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Brain Permeable AMP-Activated
Protein Kinase Activator R481 Raises
Glycaemia by Autonomic Nervous
System Activation and Amplifies the
Counterregulatory Response to
Hypoglycaemia in Rats

Ana M. Cruz’, Katie M. Partridge’, Yasaman Malekizadeh, Julia M. Viachaki Walker,
Paul G. Weightman Potter’, Katherine R. Pye', Simon J. Shaw?, Kate L. J. Ellacott’
and Craig Beall "

1 Institute of Biomedical and Clinical Sciences, College of Medicine and Health, University of Exeter, Exeter, United Kingdom,
2 Rigel Pharmaceuticals Inc., South San Francisco, CA, United States

Aim: We evaluated the efficacy of a novel brain permeable “metformin-like” AMP-
activated protein kinase activator, R481, in regulating glucose homeostasis.

Materials and Methods: \We used glucose sensing hypothalamic GT1-7 neuronal cells
and pancreatic oTC1.9 a-cells to examine the effect of R481 on AMPK pathway activation
and cellular metabolism. Glucose tolerance tests and hyperinsulinemic-euglycemic and
hypoglycemic clamps were used in Sprague-Dawley rats to assess insulin sensitivity and
hypoglycemia counterregulation, respectively.

Results: /n vitro, we demonstrate that R481 increased AMPK phosphorylation in GT1-7
and oTC1.9 cells. In Sprague-Dawley rats, R481 increased peak glucose levels during a
glucose tolerance test, without altering insulin levels or glucose clearance. The effect of
R481 to raise peak glucose levels was attenuated by allosteric brain permeable AMPK
inhibitor SBI-0206965. This effect was also completely abolished by blockade of the
autonomic nervous system using hexamethonium. During hypoglycemic clamp studies,
R481 treated animals had a significantly lower glucose infusion rate compared to vehicle
treated controls. Peak plasma glucagon levels were significantly higher in R481 treated
rats with no change to plasma adrenaline levels. In vitro, R481 did not alter glucagon
release from oTC1.9 cells, but increased glycolysis. Non brain permeable AMPK activator R419
enhanced AMPK activity in vitro in neuronal cells but did not alter glucose excursion in vivo.

Conclusions: These data demonstrate that peripheral administration of the brain
permeable “metformin-like” AMPK activator R481 increases blood glucose by activation
of the autonomic nervous system and amplifies the glucagon response to hypoglycemia in
rats. Taken together, our data suggest that R481 amplifies the counterregulatory
response to hypoglycemia by a central rather than a direct effect on the pancreatic
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a-cell. These data provide proof-of-concept that central AMPK could be a target for future
drug development for prevention of hypoglycemia in diabetes.

Keywords: AMPK, hypoglycemia, glucagon, hypoglycemic clamp, glucose homeostasis, counterregulation

INTRODUCTION

Achieving more time in the target blood glucose (BG) range is a
daily challenge for people with diabetes. This can become
increasingly challenging with tightening glycemic control using
insulin treatment, which increases the risk of hypoglycaemia.
Moreover, disease progression and frequent exposure to
hypoglycaemia can lead to impaired awareness of and defective
counterregulatory responses (CRR) to hypoglycaemia (1).
AMP-activated protein kinase (AMPK) has emerged as a
central component of cellular energy sensing over the past two
decades. The enzyme is a heterotrimeric complex composed of o,
B and y-subunits, with the o-subunit containing the catalytic
domain (2). There are two isoforms of the o-subunit, AMPKol
and AMPKo2, with the latter isoform having a more prominent
role in glucose sensing (3-5). This enzyme plays an important
role in regulating whole body energy homeostasis through its
actions in the hypothalamus (6) and pancreas (7, 8). Previous
studies have shown that direct pharmacological activation of
AMPK in the ventromedial nucleus of the hypothalamus
(VMH), an important hypoglycemia-sensing brain region (9),
increases the response to hypoglycemia in healthy (10),
recurrently hypoglycemic and diabetic BB rats (11) by
increasing hepatic glucose production (HGP) with or without
concomitant increases in glucagon and adrenaline levels.
Moreover, suppression of AMPK activity using shRNA
diminishes the glucagon and adrenaline response to
hypoglycemia (12). Recurrent glucoprivation in rats leads to
attenuated AMPK activation in hypothalamic nuclei during
hypoglycemia (13), suggesting, at least in part, that recurrent
hypoglycemia (RH) may lead to defective CRR through
suppression of hypothalamic AMPK activity. Importantly,
previous studies have, thus far, only used direct injection of
AMPK activators into the brain. Rigel Pharmaceuticals (CA,
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USA) has developed novel AMPK activating compounds with a
similar mechanism of action to metformin [complex I inhibition
(14)] but with greater potency. One novel compound, R481, is
brain permeable and has a positive brain:plasma distribution. We
assessed the effect of R481 on glucose homeostasis and used this
novel compound to test the hypothesis that peripheral delivery of
a brain-permeable AMPK activator may improve the CRR
to hypoglycemia.

