Hormones
The primary endocrine components involved in the response of
the stress system include the HPA axis and locus coeruleus-
norepinephrine (LC/NE) autonomic nervous system (96)
(Figure 2). Within a few minutes of stress-induced activation
of the HPA axis, the medial parvocellular region of the
paraventricular nucleus of the hypothalamus stimulates the
release of corticotropin-releasing hormone (CRH) from axonal
terminal boutons in the median eminence, which in turn
stimulates the corticotrophs in the anterior pituitary gland to
release adrenocorticotropic hormone (ACTH) into the systemic
circulation (97, 98). When the brain detects a homeostasis
challenge, it activates the sympathetic nervous system (SNS),
releasing catecholamine-epinephrine (EPI) and norepinephrine
(NE), resulting in physiological stress response. This is followed
by slow activation of the HPA axis.

Stressors affect all levels of the hypothalamic-pituitary-gonad
axis (HPG) (Figure 2), resulting in a decrease in the frequency
Frontiers in Endocrinology | www.frontiersin.org 5
and amplitude of GnRH and LH pulses and a delay in the LH
mid-luteal surge, which interferes with the temporal process of
reproductive hormone release during the follicular period. These
results suggest that the stressors modulate the hypothalamus or
the higher centers of the brain (99). Stress can interfere with
reproductive function at all levels of the reproductive axis, inhibit
sexual desire, reward, and mating behavior at the brain level,
especially in the ventral tegmental area, interfering with the
release of GnRH pulse generator in the hypothalamus as well as
LH and FSH release from the anterior pituitary (100). Different
stressors are known to activate different pathways at different
duration to affect our health, and the stress adaptation response
is affected by the dominant role of certain sex steroids in the
circulation (101). Studies have revealed that acute stress can
inhibit the HPO axis by inhibiting the secretion of GnRH,
thereby inhibiting the release of pituitary LH in female mice
(102). Acute injections of CRH into the lateral ventricle of female
rats without gonads and adrenal glands showed a rapid and
sustained dose-related LH suppression, without the inhibition of
FSH secretion (103). Additionally, daily injections of CRH in
female rats for the first 12 days after mating was shown to cause
40% of pregnancy interruptions, indicating that CRH directly
affected reproductive function in the absence of circulating
steroid hormones derived from the adrenal gland and/or
gonads (103). A study analyzed the effects of CRH on estradiol
and progesterone released from granulosa cells obtained from
women undergoing IVF, and found that CRH could significantly
reduce media E2 and P4 levels (104). Another study
demonstrated CRH significantly inhibited the production of
estradiol (E2) and progesterone (P4) in rat and human
granulosa cells in vitro, acting through the CRH receptor
(105). In acutely stressed rats, alteration of sexual behavior, a
significant increase in plasma ACTH, prolactin (PRL),
corticosterone, and progesterone, and a decrease in FSH were
observed (97). The response to acute stress is known to be a
highly adaptive phenomenon that enables the individual to
properly combat the stressor and recover. However, if the
stressor becomes chronic, it can result in complications (106–
108). Chronically elevated glucocorticoids (GCs) can result in
various complications, including obesity, memory impairment,
and mood disorders, as well as affects fertility (100). Chronic
stress prolongs this adaptive shift towards a generalized catabolic
state. Therefore, sustained HPA hyperactivity gradually leads to a
decrease in lean body mass, an increase in visceral fat, and insulin
resistance. However, the specific mechanisms of stress-induced
endocrine changes and abnormal reproductive function are still
worthy of in-depth study and discussion.
Psychological Stress Acts on the Local
Endometrial Microenvironment
The regulation and integration of biological, psychological, and
social factors in human physiology benefit from the analysis of
precise biomarkers that indicate accurate stress responses. In the
past decade, there has been an extensive growth in the use of RNAi
in cells, as well as transgenic, knockout, and conditional knockout
mouse models, which provide valuable insights into the stress-
August 2021 | Volume 12 | Article 690255
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induced endometrial dysfunction. Additionally, psychological
stress not only interferes with the functioning of the
endometrium by affecting endocrine hormones but also directly
regulates the local microenvironment of the endometrium.

