
Frontiers in Endocrinology | www.frontiersi

Edited by:
Fernando Schmitt,

University of Porto, Portugal

Reviewed by:
Gianluca Donatini,

Centre Hospitalier Universitaire (CHU)
de Poitiers, France

Aziza Nassar,
Mayo Clinic Florida, United States

*Correspondence:
Peter M. Sadow

psadow@mgh.harvard.edu

Specialty section:
This article was submitted to

Thyroid Endocrinology,
a section of the journal

Frontiers in Endocrinology

Received: 16 April 2021
Accepted: 14 May 2021
Published: 10 June 2021

Citation:
McFadden DG and

Sadow PM (2021) Genetics,
Diagnosis, and Management of
Hürthle Cell Thyroid Neoplasms.
Front. Endocrinol. 12:696386.

doi: 10.3389/fendo.2021.696386

SYSTEMATIC REVIEW
published: 10 June 2021

doi: 10.3389/fendo.2021.696386
Genetics, Diagnosis, and
Management of Hürthle Cell
Thyroid Neoplasms
David G. McFadden1 and Peter M. Sadow2*

1 Division of Endocrinology, Department of Internal Medicine, Department of Biochemistry, Program in Molecular Medicine,
Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas,
TX, United States, 2 Departments of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston,
MA, United States

Hürthle cell lesions have been a diagnostic conundrum in pathology since they were first
recognized over a century ago. Controversy as to the name of the cell, the origin of the cell,
and even which cells in particular may be designated as such still challenge pathologists
and confound those treating patients with a diagnosis of “Hürthle cell” anything within the
diagnosis, especially if that anything is a sizable mass lesion. The diagnosis of Hürthle cell
adenoma (HCA) or Hürthle cell carcinoma (HCC) has typically relied on a judgement call by
pathologists as to the presence or absence of capsular and/or vascular invasion of the
adjacent thyroid parenchyma, easy to note in widely invasive disease and a somewhat
subjective diagnosis for minimally invasive or borderline invasive disease. Diagnostic
specificity, which has incorporated a sharp increase in molecular genetic studies of
thyroid tumor subtypes and the integration of molecular testing into preoperative
management protocols, continues to be challenged by Hürthle cell neoplasia. Here, we
provide the improving yet still murky state of what is known about Hürthle cell tumor
genetics, clinical management, and based upon what we are learning about the genetics
of other thyroid tumors, how to manage expectations, by pathologists, clinicians, and
patients, for more actionable, precise classifications of Hürthle cell tumors of the thyroid.
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HISTORY OF THE HÜRTHLE CELL

The Hürthle cell is of mysterious lineage. Thyroid-associated Hürthle cells are microscopically
recognizable to pathologists with ease using a hematoxylin and eosin stain due to its abundant, lacy,
oxyphilic cytoplasm with a large, round nucleus containing a prominent, typically centrally located
nucleolus (Figure 1). Although deemed Hürthle cells when they are found within the thyroid gland,
similar-appearing cells are seen in other sites, most commonly in salivary gland and the kidney.
Indeed, other cell types, even hepatocytes, may resemble the Hürthle cells, with variable cellular
architecture and less distinct nucleoli. An abundance of intracellular mitochondria of uncertain
function underlies the dense, lacy cytoplasm apparent on histologic sections. Hürthle cells were first
n.org June 2021 | Volume 12 | Article 6963861
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described by Max Askanazy, a Swiss-German pathologist, in
1898 (1), although the monicker was ascribed to Karl Hürthle, a
German pathologist who actually identified parafollicular C cells
in 1894. Despite this being corrected frequently in the literature
over the last century, as having been described by Askanzazy,
including a move toward designating these lesions as oncocytic,
more descriptive than ascribed for discovery, suggested in 1950
by Herwig Hamperl, a German pathologist (2), the misnomer
has taken hold, been emblazoned in the most recent edition of
the WHO classification of endocrine tumors (3), and is widely
used internationally.
HÜRTHLE CELL NEOPLASIA