RESEARCH DESIGN AND METHODS

Reagents

R481 and R419 were kindly gifted by Rigel Pharmaceuticals Inc
(San Francisco, USA). Chemical structures for compounds are
shown in Figure 1. SBI-0206965 was purchased from Cayman
Chemical, hexamethonium bromide from Sigma Aldrich, 50%
glucose solution from Centaur Services, and Novo Nordisk
Actrapid insulin was purchased from Covetrus.

Cell Culture

Immortalized GT1-7 mouse hypothalamic cells were a kind gift
from Pamela Mellon, Salk Institute, San Diego, California, USA.
GT1-7 cells were cultured in growth medium, as previously
described (15), and experiments conducted at physiological
brain glucose levels (2.5 mmol/L) in experimental medium
(Table 1). The murine pancreatic o-cell line aTC1 clone 9
(referred to as o'TC1.9) was a kind gift from Hannah Welters,
University of Exeter, UK. o'TC1.9 cells were cultured in growth
medium at physiological peripheral glucose levels (5.5 mmol/L)
and experiments conducted in experimental medium, KBH
buffer or XF medium (Table 1). Cell lines were confirmed
as mycoplasma free using a commercial kit (MycoAlert, Lonza,
Slough, UK).
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FIGURE 1 | Structures of indirect AMPK activators R481 and R419. Chemical structures of brain permeable R481 (A) and non-brain permeable R419 (B) indirect

AMPK activators.
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TABLE 1 | Media composition for in vitro experiments.

Cell Medium Components
line
GT1-7  Growth medium High glucose (25 mmol/L) DMEM (D5671, Sigma) supplemented with 10% FBS (102070-106 Gibco), 4% L-glutamine

(ThermoFisher) and 2% penicillin/streptomycin (pen/strep; 100 U/ml; 100 pg/ml; Gibco)

GT1-7  Plating medium
strep
GT1-7  Experimental medium

aTC1.9 Growth/plating medium

Glucose-free DMEM (11966, ThermoFisher) with 2% L-glutamine supplemented with 7.5 mmol/L glucose, 10% FBS and 2% pen/

Glucose-free DMEM, serum free, supplemented with 2.5 mmol/L glucose
Glucose free DMEM supplemented with 5.5 mmol/L glucose, 10% FBS (102070-106), 0.02% wt/vol fatty acid free BSA, 0.34 mmol/

L mixed essential amino acids, 1 mmol/L pyruvate, 15 mmol/L HEPES and 2% pen/strep

aTC1.9 Experimental medium
oTC1.9 Kreb’s-Ringer
bicarbonate HEPES
(KBH)
aTC1.9 Seahorse XF medium
free.

Glucose-free DMEM, serum free, supplemented with 1 mmol/L glucose
In sterile ddH,O, 130 mmol/L NaCl, 3.6 mmol/L KCl, 1/5 mmol/L CaCl,, 0.5 mmol/L KH,PO,, 0.5 mmol/L MgSQy,, 2 mmol/L
Na,COgz, 10 mmol/L HEPES and 0.1% wt/vol fatty acid free BSA, pH 7.4

XF DMEM pH 7.4 supplemented with 2.5 mmol/L sodium pyruvate and 2 mmol/L L-glutamine with 0.5 mmol/L glucose or glucose

