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Background: Per- and polyfluoroalkyl substances (PFAS) are persistent organic
pollutants that have become globally ubiquitous in humans and the environment. In
utero PFAS exposure is associated with neurodevelopmental effects; however, the
mechanism is poorly understood. Brain-derived neurotrophic factor (BDNF) signaling is
critical to fetal neurodevelopment during pregnancy and maintains important regulatory
roles later in life. This study aims to characterize placental BDNF signaling and investigate
whether PFAS exposure disrupts the signaling pathway in placental trophoblast cells.

Methods: The expression and localization of BDNF receptors–p75NTR and TrkB–in first
trimester and term human placentas and trophoblast cells were investigated by
immunofluorescence staining. To assess the effects of PFAS exposure on the BDNF
pathway, BeWo cells were treated with PFAS mixtures that mimicked blood levels in a
highly exposed population and major PFAS compounds in the mixture at 0.01, 0.1, 1, and
10 µM concentrations. Changes in pro-BDNF levels and phosphorylation of TrkB
receptors were examined by Western blot.

Results: In first trimester human placentas, TrkB and p75NTR receptors were primarily
localized to syncytiotrophoblast and cytotrophoblast cells. At term, TrkB and p75NTR

receptors were primarily observed in the placental villous stroma. TrkB receptor staining in
trophoblasts was reduced at term, while p75NTR receptor staining was negative. TrkB
receptors were confined to the nuclear and perinuclear spaces, and phosphorylation
occurred at the Tyr816 residue in BeWo cells. Exposure to PFOS, PFOA, PFBS, and the
six-PFAS mixture did not significantly affect BDNF levels or activation (phosphorylation) of
TrkB. Treating cells with 1 mM and 10 mM of PFNA resulted in increased TrkB
phosphorylation compared to unexposed controls, but BDNF levels were unchanged.

Conclusions: BDNF receptors are present in different regions of human placental villi,
indicating diverse functions of BDNF signaling in placental development. Our findings
suggest that the BDNF pathway in placental trophoblast cells is not disrupted by
exposures to PFOS, PFOA, PFBS, and a PFAS mixture, but may be affected by PFNA
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exposures. Further investigation is needed on how PFAS affects other critical signaling
pathways during fetal neurodevelopment.
Keywords: Perfluoroalkyl substances, BDNF, TrkB, placenta, trophoblast
INTRODUCTION

Per- and polyfluoroalkyl substances (PFAS) are synthetic carbon
fluorine compounds used in industry and commerce since the
1940s (1). The stability and surfactant properties exhibited by
PFAS have led to widespread use in products from stain-resistant
textiles to firefighting foam—making them ubiquitous in the
environment (2, 3). Biomonitoring data have demonstrated
global accumulation in humans and biota via contaminated
drinking water, food and its packaging, outdoor air, house
dust, and soil (4–6). Previous studies estimate over 95% of
Americans to have detectable levels of PFAS in their blood, but
certain communities face disproportionate exposure risk (7–9).
One such affected population is in Pittsboro, North Carolina,
where sum PFAS concentrations up to 1,076 ng/L and 270.8 ng/L
were measured at drinking water intakes and in finished
household drinking water, respectively.1 These numbers are
over 30 times higher than those in the neighboring city of
Durham and are strikingly higher than surrounding cities.1

The blood levels of PFAS are between two and four times
higher in Pittsboro residents than the general United
States population.2

Concern surrounding PFAS has risen among affected North
Carolina residents due to the potential deleterious human health
effects associated with exposure. A growing body of robust
laboratory and epidemiologic data link PFAS to increased risk
of cancer, immune system dysfunction, poor antibody response
to vaccines, hormone disruption, kidney disease, thyroid
disorders, high cholesterol, pregnancy-induced hypertension,
preeclampsia, asthma, and decreased fertility (10). Fetuses are
particularly vulnerable to PFAS exposure because PFAS readily
cross the placental barrier and are transferred to developing
babies (11–13). Early-life exposure to various PFAS compounds
is associated with an array of developmental and
neurobehavioral impacts. Previous early childhood studies
observed associations between PFAS exposure and delays in
gross motor development (14), worsened visual motor abilities
(15), lower IQ test scores (16), externalizing behavioral
difficulties (17–19), poorer executive functioning (20),
neuropsychological developmental problems (21), and
attention deficit hyperactivity disorder (ADHD) and related
diagnostic symptoms (19, 22, 23). Other observational studies
of child neurobehavior report mixed or null associations (24–29).
Despite the effects of PFAS on human development gaining more
attention, a consensus on the neurodevelopmental consequences
g/2019/07/30/pfas-shows-up-in-haw-
/
g/2020/10/29/duke-study-finds-high-

n.org 2
of exposure has yet to be reached and further investigation
is necessary.