Although the science is evolving, the exact origin of Hürthle cells
in the thyroid is unclear, in terms of their physiologic function
and from which progenitor they arise, a topic to be discussed
elsewhere in this issue by Drs. Mete and Asa. Expression of
thyroglobulin and other enzymes unique to the follicular
epithelial cell of the thyroid in many Hürthle cell tumors
suggests these cells evolve from the thyrocyte at some point in
their development. However, this appears to take place prior to
neoplastic transformation as mixed Hürthle cell/follicular lesions
are not typically observed. Hürthle cell neoplasms have been an
orphan disease group in the thyroid. To date, we have generally
considered thyroid neoplasms to fall into one of two tumor types,
follicular-derived thyroid tumors (FDTT, tumors of thyrocytes)
or parafollicular tumors of c-cell/neural crest origin. Of the
FDTT, we have adenomas and carcinomas and a myriad of
described subtypes of each. However, of the follicular-derived
(non-papillary) tumors, in the 2004 WHO, there were follicular
adenomas (FA) (4) and follicular thyroid carcinomas (FTC) (5).
There were no discrete chapters to describe Hürthle cell
neoplasms (HCN) in this edition. HCN were described as
unique oncocytic subcategories with the follicular adenoma
and follicular thyroid carcinoma categories. So, although these
tumor types were morphologically distinct lesions, for
classification purposes, these tumors were lumped together
with their follicular, non-papillary counterparts, with an
additional, oncocytic variant of papillary thyroid carcinoma
(not elaborated on here).

Behaviorally, however, this created a conundrum. Although
listed as a subtype of follicular thyroid carcinoma, Hürthle cell
carcinomas (HCC) were morphologically, behaviorally and
genetically distinct, which we will discuss. Follicular thyroid
carcinomas are well-known to metastasize in a manner unique
to their architecture and morphology, avoiding lymphatic spread
and localized neck disease and, instead, favoring more insidious
metastatic patterns via a hematogenous routes to distant sites,
including lung, bone, and brain (6, 7), whereas papillary thyroid
carcinomas are more likely to present, in advanced cases, with
localized neck disease with lymph node metastases (8). Hürthle
cell carcinomas also follow a lesion-specific pattern of metastasis,
employing the aggressive components of both disease subtypes,
with advanced disease consisting of both lymph node metastasis
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to the central and lateral neck, along with vascular spread to
distant tissue sites (9).

Regarding pathologic evaluation of these tumors, they are
regarded as all follicular-patterned thyroid neoplasms. Unless
overtly widely invasive malignancies, they are typically well-
circumscribed, encapsulated or unencapsulated, and the diagnosis
of malignancy involves invasion into the adjacent thyroid
parenchyma or vascular invasion within or external to the lesional
capsule (Figure 1) (3, 9, 10). Although Hürthle cell lesions in the
thyroid can be unifocal, multinodular thyroids with a dominant
Hürthle cell lesion or thyroids with a background chronic
lymphocytic (Hashimoto) thyroiditis may have multiple Hürthle
cell lesions or Hürthle cell change. This may confound the
assessment for tumor invasion, especially in the setting of a
dominant, thinly to unencapsulated lesion. Or, conversely, for
thickly encapsulated Hürthle cell lesions with an abutting,
unencapsulated Hürthle cell nodule, a decision needs to be made
about transcapsular invasion versus an immediately adjacent,
unrelated mass (Figure 1A). Levels may not reveal mushrooming
invasion, and this then becomes a subjective assessment. For many
pathologists, especially if the dominant mass is a large lesion, this
becomes a challenging exercise self-restraint versus the risk of being
incorrect; incorrect referring to both the biological truth and
possibly review by an extrainstitutional pathologist with
discordance in diagnosis.