Immunoblotting

Cells were grown to 60-80% confluence in 60 mm round petri
dishes. Following drug treatment, cell lysates were collected for
protein quantification using the Bradford method (16). For tissues,
brains were dissected from healthy Sprague Dawley rats following
administration with R481 (20 mg kg™'; i.p), R419 (20 mg kg'; i.p)
or vehicle (0.5% HPMC, 0.1% TWEEN-80; ip) during glucose
tolerance tests (2 gkg™) 120 minutes following drug administration
and snap frozen in liquid nitrogen. 2 mm sections encompassing
the medial basal hypothalamus (MBH) were cut using the rat brain
matrix (A1TO 1mm World Precision instruments) and MBH
dissected with a scalpel. Protein was extracted from the region of
interest by mechanical homogenisation, in lysis buffer, and
quantified using the Bradford method. Extracted protein was
separated using SDS-PAGE and transferred to nitrocellulose
membranes. Immunoreactivity for total and phosphorylated
protein was detected and semi-quantified using infrared
fluorescence on the Licor Odyssey scanner. Primary antibodies
used were: pThr172 AMPK (1:1,000; catalogue #2531), AMPKo
(total AMPK 1:1000, catalogue #2535), pSer79 acetyl CoA
carboxylase (ACC; 1:1000; catalogue #3661) from Cell Signalling
Technologies, total ACC (1:1,000; catalogue #05-1098) from Merck
Millipore and PB-actin (1:10,000; catalogue #NB600-501)
from Biotechne.

Determination of ATP Concentrations

GT1-7 cells were cultured in 96-well plates overnight and
intracellular ATP concentrations were measured using the
ATPlite two-step assay (PerkinElmer, UK) as per manufacturer’s
instructions and as previously described (17).

Measurement of Glucagon Release

For glucagon assessments, o’TC1.9 cells were seeded in 12-well
plates overnight, incubated in serum-free medium for 2 hrs
and treated for 1 hr with R481 (50 nmol/L) or vehicle in KBH
buffer (Table 1) supplemented with 0.5 mmol/L glucose. Media
was collected for glucagon quantification using glucagon
ELISA (Mercodia, Uppsala, Sweden) and cells lysed for
protein quantification. Data analyzed by 4-parameter logistic
curve analysis.

Assessment of Cellular Metabolism
Measurement of basal oxygen consumption rate (OCR),
extracellular acidification rate (ECAR) and glycolytic rate
assays were performed using the Agilent Seahorse Bioanalyzer
according to manufacturer’s instructions with minor
modifications (Agilent, United Kingdom). Briefly, aTC1.9 cells
were plated on poly-L-lysine (PLL; 4 pg/ml) coated XFe96
microplates (3 x 10* cells/well) in growth medium (Table 1)
and incubated overnight at 37°C, 5% CO, before experiments.
For glucose concentration response experiment, following
overnight incubation, cells were washed and incubated in
glucose-free XF DMEM at 37°C in non-CO, incubator (de-
gas) and treated with R481 (50 nmol/L) or vehicle for 60 minutes.
Baseline OCR and ECAR measurements were taken before
injection of increasing glucose concentrations (0.1-11.7 mmol/L).
For glycolytic rate assays, cells were incubated overnight, as above,
and subsequently treated with R481 (50 nmol/L) or vehicle with and
without SBI-0206965 (30 pmol/L) for 60 minutes in 0.5 mmol/L
glucose containing XF DMEM. Basal ECAR was measured and used
to determine glycolytic proton efflux rate (glycoPER), calculated
according to manufacturer’s instructions using in house buffer
capacity assays. After assays, cells were lysed with NaOH (50
mmol/L) for protein quantification using the method of Bradford.
Baseline OCR and ECAR represent an average of the first 4 cycles of
each assay.

Animals

All animals in these studies were male Sprague-Dawley rats (200-
350 g) purchased from Charles River Laboratories (Margate, UK).
Rats were group-housed in double decker clear plastic cages with
ample bedding material and environmental enrichment (wooden
chew blocks and a cardboard tube) and maintained on a 12-hour
light cycle (06:30 am lights on), temperature 22-23°C, 55%
humidity with ad libitum access to food (Lab Diet; catalogue
number 5LF2) and water. Animals were randomized to treatment
groups (computerized randomization) and for most studies, the
lead investigator was blinded to treatments (excluding pilot and/
or dose finding studies). Rats were fasted for 16 hrs prior to all
experiments. All procedures were approved by the University of
Exeter Animal Welfare and Ethical Review body and were
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performed in accordance with the UK Animals Scientific
Procedures Act (1986).