Although the mechanism of neurotoxicity remains unclear,
one pathway that may be implicated is the production of brain-
derived neurotrophic factor (BDNF). BDNF is essential to
mammalian nervous system development and function (30).
BDNF primarily interacts with two receptors, p75NTR and
tropomyosin sensitive receptor kinase B (TrkB) (31, 32).
Abnormalities in the BDNF pathway have been linked to
psychiatric disorders such as ADHD, schizophrenia, major
depression, autism, bipolar disorder, Alzheimer’s, and
Parkinson’s diseases (1, 5, 33–38). Reduced expression of
BDNF has been shown to impair working memory, reduce
volume of the cerebellum and hippocampus, and diminish
cognitive ability (39). Neurotrophins like BDNF play a role in
both prenatal and postnatal brain development and may offer
neuroprotective effects (40–42). BDNF supports differentiation
of neuronal cell types and influences synaptic properties in the
peripheral and central nervous systems during early
development (41, 43, 44). During pregnancy, the majority of
BDNF is derived from either the mother or the placenta and
regulates fetal and placental development (45–48). BDNF
contributes to fetal growth by promoting survival ,
proliferation, migration, and differentiation of cytotrophoblasts
in addition to angiogenesis, vessel stabilization, regulation of
growth factors, and control of energy homeostasis (48–51).
Changes in the BDNF pathway may lead to abnormal placental
development and pregnancy complications such as preeclampsia
(52, 53). However, the characteristics of the BDNF expression in
the human placenta are poorly understood. BDNF is a plastic
gene whose expression is highly responsive to external stimuli
and environmental exposures (30, 35, 37, 54). Significant PFAS-
attributable alterations in BDNF expression have been observed
in several animal model and cell studies, but conclusions are
largely inconsistent (55–59).

This study aims to characterize the BDNF pathway in human
placental tissues and trophoblast cell lines. Further, we seek to
investigate how the BDNF pathway in placental trophoblast cells
is affected by exposures to a PFAS mixture—which models the
exposure of Pittsboro, North Carolina residents (based on blood
levels)—and major PFAS compounds in this mixture.
MATERIALS AND METHODS

Chemicals and Reagents
Potassium nonafluoro-1-butanesulfonate (K+PFBS, CAS No.
29420-49-3), tridecafluorohexane-1-sulfonic acid potassium salt
(K+PFHxS), and heptadecafluorooatanesulfonic acid potassium
salt (K+PFOS) were purchased from Sigma-Aldrich (St. Louis,
July 2021 | Volume 12 | Article 694885
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MO). Oerfluorohexanoic acid (PFHxA), perfluoro-n-octanoic
acid (PFOA), perfluorononanoic acid (PFNA), and
perfluorodecanoic acid (PFDA) were purchased from Synquest
Laboratories (Alachua, FL). Product purity is above 95%. Stock
solutions of PFAS at 10, 1, 0.1, 0.01 mM were prepared by
dissolving PFAS compounds in ultrapure distilled water. A PFAS
mixture was made based on the PFAS levels in blood samples
collected from people living in Pittsboro, NC, in 2019 (Table 1).3

Forskolin (Wako Chemicals, Japan) stock solution was
reconstituted in DMSO at 80 mM.

Cell Culture and PFAS Treatments
An immortalized human choriocarcinoma cell line (BeWo cells,
gifted by Dr. Sallie Permar, Duke University, Durham, North
Carolina) was cultured in Dulbecco’s Modified Eagle Medium-
Hams/F12 (DMEM/F12) media supplemented with 10% Fetal
Bovine Serum (FBS) and 1x antibiotic-antimycotic solution
(Thermo Fisher Scientific). Cell culture and treatment
conditions are described in our previous publications (60, 61).
In short, after 60-70% confluency was reached, cells were treated
for 48 hours with DMSO (1:2000 dilution) or 40 mM forskolin
(FSK) to induce cell fusion, thereby modeling syncytialization of
cytotrophoblasts (CTB) during placental development. Culture
media supplemented with fresh 40 mM FSK was changed every
24 hours to ensure complete cell fusion. BeWo cells with and
without FSK treatments were then treated with individual PFAS
compounds at 0, 0.01, 0.1, 1, and 10 mM concentrations or the
PFAS mixture (1:1, 1:10, 1:50, 1:100 dilutions; Table 1) for 24
hours. These doses were chosen for cellular function studies
based on human exposure levels.3 To ensure the effects on
cellular functions are not due to cytotoxicity, we used doses at
least 10 times lower than LD10 (61). The following methods for
immunofluorescence staining and Western blot were performed
as described in Marinello et al. (62).