Estrogen and Progesterone-Related Stress
Molecules in the Endometrium
The human endometrium contains specific cells that undergo
cyclic changes under the influence of steroid hormones as well as
numerous local paracrine and autocrine factors. The stressors
trigger the endometrial endoplasmic reticulum (ER) stress to
deplete energy and cause periodic changes in the menstrual cycle
(109). Emerging evidence has confirmed that heat shock 70 KDa
protein (HSPA5, also known as GRP78/BiP), a molecular
chaperone within the ER, plays a crucial role in stress
conditions, and is dynamically expressed throughout the
menstrual cycle, and has been found to be closely related to
the levels of E2 in the normal human endometrium (26). The
mitogen-activated protein kinase (MAPK) cascade mediates
cellular responses to environmental signals and helps cells
adapt to high temperatures, which is a prerequisite for
mammalian pathogens (110). During the secretory phase of the
menstrual cycle, prolactin (PRL) and PRL receptors are
expressed in human endometrial tissue, which, in turn,
stimulates the tyrosine phosphorylation of the human
endometrial MAPK/ERK pathway (27). Protease-activated
Frontiers in Endocrinology | www.frontiersin.org 6
receptor 2 (PAR2) is also expressed in the endometrium,
which can activate downstream MAPKs and plays an
important role in human endometrial remodeling (28).
Unequivocal evidence indicates that in human endometrium
stromal cells, the nuclear PGR mediates rapid nongenomic
progestin responses, which in turn, triggers rapid MAPK and
AKT activation in response to progestin signaling (111).

Human Endometrial Adrenaline-Related Molecules
The expression of the mouse uterine adrenergic receptor
Adrb2 temporarily increases during the peri-implantation
period. Abnormal activation of the receptor Adrb2 signal
can destroy the space between embryos during implantation.
The activation of the cAMP-PKA pathway can lead to a
significant increase in the loss of mid-pregnancy and is
known to be accompanied by a specific down regulation of
LPA3 (19). Previously, the LPA3 gene was known to be
essential for uterine contraction and embryo spacing (112).
Abnormal Adrb2 activation in early pregnancy provided a
molecular clue that explained how early maternal stress could
adversely affect pregnancy outcomes (113). Adrenergic
receptors play an important role in promoting angiogenesis
and maintaining normal embryonic development at the
maternal-fetal interface. A study found that the selective
knockout of the adrenergic receptors Adra2a, Adra2b, and
Adra2c in the mouse placenta blocked the activation of
FIGURE 2 | Schematic diagram showing the impact of stress on human endometrium.
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downstream ERK signaling, leading to defects in the
development of blood vessels in the yolk sac and placental
labyrinth layer, in turn affecting the exchange of nutrients and
gas between the mother and fetus, leading to death between
E9.5 and E11.5 (114). Human endometrial and ectopic
endometrial tissues exhibit a sympathetic nerve distribution
similar to the rat uterus (115). A study used the single-cell
transcriptome sequencing technology to analyze the difference
in gene expression of human endometrial stromal cells
before and after differentiation and found that the expression
of ADRA2C and monoamine-related transporters in
decidualized stromal cells presented a dynamic expression
pattern, which gradually increased with the process of
decidual differentiation (36). This result indicated that the
human endometrium could regulate and accept adrenergic
nerve signals. Various interactions between the signaling
pathways of the stress and depression systems, especially
the growth factor signaling pathway and Akt, S6K, GSK3b,
and mTORC1 signaling (94, 116) have been confirmed to
be involved in the decidual transformation process of
endometrial stromal cells (117–121).