Glucose Tolerance Tests and

Feeding Studies

For glucose assessments using SBI-0206965 (3 mg kg') and
hexamethonium (50 mg kg™') or saline vehicle, either drug was
delivered 30 minutes before glucose (2 g kg™') + R481 (5-20 mg
kg'); R419 (20 mg kg') or vehicle (0.5% HPMC + 0.1%
TWEEN-80) in a single injection. Substances were
administered via the intraperitoneal (i.p.) route. Blood glucose
was measured at 0, 15, 30, 60 and 120 minutes from a tail vein
prick by handheld glucometer (AccuCheck, Roche). Blood
samples at 15 minutes were collected from the tail vein using
sodium heparin coated capillary tubes. Blood was centrifuged at
5000 rpm for 10 minutes at 4°C and plasma collected and snap
frozen in liquid nitrogen for insulin quantification. For feeding
studies, food hopper containing chow was weighed after 1-24
hours, depending on the study.

Hyperinsulinemic Clamp Studies

Male Sprague-Dawley rats (200-300 g) with pre-implanted
jugular vein and carotid artery catheters were purchased from
Charles River (Margate, UK). Catheters were exteriorized using a
dual-channel vascular access button (Instech, USA) and covered
using a lightweight aluminium cap, enabling social housing
following surgery. This improved body weight curves post-
surgery. Catheter patency was maintained by flushing the
catheters every 3-5 days with heparinized glucose catheter lock
solution. R481 (20 mg kg'lg i.p.) or vehicle (0.5% HPMC, 0.1%
TWEEN-80; i.p.) were administered following overnight fast, 1
hr prior to the hyperinsulinemic-euglycemic or hypoglycemic
clamp. Blood glucose was measured every 5-10 min and larger
blood samples for hormone analysis were collected every 30 min
from the carotid artery catheter. During euglycemic clamps,
animals received a fixed continuous insulin infusion of 20 mU
kg'1 min ' and a variable dextrose (20% w/v; i.v.) infusion rate to
maintain glycaemia at approximately 5.5 mmol/L. To induce
hypoglycemia, rats received a bolus insulin infusion of 80 mU kg’
"' min™" for 10 minutes, followed by a maintenance dose of 20 mU
kg’l min™! for the remainder of the clamp. A variable 20% (w/v)
dextrose infusion was used to maintain blood glucose levels at
approximately 2.8-3 mmol/L at nadir. Six animals were excluded
from the study for poor catheter patency issues. Overall patency
rates were approximately 85% for animals maintained up to 21
days post-surgery.

Hormone and Metabolite Analysis

Plasma glucagon, C-peptide and insulin were measured using
ELISA (Mercodia, Uppsala, Sweden). Plasma adrenaline was
measured using the Demeditec Adrenaline ELISA (Kiel, Germany).

Statistical Analysis

A one-sample t-test was used to determine significant changes in
phosphorylated or total protein expression relative to control in
immunoblotting experiments. Unpaired t-tests were used to
compare groups in non-normalized immunoblotting data.

Blood glucose levels, glucose infusion rates and plasma analytes
were analyzed using a two-way ANOVA with repeated measures
or mixed-effects analysis in cases where datasets were missing
data points. Peak hormone levels were analyzed using an unpaired
t-test. Analyses were performed using the GraphPad Prism
(Prism 8, GraphPad, La Jolla, CA, USA). Results are expressed
as mean + SEM, with p < 0.05 considered statistically significant.

RESULTS

R481 Activates AMPK in Hypothalamic
Neuronal Cells

To confirm that R481 activated AMPK in neuronal cells, we
utilized the mouse hypothalamic glucose-sensing GT1-7 line (3).
In GT1-7 cells, treatment for 30 minutes with increasing
concentrations of R481 (0-50 nmol/L) increased AMPK
phosphorylation at threonine 172 (Figures 2A, B).
Phosphorylation of the downstream AMPK substrate, ACC,
was also significantly increased by R481 (Figures 2A, C).
Despite AMPK activation, total intracellular ATP levels were
not compromised by R481, even at concentrations up to 200
nmol/L (Figure 2D). Treatment with R419 (50 nmol/L) did not
alter AMPK phosphorylation in GT1-7 cells (Supplementary
Figure 2) but did increase phosphorylation of ACC, suggesting
modest AMPK activation by an AMP-dependent mechanism, as
expected for a mild mitochondrial complex I inhibitor.