Trauma, especially with associated hemorrhage, can lead to
rapid degenerative changes in Hürthle cell lesions, including
cystification with papillary architecture, diffuse necrosis,
hyalinization and ossification (Figure 2). These processes that
may be triggered following needle biopsy or even palpation can
lead to challenges in diagnosis and suggest an extreme sensitivity to
tumor hypoxia or other consequences of vasculature interruption.
Nuclei may lose their typical appearance and adopt nuclear
membrane irregularities, including some clearing and loss of the
prominent nucleolus for smaller chromocenters. Hürthle cells are
known to have occasional intranuclear pseudoinclusions. Papillary
cystic degenerative changes, plus or minus any of the other above
changes could certainly lead to a (mis)diagnosis of papillary thyroid
carcinoma (Figure 2A). Lack of fibrovascular cores or
accompaniment by other features of traumatic/degenerative
change, including necrosis, hemosiderin deposition or
hyalinization should prompt a broader thought process and
possibly trigger ancillary testing, including a BRAF
immunohistochemical stain or molecular testing in particularly
challenging/borderline cases. Additional hypoxia-related reactive
changes can lead to nearly complete hyalinization or ossification
of nodules, in some cases with osseous metaplasia with
extramedullary hematopoiesis (Figure 2B). Small foci of residual
Hürthle cells may be present (Figure 2B, insert), but they may have
associated atypia that raise the possibility of oncocytic variant
papillary thyroid carcinoma, and again, may trigger
immunohistochemical/molecular work up depending upon the
size and context of the lesion. Further, peripheral architectural
abnormalities may be noted, in thickly encapsulated, variably
densely encapsulated and thinly/unencapsulated lesions. For the
former, thickly encapsulated or variably encapsulated lesions,
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FIGURE 2 | Reactive Changes in Hürthle Cell Neoplasia. Among the diverse reactive changes seen with Hürthle cell neoplasia (hematoxylin and eosin stain),
especially post traumatic, are cystification (A, 20X magnification), ossification (B, 20X magnification), and capsular irregularity with coarse calcification (C, 40X
magnification). Cystic changes due to hypoxia-related cellular drop out lead to papillary architectural formations at low power, lacking fibrovascular cores (A) but
retaining Hürthle cell morphology and typically at least focal follicular architecture (A, inset, 1000X magnification). Exquisite hypoxia sensitivity can lead to complete
ossification (B), post-traumatic, of Hürthle cell tumors, occasionally with no residual cells or with rare clusters that may exhibit Hürthle cell features with associated
nuclear atypia (B, inset, 1000X magnification). An additional feature, especially in tumors with thicker capsules, is intracapsular so-called “coarse” or “egg shell”
calcifications which can distort the lesional growth pattern at the periphery and conferring a pseudoinvasive growth pattern (C).
A B
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FIGURE 1 | Morphological Controversies. Hematoxylin and eosin stains of Hürthle cell carcinoma. Endothelial wrapping or bulging of tumor into endothelial lined
spaces raises the question of lymphatic invasion. Tumor bulging (A, arrowheads, 100X) is controversial with some requiring presence of intravascular thrombi. The
band of fibrosis (A, discontinuous line) raises the question of biopsy site versus capsule with invasion with some discussion of hemosiderin deposition (not seen here)
to indicate needle track. Tumor nodule with surrounding endothelial cells (B, arrowheads, 400X) in a space adjacent to the main tumor mass raises the possibility of
capsular invasion versus vascular invasion versus focus of adjacent tumor in an unencapsulated lesion. Trabecular growth of true Hürthle cells (C, 400X) with round
nuclei, pale nucleoplasm and prominent, centrally located nucleoli in Hürthle cell carcinoma. In the same tumor, with trabecular growth (D, 40X), shows an adjacent
focus of overt vascular invasion in a large vessel located within the adjacent skeletal muscle (asterisks).
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calcifications may be present, so-called “coarse” or “egg shell”
calcifications, with disrupted, pushing growth of the tumor into
the capsule or intratumoral fibrosis giving the false impression of
invasion (pseudoinvasion; Figure 2C). Care should be taken to not
overinterpret lesions with fibrosis without overt invasion through
the capsule into adjacent parenchyma, transcapsular invasion. And,
even in cases with transcapsular invasion, if linear, consideration to
fine needle aspiration site-related changes needs to be considered,
especially if linear hemosiderin deposition is noted.