Immunofluorescence Staining of
Placental Tissues
First trimester placental tissues were collected from elective
pregnancy terminat ion pat ients without notifiable
complications at 8-10 gestational weeks. The study protocol
was approved by the Ethics Committees of Xinhua Hospital
affiliated with Shanghai Jiao Tong University School of Medicine
(IRB# XHEC-C-2018-089) with the consent waiver to obtain de-
identified tissue that was not to be used for clinical purposes.
Term placental tissues were collected under the Duke University
Institutional Review Board approval (IRB# PRO00014627) with
the consent waiver to obtain de-identified tissue that was not to
be used for clinical purposes. The placentas were collected from
women who underwent planned cesarean delivery at term (39 to
40 gestational weeks), without labor and current or previous
pregnancy complications.

Sections of placental tissues were fixed and paraffin
embedded. Tissue slides were deparaffinized with xylene
followed by graded rehydration in ethanol and distilled water.
3https://sites.nicholas.duke.edu/pfas/pfas-research-in-pittsboro-nc/pfas-study-
results/
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Subsequently, the sections were subjected to heat-induced
epitope retrieval by heating in antigen unmarking solution
(Vector Laboratories, Inc, Burlingame, California) preheated to
boiling for 20 minutes, followed by a 20-minute cool-down
period at room temperature. Slides were permeabilized and
blocked with 1% BSA, 10% normal goat serum and 0.01%
tween-20 in PBS for 60 min at room temperature. After
blocking, the slides were incubated with primary antibodies in
blocking buffer overnight at 4°C in humidified chambers.
Primary rabbit anti-human syndecan 1 (SDC-1) antibody
(Sigma, catalog no. HPA006185), mouse anti-human TrkB
antibody (R & D System, cat#: MAB397), or p75NTR antibody
(R & D System, cat#: MAB3671) was used at a 1:200 dilution.
Goat anti-rabbit Alexa Fluo 488 secondary antibody and Goat
anti-mouse Alexa Fluo 594 secondary antibody (Life
Technologies, Carlsbad, CA) were used at 1:300 dilution.
Nuclei were stained using NucBlue Fixed Cell ReadyProbes
Reagent (DAPI, Invitrogen). Slides were mounted using
ProLong Diamond Antifade Mountant (Invitrogen) and
e x am i n e d w i t h a L e i c a S P 5 i n v e r t e d c o n f o c a l
fluorescence microscope.

Immunofluorescence Staining of
BeWo Cells
BeWo cells were seeded at a density of 2 x 104 cells per well in
glass chamber slides (ibidi GmbH, Germany) then incubated for
24 hours. Cells were fixed with cold methanol for 10 minutes and
blocked with 1% BSA, 5% goat serum, and 0.1% Tween-20 in
PBS for 1 hour at room temperature. Next, cells were incubated
at 4°C overnight with primary antibodies in humidified
chambers. 1:100 dilutions of primary rabbit anti-human TrkB
antibodies (Abcam, cat#: ab18987) and p75NTR antibodies
(Abcam, cat#52987) were used. Anti-rabbit IgG antibodies
served as a negative control (R & D system, Minneapolis,
MN). 1:300 dilutions of goat anti-rabbit secondary antibodies
and Alexa Fluo 594 (Life Technologies, Carlsbad, CA) were used.
F-actin was stained using fluorescein Phalloidin (Invitrogen, cat#
F432) at 1:300 dilution. Nuclei were stained using NucBlue Fixed
Cell ReadyProbes Reagent (DAPI, Invitrogen). Slides were
mounted using ProLong Diamond Antifade Mountant
(Invitrogen) and examined with a Leica SP5 inverted confocal
fluorescence microscope.