R481 Raises Peak Glycaemia Which Is

Attenuated by AMPK Inhibitor SBI-0206965
and Abolished by Autonomic Blockade

Dosing studies in mice demonstrated that R481 rapidly enters the
brain (Supplementary Figure 1A), displaying a brain:plasma ratio
of >3 (Supplementary Figure 1B) and increases whole brain
AMPK phosphorylation following bolus intravenous infusion in
mice (Supplementary Figure 1C). In contrast, a related
compound R419 did not display significant brain permeability
(data courtesy of Rigel Pharmaceuticals. Inc). To determine
whether R481 altered glucose tolerance, rats were given a
combined intraperitoneal injection of R481 (5-20 mg kg') and
glucose (2 g kg''). R481 treated rats showed significantly higher
peak glucose excursions yet glucose levels were not significantly
different between groups at 2 hrs post-injection, suggesting
effective clearance of glucose. This effect was not reproduced
following treatment with non-brain permeable R419 (peak
glucose 15.7 £ 1.7 mmol/L in Veh, 23.4 + 1.8 mmol/L in R481
and 18.3 * 1.6 in R419 groups; Figure 3A). The R481-mediated
increase in peak glucose levels was attenuated by pre-treatment
with  AMPK/Uncoordinated (Unc)-51-like kinase (ULK-1)
inhibitor SBI-0206965 (3 mg kg''; peak glucose 20.7 + 1.2 mmol/
L in R481 vs 17.4 + 1.1 mmol/L in R481+SBI group; Figure 3B)
(18), which has demonstrated brain penetrance and been shown to
inhibit autophagy in the brain (19). To examine whether the
autonomic nervous system (ANS) played a role in raising glucose
levels, we pre-treated rats with pan autonomic blocker
hexamethonium (50 mg kg') prior to glucose tolerance testing.
Glucose excursion in hexamethonium treated rats was not altered
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FIGURE 2 | AMPK is activated in GT1-7 hypothalamic neuronal cells by R481. Mouse GT1-7 hypothalamic neurons treated with increasing concentrations of R481
for 30 minutes. (A) Representative Western blots for AMPK (pT172), total AMPK, ACC (pS79), total ACC and Actin. Densitometric analysis of the mean pooled data
for phospho-AMPK normalized to total AMPK shown in (B) (n=6) and phospho-ACC normalized to total ACC in (C) (n=8; **P<0.01; **P<0.001; One-sample t-test in
comparison to control). (D) Intracellular ATP levels of GT1-7 cells treated with R481, normalized to vehicle (30 minutes; n=6).

by R481 treatment, suggesting that autonomic blockage completely
abolished the effect of R481 on glycaemia (peak glucose 22.3 + 0.7
mmol/L R481 vs 17.6 + 1.1 mmol/L in R481 + Hex group;
Figure 3C). At peak glucose levels (15 minutes), insulin
concentrations were comparable between vehicle and R481
treated rats (37.2 = 8.3 pmol/L Veh vs 45.3 + 22.6 pmol/L R481;
Figure 3D). Together with R419 data this supports a central action
of R481 in regulating glycaemia. On examination of AMPK
phosphorylation in the medial basal hypothalamus of R481 and
R419 treated rats, there was modestly but not significantly increased
levels compared to vehicle controls (>10% increase), with no change
seen following R419 treatment (Supplementary Figure 3).

As hypothalamic AMPK activation increases feeding (6) and
leptin-induced repression of feeding requires inhibition of
AMPK (20), we postulated that a brain permeable AMPK
activator may increase feeding behavior. However, R481
treatment did not alter ad libitum, fasting or hypoglycemia-
induced feeding in rats (Supplementary Figure 4).