Widely invasive tumors are typically not a challenge, in terms
of diagnosis, but there are other difficulties in their diagnosis
(Figure 3). The presence of a solid, insular, or trabecular growth
pattern, not infrequent in Hürthle cell tumors, raises the
possibility for transformation to poorly differentiated thyroid
carcinoma (PDTC; Figure 3). The original Turin criteria
excluded oncocytic/Hürthle cell lesions (11), but this diagnostic
line has become blurred more recently (12–15), a line that
warrants molecular sorting rather than subjective histologic
review, especially where outcomes and treatment modalities
would be modified. These are often widely invasive tumors,
with necrosis and mitotic activity, but while the cytoplasm may
retain Hürthle cell features, the nuclei may be pleomorphic and
lack the distinct prominent, centrally located nucleolus.
Additionally, Hürthle cell tumors have variable growth
patterns that can correspond with other follicular tumors,
including macro and microfollicular lesions. However, being
Frontiers in Endocrinology | www.frontiersin.org 4
hypoxia sensitive, owing to the unique mitochondria-rich
nature of these tumors, they are prone to cystic degeneration,
papillary cystic architecture, hyalinization, ossification,
and fibrosis.
PREOPERATIVE BIOPSY

Preoperative fine needle aspiration (FNA) biopsy is frequently
performed for patients with solitary or multiple large thyroid
nodules. A recent review by Jalaly and Baloch (9) shows a nice
algorithmic approach to biopsied thyroid lesions with Hürthle
cells present. Preoperative genetic testing is of some limited
utility, although Hürthle cell neoplasia may be ruled in, ruled
out, or deemed suspicious/neoplastic, depending upon assay
choice, by molecular testing with indications for surgical
excision (16, 17).
GENETIC ALTERATIONS IN HÜRTHLE
CELL NEOPLASMS

Several recent studies using next generation DNA sequencing
methods have comprehensively characterized the somatic
genomes of HCC. Cumulatively, these studies have built upon
A B
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FIGURE 3 | Widely invasive Hürthle cell carcinoma with high-grade features, hematoxylin and eosin stain. Multinodular growth of the Hurthle cell carcinoma into
adjacent thyroid with no circumscription leads to non-controversial diagnosis of widely invasive Hurthle cell carcinoma (A, 40X). Collections of hyperchromatic,
irregularly shaped nuclei with hypereosinophilic colloid, so-called burgeoning or incipient necrosis (B, circles, 400X). Frequent mitoses and scattered irregular (tripolar)
mitoses (C, circle, 400X) and variably retained prominent nucleoli. Tumor metastasis to lateral neck lymph nodes (D, 20X), following a typical pattern of metastasis in
Hürthle cell malignancies.
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foundations established by prior focused studies of the nuclear
and mitochondrial genomes to unveil unique features of the
Hürthle cell neoplasm (HCN) somatic genome compared to
other forms of neoplasia (summarized in Figure 4).
LOW FREQUENCY OF CANONICAL FDTC
DRIVER MUTATIONS