Cell Viability Assay
BeWo cells were seeded at a density of 1 x 104 cells per well in 96-
well plates and incubated for 24 hours. The cells were then
treated with each individual PFAS compound at 0, 0.01, 0.1, 1, 10
mMor a PFAS mixture (Table 1) at 1:1, 1:10, 1:50, 1:100 dilutions
TABLE 1 | PFAS mixture (ng/g) administered to cell cultures based on levels in
blood samples collected from residents of Pittsboro, North Carolina.

PFOS 12.10
PFOA 7.00
PFHxS 3.10
PFNA 1.80
PFDA 0.75
PFHxA 0.60
Total 25.35
July 2021 | Volume 12 | Article 6
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in quadruplicate for 24 hours. Cell viability was measured using
the CellTiter 96®AQueous One Solution Cell Proliferation Assay
kit as instructed by the manufacturer instructions (G5421;
Promega, Madison, WI). The optical density at 490 nm
(OD490) was used to quantitatively compare cell viability
between treatments after incubating the cells with MTS
reagents for 4 hours. These experiments were repeated five
times (N=5).

Western Blot
To harvest cell lysates after treatment, we used RIPA buffer
(Sigma Aldrich, St. Louis, MO) with the complete mini-protease
inhibitor cocktail (Roche, Mannheim, Germany). Protein
concentrations were determined with the Bradford assay (Bio-
Rad Laboratories, Hercules, CA). 25mg of total protein samples
were loaded onto 10% sodium dodecyl sulfate polyacrylamide
gels, separated, and transferred to a polyvinylidene difluoride
membrane. The membranes were blocked with 5% milk in Tris-
Buffered Saline and Tween-20 (TBST) buffer. Membranes were
probed in blocking buffer at 4°C with primary antibodies
overnight. The following primary antibodies were used in the
experiments: rabbit anti-human TrkB antibody (Abcam, cat#:
ab18987), phosphor-TrkB (Tyr816) antibody (Cell Signaling
Technology, cat#4168), and rabbit anti-human pro-BDNF
antibody (Invitrogen, cat# PA1-18360) at 1:1000 dilution;
rabbit anti-human GAPDH antibody at 1:20 000 dilution. The
secondary antibody was diluted at a ratio of 1:2000. To visualize
and photograph the membranes, we used the ChemiDoc MP
Frontiers in Endocrinology | www.frontiersin.org 4
Imaging System with Image Lab Software (Bio-Rad, Berkeley,
CA). Band intensity was quantified with ImageJ (NIH, Bethesda,
MD). Data were normalized to the internal control (GAPDH)
and are presented as ratios. Experiments were repeated four
times (N=4).

Statistical Analysis
Data are presented as means ± SD. Multiple comparisons
between treatments were performed with a one-way ANOVA
and the post-hoc Dunnett’s test using GraphPad Prism 6.0 (La
Jolla, CA). Results from treatment groups are compared to
unexposed control cells. A p-value smaller than 0.05 is
considered statistically significant.
RESULTS

Localization of BDNF Receptors in
Placental Tissues
Syndican-1 (SDC-1), a biomarker for syncytiotrophoblast (STB)
was stained green on their epical membrane, TrkB and p75NTR

receptors were stained red, and nuclei were stained blue
(Figure 1). In the first trimester villous placenta, both TrkB
and p75NTR staining were most pronounced in the STB and
cytotrophoblast cells (CTBs) (Figure 1A). Staining was more
intense in the STB compared to the CTBs for the p75NTR. Spot
staining was observed in placental villous stroma tissue for the
p75NTR and TrkB.
A

B

FIGURE 1 | Expression of BDNF receptors in human placental tissues. (A) Representative confocal immunofluorescence staining images of showing DAPI (blue) and
SDC1 (a syncytiotrophoblast biomarker, green) along with TrkB (red) and p75NTR (red) receptors in the first trimester placenta. (B) Confocal immunofluorescence
staining images showing DAPI, SDC1, TrkB, and p75NTR in the term placenta.
July 2021 | Volume 12 | Article 694885
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In term villous placenta, TrkB and p75NTR receptors were
primarily observed in the placental villous stroma distinguished it
from the first trimester placenta (Figure 1B). TrkB receptor staining
in STB was reduced, while p75NTR receptor staining was negative.
Given these results and our focus on trophoblast cells, TrkB
receptors in BeWo cells were examined further in this study.