R481 Does Not Alter Glucose Infusion
Rates During a Hyperinsulinemic-
Euglycemic Clamp

R481 (20 mg kg™") or vehicle were administered 60 minutes before
insulin infusion (see study design, Figure 4A; blood glucose target:
5.5 mmol/L). Baseline glucose levels were moderately increased in
R481 treated animals (t = -60 minutes; 7.2 + 0.2 mmol/L vs t = 0;
7.5 £ 0.2 mmol/L), compared to vehicle group, as blood glucose

levels decreased in the latter following drug treatment (t= -60
minutes 7.1 + 0.6 to t= 0 6.3 = 0.2 mmol/L). This produced a
significant relative increase in blood glucose at the start of the clamp
in R481 treated animals (n=8; Figure 4B). Glucose levels were well-
matched during the last 30 minutes of the clamp (Figure 4B), with
no difference in the glucose infusion rate (GIR; Figure 4C). The
levels of C-peptide were not different between groups (Figure 4D).

R481 Reduces the GIR and Increases
Glucagon Levels During A
Hyperinsulinemic-Hypoglycemic Clamp

To determine the potential influence of central AMPK activation,
using R481, on CRR, we induced hypoglycemia (2.8 mmol/L)
during a 90 minute clamp study (Study design Figure 5A).
Glucose levels during the clamp were well-matched between
vehicle and R481-treated rats (Figure 5B). Exogenous glucose
infusion required to maintain hypoglycemia was significantly
lower in R481-treated animals (Figure 5C). Peak plasma
glucagon levels were significantly higher in the R481 treated
group (Figures 5D, E). Adrenaline levels were not different
between groups (Figures 5F, G).

R481 Activates AMPK and Enhances
Glucose Utilization in Pancreatic a-Cells
During Low Glucose Exposure

Given that R481 significantly augmented peak glucagon levels,
murine o'TC1.9 cells were used as a model of pancreatic o-cell to
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FIGURE 3 | R481 increases peak glucose excursion in a manner that is attenuated by AMPK inhibitor SBI-0206965 and ANS blocker hexamethonium and does not
alter insulin levels. Glucose tolerance tests in male Sprague-Dawley rats fasted for 16 hrs. (A) Rats were administered glucose (2 g kg-1; i.p.) together with either
vehicle (HPMC/Tween-80; n=6), R419 (20 mg kg-1; n=6) or R481 (20 mg kg-1;n=6) Two-way ANOVA with repeated measures, *P(drug)<0.05, **P(time)<0.001, **P
(interaction)<0.01, with Bonferroni’s analysis *P<0.05, **P<0.01, **P<0.001 for R481 against vehicle; no significant difference between R419 and vehicle groups.

(B) Rats were administered SBI-0206965 (3 mg kg-1; i.p.) or vehicle 30 minutes before R481 (5 mg kg-1; i.p.) or vehicle (HPMC/Tween-80; i.p.) together with
glucose (2 g kg-1; i.p.)(SBI-0206965 n=6; R481 n=10; R481+SBI-0206965 n=8); Two-way ANOVA with repeated measures *P(drug)<0.05, **P(time)<0.001, ***P
(interaction)<0.001 and Bonferroni’s multiple comparisons analysis, **P<0.01, **P<0.001 for R481 against vehicle, $P<0.05 for R481 versus R481+SBI-0206965.
(C) Rats were treated with hexamethonium (Hex; 50 mg kg-1) or vehicle (saline) 30 minutes before combined administration of glucose (2 g kg-1; i.p.) and R481 (20
mg kg-1; i.p.) or vehicle (HPMC/Tween-80; i.p.); Two-way ANOVA with repeated measures ***P(drug)<0.001, “**P(time)<0.001, ***P(interaction)<0.001 Veh (n=8);
Hex (n=3); R481 (n=7); R481/Hex (n=8) with Bonferroni’s analysis **P<0.01 for R481 against vehicle and $P<0.05 for R481 against R481/Hex. (D) Plasma insulin
levels measured from 15 minute sample of vehicle (n=7) and R481 (n=7) groups in C by ELISA.