Stress-Related Neurogenic Molecules Participate in
the Regulation of Endometrial Function
During the process of embryo implantation and pregnancy
preparation, uterine epithelial cells undergo genomic and
biological transformations, which mediate the adhesion and
invasion of blastocysts. GCs is an important mediator involved
in psychological stress. The whole-genome microarray analysis
of a human endometrial cancer cell line revealed that GC and
GC receptor were expressed in the uterine epithelial-like cell line
(NR3C1). This suggested that GC signaling regulated important
biological functions, including immune cell trafficking and
embryonic development (24). Brain-derived neurotrophic
factor (BDNF) is a stress-related gene and a member of the
neurotrophic growth factor family (122). Recent studies have
shown that BDNF levels play an important role in regulating the
proliferation of endometrial cells (123). Endogenous opioids
play an important role in regulating stress-related behaviors.
Research has defined the dynamics of the expression and
localization of the opioid receptor in human endometrium
throughout the menstrual cycle (37). In addition, Kappa
opioids exerted a time- and dose-dependent inhibitory effect
on TGF-b1 production from endometrial stromal and epithelial
cells (38). Neuropeptide Y (NPY), a neuroendocrine/peptide
mediator that coexists with NE in many sympathetic nerves and
participates in the regulation of psychological stress was found in
maternal decidua and fetal membranes (25). Additionally, recent
studies showed that high-dose NPY could inhibit the
proliferation of human adipose-derived stem cells and
promote their differentiation (124). Researchers expected used
NPY to repair the human endometrium and treat endometrial
damage-induced female infertility (125). The uterus is
innervated by adrenergic sympathetic nerve fibers, and the
endometrium can synthesize endogenous monoamines. Several
studies have shown that monoaminergic neurotransmission
Frontiers in Endocrinology | www.frontiersin.org 7
involving serotonin (5-HT), NE, and dopamine (DA)
significantly impact the brain circuits related to mood
regulation and psychological stress response (126–128).
Monoamines play an important role in reproductive processes,
such as decidua, implantation, immune regulation, and
inflammation, and are an effective vasoactive mediator,
regulating blood flow, and capillary permeability (23, 29).
Studies on the effects of monoamines have shown that the
normal endometrium contains monoamine transporter (EMT),
NE transporter (NET), and vesicles throughout the menstrual
cycle and early decidua. The vesicle monoamine transporter
(VMAT) and plasma membrane monoamine transporter
(PMAT) might affect endometrial decidualization and
blastocyst implantation by uptake of extracellular histamine
and could be subsequently released on demand (23, 29–31).
Tyrosine hydroxylase (TH) and phenylethanolamine-N-
methyltransferase (PNMT) are vital for NE to synthesize EPI,
while catechol-O-methyltransferase Enzyme (COMT) and
monoamine oxidase (MAO) are used for metabolizing both
NE and enzymes for adrenaline synthesis. They are considered
as sympathetic markers, they regulate psychological stress and
provide an important physiological mechanism for controlling
endometrial activities during pregnancy and parturition (22, 32,
33). MAO is an important psychological stress regulator and is
involved in the process of adrenaline metabolism. MAO is
widely distributed in the body, exists on the outer membrane
of mitochondria, and participates in the pathophysiological
regulation of neuropsychiatry-related diseases, including major
depression, addiction, and violent psychological diseases. Studies
have shown that MAO is highly expressed in the receptive state
of the endometrium. The activity of MAO increases significantly
in the endometrium and changes periodically during the
menstrual cycle (34). The expression and localization of MAO
in the endometrium are known to show periodic changes with
the changes in the levels of estrogen and progesterone in vivo
(129). This hormone-dependent temporal and spatial specific
expression and localization pattern has been shown to be an
important factor in establishing endometrial receptivity. MAO is
regarded as an important marker for the establishment of
endometrial receptivity, which helps in embryo transfer in
clinician-assisted reproduction practice and improves embryo
implantation rate (130). The expression of MAO-A in the glands
and stromal cells of the human endometrium during the
receptive phase has been found to be significantly higher than
that in the pre-receptive phase. The expression is reduced during
the window in patients with repeated implantation failure,
indicating that MAO-A has physiological significance in the
preparation of the endometrium for implantation (35).
Additionally, MAO inhibitors are considered to be potential
contraceptives in rats, which can significantly reduce the
pregnancy rate in mice (131).

Thus, psychological stress is closely related to the functioning
of the human endometrium. The stressors not only interfere with
the reproductive hormones that regulate the endometrium but
also directly participate in the regulation of the microenvironment
of the endometrium (Table 1).
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CONCLUSIONS AND FUTURE
PERSPECTIVES

Psychological stress includes the physiological reaction to threat or
pressure, which is common in various physical illnesses and is
increasingly recognized as a risk factor for disease onset and
progression. If left untreated, chronic stress or burnout might
develop, resulting in the need for medical assistance. Many studies
have indicated that psychological stress might be an important
risk factor underlying infertility. Here, we showed that abnormal
endometrial function affects the establishment of receptivity and
decidual development, leading to female infertility. The current
clinical treatments for monitoring pathological endometrium
changes include hysteroscopy, transcriptome sequencing of
endometrial biopsy to select the best period for embryo transfer,
intrauterine perfusion of human chorionic gonadotropin (HCG),
uterine scratching before embryo transfer, and stem cell therapy
(132–135). However, these invasive treatments have no significant
effect on restoring endometrial function and increasing the
pregnancy rate. In this review, we systematically analyzed the
direct and indirect potential molecular basis of endometrial
dysfunction caused by psychological stress in term of
endometrial system and local microenvironment. We focused
on the impact of psychological stress factors on the female
endometrial function which should not be ignored for the
treatment of RIF. Studying the interplay between psychological
stress and the human endometrium, especially understanding how
psychological stress changes the molecular mechanisms and
signaling pathways in reproductive system tissues, would
provide insight into the specific mechanisms of stress-mediated
dysfunction of the human endometrium.

Here, we evaluated the effects of psychological stress on the
human endometrium and subsequently on pregnancy outcome.
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It is necessary to understand how these mechanisms work
during gestational stress in vivo and to understand how these
mechanisms work in the human endometrium. Psychological
interventions for women with infertility have the potential to
decrease anxiety and depression and may well lead to
significantly higher pregnancy rates. Therefore, infertility
patients must be psychologically counseled and supported as
they go through assisted reproductive technology (ART)
treatment. We recommend that the Society of Reproductive
Medicine or the Center of Reproductive Medicine to
incorporate psychological assessment and intervention into
the routine diagnosis and treatment of ART. In addition, how
do epinephrine or glucocorticoids caused by stress affect the
nervous system and reproductive system? How do the signals
between the nervous system and the reproductive system
influence and feed back to each other? Is the abnormal
reproductive function caused by stress reversible? What kind
of psychological intervention is the most effective for infertile
couples? These are all worth exploring and answering in
the future.
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