Localization and Expression of TrkB in
BeWo Cells
The presence of TrkB receptors in placental BeWo cells was
evaluated through immunofluorescence staining. BeWo cells
were cultured with and without forskolin treatments. Forskolin
treatment was administered to induce fusion of the cells,
modeling the villous trophoblast syncytialization (63). F-actin
staining distinguished individual BeWo cells before forskolin
treatment and diminished in fused cells after treatment. TrkB
receptors appeared to be localized in the nuclei, and some
appeared to be translocated into the perinuclear region after
forskolin-induced fusion. Representative images of TrkB staining
in BeWo cells are presented in Figure 2.

PFAS-Induced Disruption of the BDNF
Pathway in BeWo Cells
After confirming the presence of TrkB receptors, we examined
the effects of PFAS exposure on BDNF production and the ratio
of phosphorylated TrkB to total TrkB in BeWo cells with and
without forskolin treatment by Western blots. First, the MTS cell
viability assay confirmed that the doses used in this study did not
cause cell death. Next, we screened the phosphorylation sites,
Tyr516, Tyr706/707, and Tyr816 of TrkB receptors in BeWo
cells. The phospho-TrkB (Tyr816) was widely detected in these
cells with and without forskolin treatment. Finally, Western blot
results demonstrated that exposure to PFOS, PFOA, PFBS, and
the six-PFAS mixture did not significantly alter BDNF
production or activation of TrkB, manifested by the constant
Frontiers in Endocrinology | www.frontiersin.org 5
ratio of phospho-TrkB (Tyr816) to total TrkB at any given dose
(Figures 3–7). Although BDNF production was not changed by
PFNA exposures, the ratio of phospho-TrkB (Tyr816) to total
TrkB was significantly higher in forskolin-treated BeWo cells
exposed to 10 mM and 1 mM of PFNA than in unexposed
forskolin-treated BeWo cells (P=0.02; Figure 3). The same
trend was observed in BeWo cells without forskolin treatment
but was not significant (Figure 3).
DISCUSSION

This study investigates the BDNF signaling pathway in placental
cells and how it is affected by exposure to various PFAS
compounds and a PFAS mixture mimicking residents’ blood
levels in Pittsboro, North Carolina, USA. Confocal
immunofluorescence staining results show that TrkB receptors
are present in trophoblasts in the first trimester and term
placental villi. Similar expression of p75NTR receptors was
observed in first trimester placental tissues. At term, however,
p75NTR receptors were primarily located in the placental villous
stroma. Immunofluorescence staining results reveal that TrkB
receptors are localized to the nuclear and perinuclear regions in
BeWo cells. Western blot results indicate that TrkB receptors are
activated in BeWo cells by phosphorylation at the Tyr816 site.
Additionally, Western blots demonstrate that PFNA exposure at
1 mM and 10 mM doses increased the ratio of phospho-TrkB
(Tyr816) to total TrkB. Exposure to other PFAS compounds
(PFOS, PFOA, PFBS) and the PFAS mixture did not significantly
alter BDNF signaling, as evidenced by unchanged levels of BDNF
and phospho-TrkB. Thus, the impacts of PFAS exposure on fetal
neurodevelopment previously observed in cohort studies (14–23)
do not necessarily occur via the placental BDNF pathway.

Although BDNF signaling has been extensively studied in
neuronal tissues and cells, little is known about this pathway in
FIGURE 2 | Localization of BDNF receptors in placental BeWo cells. Representative immunofluorescent images showing DAPI, TrkB, and f-actin.
July 2021 | Volume 12 | Article 694885
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A

B

FIGURE 3 | Altered TrkB phosphorylation at high concentrations of PFNA. (A) Representative Western blot images of phos-TrkB, total-TrkB, GAPDH, and pro-
BDNF in BeWo cells without forskolin (FSK) treatment exposed to PFNA (0, 0.01, 0.1, 1, and 10 µM) and box plots for densitometry analysis; (B) Representative
Western blot images of phos-TrkB, total-TrkB, GAPDH, and pro-BDNF in BeWo cells with FSK treatment exposed to PFNA (0, 0.01, 0.1, 1, and 10 µM) and box
plots for densitometry analysis. ns indicates differences in protein levels were not significant. pTrkB816 represents for phosphorylation of TrkB at Tyr816 residue.
*P < 0.05 **P < 0.01 compared to unexposed forskolin-treated cells.
A