examine the effect of R481 on AMPK activation, glucagon
secretion and cellular metabolism during low glucose exposure.
Treatment of o'TC1.9 cells for 60 minutes with R481 (50 nmol/L)
at 1 mmol/L glucose significantly enhanced AMPK
phosphorylation at threonine 172 (Figures 6A, B) and ACC
phosphorylation at serine 79 (Figures 6A, C). Glucagon release
following 60 minute treatment with R481 (50 nmol/L) or vehicle
at 0.5 mmol/L glucose was not different between groups (Veh
1044 + 141.3; R481 832.6 + 68.0 pg/mg; Figure 6D). To assess
changes to cellular metabolism in these glucose sensing cells,
oTC1.9 cells were treated for 60 minutes with R481 (50 nmol/L)
in the absence of glucose; oxygen consumption rate (OCR) was
measured, and cells were treated with increasing glucose
concentrations to assess changes to extracellular acidification
rate (ECAR) as a proxy for glycolysis. Baseline OCR levels were
modestly but significantly decreased in R481 treated cells
compared to vehicle, as expected (Figure 6E). The glucose-
dependent increase in ECAR was augmented by R481, which
tended to increase at 0.5 mmol/L and was significantly elevated
in R481 treated cells from 1 mmol/L to 11.7 mmol/L glucose
(Figure 6F). Finally, to test the effect of AMPK inhibition on the
R481-mediated ECAR response, cells were treated with R481 (50

nmol/L) with or without AMPK inhibitor SBI-0206965 (30
pumol/L) for 60 minutes in 0.5 mmol/L glucose. The R481-
mediated increase in basal ECAR was blunted by treatment
with SBI-0206965 (Figure 6G). To distinguish whether this
represents mitochondria derived proton acidification or
glycolysis derived acidification, glycoPER, or glycolytic proton
efflux rate was measured. Cells treated with R481 showed
significantly higher glycolytic rates compared to vehicle and
this increase was completely abolished by SBI-0206965
treatment. Moreover, SBI-0206965 treatment alone
significantly lowered basal glycoPER, most likely driven by
endogenous increases in AMPK activity during low glucose
exposure (Figure 6H).

DISCUSSION

AMPK activators have been developed for glucose lowering in
Type 2 Diabetes (T2D), largely by acting on skeletal muscle to
promote glucose disposal (21, 22). The R481 analogue, R419
(non-brain permeable), activates AMPK in skeletal muscle
and increases insulin sensitivity in high-fat fed mice (23).
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FIGURE 4 | R481 does not alter glucose infusion rate during hyperinsulinemic-euglycemic clamp or alter endogenous insulin secretion. Hyperinsulinemic-euglycemic
clamps performed in male Sprague-Dawley rats. (A) Study design. (B) Blood glucose profiles (Vehicle n=8, R481 n=8; 20 mg kg''; i.p.). No overall drug effect P(drug)
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(GIR; mg kg™ min™") during the clamp using a 50% dextrose solution (Vehicle n=8; R481 n=8). (D) Plasma C-peptide measured by ELISA (Vehicle n=8; R481 n=7).

We demonstrate here that R481 (brain permeable) raises glucose
levels during GTTs, without negatively impacting glucose
clearance, in a manner that was attenuated by AMPK
inhibition and completely abolished by autonomic blockade,
suggesting R481 acts centrally to mediate these effects. Previous
studies have shown that genetic or pharmacological suppression
of hypothalamic AMPK activity decreases hepatic glucose
production [HGP (24)]. Conversely, direct infusion of non-
specific AMPK activator AICAR into the hypothalamus
stimulates HGP (24, 25). In addition, fructose ingestion has
been shown to increase hypothalamic AMPK activity and
increase HGP (26). In combination, these studies indicate that
hypothalamic AMPK activity regulates HGP and supports the
suggestion that R481 may require hypothalamic AMPK
activation to stimulate HGP, possibly via the brain stem
circuit, as demonstrated previously (25). Our data concur with
these earlier observations and extend them by demonstrating
that peripheral delivery of a brain permeable AMPK activator
can increase glycaemia. Defining the specific brain nuclei and the
neural circuitry involved will be important in future studies.
Kume and colleagues (27) demonstrated that activation of
hypothalamic AMPK suppressed first phase glucose-stimulated
insulin secretion (GSIS) through autonomic innervation of o-
adrenergic pancreatic nerves. This was suggested to be a
physiological response to promote glucose delivery to the brain
during fasting (27), a mechanism that may also occur during
hypoglycemia. However, in our study, R481 did not alter
glucose-stimulated insulin secretion nor did it alter C-peptide

levels during the clamp studies, suggesting that R481 does not
suppress basal insulin secretion and likely increases glycaemia by
stimulating HGP, as has been previously reported following viral
and pharmacological manipulation of hypothalamic AMPK
activity (24-26).