Several studies examined whether known thyroid oncogenes and
tumor suppressor genes were recurrently mutated in HCC. Two
studies reported recurrent RET-PTC translocations in HCCs
using FISH and PCR methods (18, 19). However, in larger
cohorts using DNA-sequencing based methods, RET-PTC
(CCDC6-RET and NCOA4-RET) translocations were not
detected, nor were RET-PTC translocations recurrently
identified in molecular testing of FNA specimens with Hürthle
cell cytology (20–26).
Frontiers in Endocrinology | www.frontiersin.org 5
HCCs harbor mutations in known thyroid cancer oncogenes
including RAS, TSHR, EIF1AX, TP53, PTEN, BRAF, PAX8-
PPARg, and MEN1 (20, 22–31). However, mutations in these
genes occur in a small fraction of HCC. Mutations in chromatin
regulatory proteins were also reported at low frequency, similar
to other clinically aggressive thyroid cancers (22, 24, 32, 33).
Overall, these studies were consistent with the notion that HCC
represented a molecularly distinct form of thyroid cancer.
THE IDENTIFICATION OF
MITOCHONDRIAL GENOME
ALTERATIONS IN HCC

The accumulation of structurally abnormal mitochondria is
a defining feature of HCN and other oncocytic neoplasms.
The mitochondrial genome (mtDNA) is a small circular,
FIGURE 4 | Hürthle cell carcinomas harbor recurrent mutations in genes encoding complex I of the electron transport chain in the mitochondrial genome (mtDNA),
widespread loss of chromosomes leading to a near-haploid state, and recurrent mutations in several oncogenes and tumor suppressor genes, albeit at a low
frequency. (Reproduced with permission from Gopal, RK, Kübler K, Calvo SE et al. Widespread chromosomal losses and mitochondrial DNA alterations as genetic
drivers in Hürthle cell carcinoma. Cancer Cell 2018; 34:242-255.e5).
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bacterial-like genome that originated in the bacterial symbiont
which evolved into the mitochondrion organelle. The mtDNA
encodes a total of 37 genes, including 13 components of the
mitochondrial electron transport chain (ETC). Deleterious
germline mutations in the mtDNA, which are maternally
inherited, result in variable impairment of the ETC and lead to
an array of congenital diseases (34). In models of severe ETC
impairment, morphologically abnormal mitochondria
accumulate, which is thought to represent a compensatory
response to impaired mitochondrial function (35).

Several groups have examined electron transport chain
function and mtDNA in HCC and other thyroid cancers. A
study of mtDNAmutations in a panel of thyroid cancers revealed
frequent mtDNA mutations that clustered in genes encoding
subunits of complex I of the ETC (36). A study of ATP levels and
oxygen consumption in a panel of HCNs was also consistent with
impaired ETC function (37). A key development in the field was
the derivation of a cancer cell line from an HCC breast
metastasis, XTC.UC1 (38). The XTC.UC1 cells were
subsequently found to exhibit impaired ETC function and
harbor disruptive mtDNA mutations in complex I and
complex III (39).

Gasparre et al. then reported a complete mtDNA sequencing
study of 45 oncocytic neoplasms (40). The majority of oncocytic
tumors harbored mutations in the mtDNA that clustered within
genes encoding subunits of complex I. Approximately one half
(12/25) of the complex I mutations were predicted to be
functionally disruptive (frameshift or nonsense mutations).
This study established that mutations in mtDNA-encoded
complex I subunits were highly recurrent in HCNs.

mtDNA exist at up to thousands of copies per cell. Therefore,
mtDNA mutations can exist in a fraction (heteroplasmy) or all
(homoplasmy) of the mtDNA copies. The relative fraction of
deleterious mutants can impact the degree of ETC impairment,
as well as phenotypes associated with individual mtDNA
mutations (34). Gopal et al. extended analysis of mtDNA to a
cohort of HCC that included sequentially resected primary and
metastatic lesions from individual patients (24). In this study,
mtDNA mutations were identified in 60% of HCC patients
(24/40).