B

FIGURE 4 | PFOS exposure did not significantly disrupt the BDNF-TrkB pathway. (A) Representative Western blot images of phos-TrkB, total-TrkB, GAPDH, and
pro-BDNF in BeWo cells without forskolin (FSK) treatment exposed to PFOS (0, 0.01, 0.1, 1, and 10 µM) and box plots for densitometry analysis; (B) Representative
Western blot images of phos-TrkB, total-TrkB, GAPDH, and pro-BDNF in BeWo cells with FSK treatment exposed to PFOS (0, 0.01, 0.1, 1, and 10 µM) and box
plots for densitometry analysis. ns indicates differences in protein levels were not significant. pTrkB816 represents for phosphorylation of TrkB at Tyr816 residue.
Frontiers in Endocrinology | www.frontiersin.org July 2021 | Volume 12 | Article 6948856
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A

B

FIGURE 5 | PFBS exposure did not significantly disrupt the BDNF-TrkB pathway. (A) Representative Western blot images of phos-TrkB, total-TrkB, GAPDH, and
pro-BDNF in BeWo cells without forskolin (FSK) treatment exposed to PFBS (0, 0.01, 0.1, 1, and 10 µM) and box plots for densitometry analysis; (B) Representative
Western blot images of phos-TrkB, total-TrkB, GAPDH, and pro-BDNF in BeWo cells with FSK treatment exposed to PFBS (0, 0.01, 0.1, 1, and 10 µM) and box
plots for densitometry analysis. ns indicates differences in protein levels were not significant. pTrkB816 represents for phosphorylation of TrkB at Tyr816 residue.
A

B

FIGURE 6 | PFOA exposure did not significantly disrupt the BDNF-TrkB pathway. (A) Representative Western blot images of phos-TrkB, total-TrkB, GAPDH, and
pro-BDNF in BeWo cells without forskolin (FSK) treatment exposed to PFOA (0, 0.01, 0.1, 1, and 10 µM) and box plots for densitometry analysis; (B) Representative
Western blot images of phos-TrkB, total-TrkB, GAPDH, and pro-BDNF in BeWo cells with FSK treatment exposed to PFOA (0, 0.01, 0.1, 1, and 10 µM) and box
plots for densitometry analysis. ns indicates differences in protein levels were not significant. pTrkB816 represents for phosphorylation of TrkB at Tyr816 residue.
Frontiers in Endocrinology | www.frontiersin.org July 2021 | Volume 12 | Article 6948857
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gestational tissues. The current study further characterizes the
BDNF pathway in placental tissues. BDNF is first synthesized as
a precursor protein, prepro-BDNF, which is converted into pro-
BDNF by removal of the signal peptide (64). Once the protein is
secreted, pro-BDNF is converted to mature BDNF (mBDNF)
through proteolytic cleavage by furin and other proprotein
convertases (65). We were able to detect pro-BDNF by
Western blots in BeWo cell lysates. However, mBDNF levels
were close to the limits of detection in BeWo cell culture media,
which could be due to limited pro-BDNF secretion or cleavage in
our current culture condition. mBDNF is preferentially released
via a tightly controlled pathway driven by activity-dependent
depolarization and Ca2+ entry (66). BDNF binds to specific
receptors and regulates distinct biological functions. The
BDNF receptors in this study were localized in discrete
placental domains, indicating that BDNF exhibits distinct
functions in different placental cells. BDNF binding to TrkB
results in TrkB activation and autophosphorylation at Tyr sites
(67). The activated TrkB receptors can induce an array of
intracellular signaling cascades (43). TrkB receptor activation
at the Tyr490 and Tyr515 residues regulates MAPK/ERK kinases
and the PI3K/Akt pathway (68). Both of these pathways activate
transcription factors (CREB and C-myc) which trigger
neurotrophic functions of cell survival, growth, and
differentiation (68). Phosphorylation of TrkB receptors at the
Tyr816 site activates phospholipase C g (PLC g) (68, 69). The
phosphorylation of Tyr706/707 sites can lead to the
transphosphorylation of Tyr515 and Tyr816 residues (69, 70).
Frontiers in Endocrinology | www.frontiersin.org 8
These signaling pathways support many aspects of growth and
development such as cell survival, synaptic structure, and
synaptic plasticity (43, 59). In BeWo cell cultures, the
phosphorylation of the TrkB receptor at its Tyr816 residue was
robustly detected, while its Tyr515 and Tyr707 residues were
seldom observed.