The depth of sequencing coverage provided by exome
sequencing also enabled the investigators to estimate mtDNA
heteroplasmy in the samples. According to pan-cancer
sequencing data analyzed by Gopal et al., deleterious mutations
in complex I subunits most frequently existed at low fraction
across all cancer types (only a small fraction of mtDNA in the
tumor carried the disruptive mutation) (41). This finding
suggested that most tumors select against mutations that
compromise complex I function. Interestingly, the opposite
trend was observed in HCC: deleterious complex I mtDNA
mutations existed in a very high fraction of mtDNA
sequencing reads. This observation suggested that, unlike other
forms of cancer, mutations that impaired complex I function
were under positive selection in HCC and therefor possibly
advantageous for tumor growth. Additionally, when the
deleterious complex I mtDNA mutation was homoplasmic in
Frontiers in Endocrinology | www.frontiersin.org 6
the primary tumor, metastases derived from these primary
tumors that maintained the mtDNA mutation at similar levels.

The results of this study supported the notion that loss of
mitochondrial respiration, specifically through complex I
impairment, was advantageous to HCC tumorigenesis, and
might therefore act as a driver alteration in oncocytic
neoplasms. Interestingly, similar findings were reported in
renal oncocytoma which also harbored frequent mtDNA
mutations in complex I subunits (42). These studies suggested
that impairment of complex I function was an important early
driver of oncocytic tumors arising in multiple tissues (common
biology). Consistent with this notion, in a recent pan-cancer
analysis of nuclear and mitochondrial genomes in over
2600 tumors, the combination of a non-silent mtDNA
mutation without another known cancer driver gene mutation
was most prevalent in thyroid and chromophobe kidney
cancers (43).
CHROMOSOME GAINS AND LOSSES
IN HCC

Chromosomal aberrations are well established drivers of cancer
initiation and progression. Early studies of overall DNA content
in HCN suggested high frequency of aneuploidy (44). A study by
Mazzuchelli et al. systemically assessed individual chromosomes
using fluorescence situ hybridization (FISH) methods (45).
Chromosome losses were observed more frequently compared
to chromosomal gains in HCN. Specifically, monosomies of
chromosomes 8, 22, and 2 were and gains of chromosome 7,
12, and 17 were observed. Another study using FISH reported
also found that tumors with a greater number of chromosome
losses exhibited poorer outcomes by retrospective analysis (46)
(Erickson 2001).

Cover et al. utilized genome-wide DNA microarrays to more
comprehensively evaluate chromosomal gains and losses in HCN
(47). Whole chromosome losses were widespread leading to
near haploidization of the genome in HCC. This finding
was validated using single nucleus flow cytometry and FISH,
and these alterations were unique in HCN compared to other
thyroid cancers. Consistent with the earlier studies, Chr 7
was never haploid, and losses of Chrs 5, 12, 17, and 20
were infrequent.

Two recent exome sequencing studies of HCC reported
similar findings and confirmed prior associations between
widespread chromosome gains and losses and clinical
outcomes. Ganly et al. reported that minimally invasive HCC
were frequently diploid or harbored a few chromosomal losses or
duplications. In contrast, widely invasive HCC more frequently
harbored evidence of chromosomal amplifications, always
involving chromosome 7 (22). Gopal et al. reported a high
frequency of near-haploid HCC exhibiting widespread
chromosomal losses (24). A subset of near-haploid HCC
underwent whole genome duplication (WGD) that led to
amplification of chromosome 7 and uniparental disomy of
June 2021 | Volume 12 | Article 696386
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much of the genome. Interestingly, comparison of the ploidy
state of related primary and metastatic tumors suggested that
WGD was not a prerequisite for metastatic progression. Near-
haploid primary tumors seeded metastases that generally
maintained the near-haploid state. However, in a few patients,
near-haploid primary tumors seeded metastases that exhibited
WGD. Primary tumors that exhibited WGD also maintained this
state in metastases.