Expression of neurotrophins like BDNF is susceptible to
change in response to perturbations in the maternal
environment (40). Exposure to environmental pollutants is a
maternal challenge that may affect BDNF expression and
signaling in offspring. In rodents, prenatal stress can lead to
decreased BDNF expression in offspring from weaning to
adulthood (54). Moreover, mouse prenatal exposure to
synthetic organic compounds such as bisphenol A (BPA) can
induce lasting DNA methylations in transcriptionally relevant
BDNF regions (54). Other studies have observed altered cord
blood concentrations in humans following acute BPA exposure
(35). Given these previous findings, the continued investigation
of PFAS-induced BDNF pathway disruptions is imperative. Li
et al. found increased TrkB expression in response to 10 mM
doses of PFOS in human neuroblastoma cells (58). However, this
observation was a proposed compensatory response to a
simultaneous PFOS-related decrease in BDNF protein levels,
which was seen in other reports (58, 59). Generally, the PFAS
mixture and individual PFAS compounds did not significantly
regulate the BDNF pathway in BeWo cells in this study. The
phosphorylation of TrkB at the Tyr816 site was only increased by
PFNA exposure at 1 and 10 mM levels. We speculate that the
A

B

FIGURE 7 | PFAS mixture exposure (detailed in Table 1) did not significantly disrupt the BDNF-TrkB pathway. (A) Representative Western blot images of phos-
TrkB, total-TrkB, GAPDH, and pro-BDNF in BeWo cells without forskolin (FSK) treatment exposed to mixture dilutions (0, 1:1, 1:10, 1:50, 1:100) and box plots for
densitometry analysis; (B) Representative Western blot images of phos-TrkB, total-TrkB, GAPDH, and pro-BDNF in BeWo cells with FSK treatment exposed to
mixture dilutions (0, 1:1, 1:10, 1:50, 1:100) and box plots for densitometry analysis. ns indicates differences in protein levels were not significant. pTrkB816
represents for phosphorylation of TrkB at Tyr816 residue.
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activation of TrkB receptors is a secondary effect of PFNA
exposure on these cells because the protein levels of pro-BDNF
were not altered by PFNA exposure and mBDNF was not
detected. Further, the activation of TrkB receptors can be
triggered by other pathways or ligands unrelated to BDNF (71,
72). Additional studies are needed to investigate the mechanism
by which PFNA induces changes in the BDNF signaling pathway
and what other neurohormonal pathways could be disrupted by
PFAS in both the placenta and fetal brain.

The present study has several limitations. First, the PFAS
mixture in this study was based on blood concentrations of
Pittsboro residents who were not pregnant. Maternal and
placental blood levels of PFAS are unknown at this time.
Second, the timeline and dosing allowed us to study the effects
of acute exposures but preclude us from drawing conclusions
about chronic low-level exposure. Third, our findings are limited
to in vitro observations. However, we found a strong correlation
between in vitro (BeWo cells) and in vivo (mice placenta and fetal
brain tissues) observations of the BDNF pathway upon PM2.5
exposure [unpublished data]. Finally, our findings are based on a
single cell model due to the limited availability of STB cell
models. JAR, JEG-3—other in vitro models of the trophoblast
barrier—were unsuitable for this study because they fail to
undergo substantial syncytial fusion (73, 74).

This study is the first to localize p75 and TrkB receptors in the
human placenta at different stages of gestation and in placental
cells originating from choriocarcinoma (BeWo cells). Three
individually tested PFAS compounds (PFOA, PFOS, PFBS)
and a six-PFAS mixture mimicking residential exposure in
Pittsboro, North Carolina, did not induce increased TrkB
phosphorylation or alter pro-BDNF levels. Additionally, our
results showed that in cells exposed to high concentrations of
PFNA, phosphorylation of TrkB receptors increased while pro-
BDNF levels remained stable. Although BDNF plays a critical
role in brain development throughout all stages of life, it is
unlikely to be primarily responsible for the observed
neurodevelopmental consequences associated with in utero
PFAS exposure. Additional investigation is required to
understand whether adverse effects arise via an alternative
Frontiers in Endocrinology | www.frontiersin.org 9
placental pathway or are enacted directly on the fetus. These
findings contribute to an improved understanding of the
understudied BDNF signaling pathway in the gestational
tissues and how the pathway is altered by PFAS exposure.
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