The underlying basis of chromosomal loss remains
unclear, although several hypotheses have been proposed
(48, 49). Specific chromosomes appear to undergo gains or
losses more frequently than others, suggesting that unique
selective pressures are exerted on individual chromosomes.
Chrs 1, 2, 3, 4, 6, 8, 9, 11, 14, 15, 21, 22 exhibited whole
chromosome LOH in most cases reported by Gopal et al. In
contrast, Chrs 5, 7, 12, and 20 exhibited increased copy number
relative to other chromosomes. However, it is not clear whether
duplication of Chrs 5, 7, 12, and 20 stemmed from positive
selection for increased DNA copy number of these
chromosomes, or rather originated because these Chrs rarely
underwent chromosomal loss prior to WGD. Nonetheless, the
fact that Chr 5, 7, 12, and 20 were infrequently lost suggested that
genes encoded on these chromosomes contribute to HCC or
growth or survival.

Together these studies suggest an advantage for progressive
chromosomal losses during the outgrowth of HCC. Widespread
chromosomal loss, as seen in HCC, is observed infrequently in
cancer. However, cases of germ cell tumors, leukemia,
renal oncocytoma, giant cell glioblastoma, mesothelioma,
parathyroid and adrenocortical carcinoma harbor near-haploid
genomes, typically in a much smaller fraction of tumors
compared to HCC (42, 50–57). This observation suggests the
near-haploid state can contribute to tumor growth, at least in
some cancers.
CLINICAL CHALLENGES

HCCs are considered to exhibit a more aggressive clinical course
compared to other forms of differentiated thyroid carcinoma
(DTC), with higher incidence of distant metastases and more
rapid progression of metastatic disease (58–61). However, it is
important to note that aggressive clinical behavior is well-
established primarily for patients presenting with widely
invasive disease (extrathyroidal extension or extensive vascular
invasion). Patients presenting with minimally invasive HCC
exhibit excellent prognoses similar to FTC, based on available
studies (61–64).

HCNs exhibit high 18
fluoro-deoxy glucose (18FDG) uptake

compared to other forms of thyroid cancer (65, 66). Conversely,
HCCs are reported to exhibit less avidity for radioactive iodine
(RAI), at least compared to FTC (60, 62, 67). Whether RAI has
therapeutic benefit in HCC patients remains muddled. A
retrospective analysis of the National Cancer Database
(NCDB) suggested improved survival for HCC patients
Frontiers in Endocrinology | www.frontiersin.org 7
who receive RAI (68). However, disease specific survival
and recurrence data were not available from the database.
Another retrospective single institution chart review supported
the use of RAI in HCC, but this study had notable limitations.
First, there was no control group, and the HCC cases included in
the study were largely minimally invasive cancers, which are
likely to exhibit excellent outcomes regardless of intervention.
The study was not able to discriminate between cervical neck
RAI uptake from normal thyroid remnant or residual cancer,
and no patients developed metastases in which uptake could be
directly examined (69).

In contrast, data more clearly suggests that recurrent
or metastatic HCC take up less RAI compared to other forms
of DTC, which is logically consistent with the increased
frequency of high-level FDG uptake in these cancers (62, 67).
Overall, it remains questionable whether RAI has therapeutic
benefit, especially in patients presenting with recurrent or
metastatic disease.

A particular challenge for patients presenting with metastatic
or recurrent disease is the general lack of actionable somatic
mutations in HCC. Although actionable somatic mutations are
occasionally detected, most HCC do not harbor mutations that
rationally guide therapy. Therefore, cytotoxic chemotherapy,
multikinase inhibition, and external beam radiation remain the
primary options in the setting of recurrence of cancer
progression in HCC.
SUMMARY AND FUTURE DIRECTIONS

Hürthle cell neoplasia presents a challenge in both diagnosis and
treatment. We are learning that HCN have unique molecular
pathogenesis among FDTT, yet predicting biological behavior
remains difficult, excluding widely invasive carcinomas. The
increasing use of molecular testing during thyroid nodule
diagnosis is an important avenue toward understanding the
genetic underpinnings of the transition from adenoma to
carcinoma as well as the development of specific therapies that
target the underlying genetic drivers of these fascinating yet
recalcitrant cancers.
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