We postulated that R481 treatment may increase the GIR
during the euglycemic clamp by enhancing skeletal muscle
glucose uptake. However, the GIR during the euglycemic
clamp was not altered by R481. This suggests that the
compound is not having a direct metformin-like effect in the
liver to suppress HGP. However, given that R481 has a positive
brain:plasma ratio, it is plausible that there is insufficient
compound accumulation in the liver to significantly change
glucose production directly. Moreover, we examined glucose
homeostasis following a single injection of the drug in lean rats
and saw no direct evidence of glucose lowering, again suggesting
that there is little effect in peripheral tissues such as skeletal
muscle or adipose tissue. Whether acute and/or chronic R481
treatment would have a glucose lowering effect in rats fed a high-
fat diet (HFD) remains to be determined. However, a previous
study demonstrated that the R481 analogue R419, given
chronically to HFD fed mice (23), enhanced skeletal muscle
glucose uptake and insulin sensitivity. It is important to highlight
that our data suggest the transient increase in blood glucose
levels by R481 was not mediated by a change to insulin secretion
or sensitivity. Moreover, despite the fact that glucose levels
peaked higher in the R481 treated animals during the GTT,
glucose levels at 2 hours post glucose administration were not
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FIGURE 5 | R481 delays exogenous glucose requirements during hyperinsulinaemic-hypoglycaemic clamp by augmenting glucagon levels during hypoglycaemia.
Hyperinsulinaemic-hypoglycaemic clamps performed in male Sprague-Dawley rats. (A) Study design. Animals were fasted for 16 hrs. R481 (20 mg kg™'; i.p.) or
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(F) Plasma adrenaline profile with peak shown in (G), measured by ELISA (Vehicle n=8; R481 n=8; ns, not significant).

different from controls, suggesting that glucose clearance was not
altered and possibly greater compared to vehicle treated animals.
Using glucose tracers to determine the rates of glucose
appearance and disappearance will be important going forward
to closely examine HGP and skeletal muscle glucose uptake.

In previous studies with non-diabetic rats, direct
pharmacological activation of AMPK in the VMH using AICAR
amplified HGP during hypoglycemia, without altering glucagon or
adrenaline release (10). In line with this, basal glucagon and
adrenaline release in our study were not altered by R481.
Importantly, previous studies have demonstrated that
pharmacological and genetic activation of AMPK in pancreatic
o-cells was sufficient to stimulate glucagon release (7, 8). Taken

together with our data, it is plausible that R481 may have direct
actions in pancreatic o-cells to augment glucagon release. To
assess this further we treated pancreatic o-cells in vitro with
R481 during exposure to low glucose. Our data suggest that
treatment with R481 increases AMPK activation at low glucose
and, like other indirect AMPK activators, appears to cause
mild mitohormesis, evidenced by decreased basal oxygen
consumption. However, R481 did not alter glucagon secretion
during low glucose treatment, at least in this cell model. In
contrast, R481 treatment significantly enhanced glucose
utilization by amplifying glucose-dependent glycolytic rate,
which would be expected to result in suppression of glucagon
release. This R481-mediated increase in glycolysis was completely
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abolished by pre-treatment with allosteric AMPK inhibitor SBI-
0206965, indicating the R481-induced changes in cellular
metabolism are most likely AMPK mediated, although it should
be noted that SBI-0206965 can also inhibit ULK1 at these
concentrations (18). Taken together, these actions of R481
suggest that the compound does not alter glucagon secretion
through a pancreatic o-cell-mediated mechanism and provides
evidence that in vivo, R481 may raise glucagon levels during
hypoglycemia by a centrally-mediated pathway.

In streptozotocin-induced diabetic rats, VMH AICAR
injection can augment both glucagon and adrenaline responses
during hypoglycemia (11). Given that both hyperglycemia and
recurrent hypoglycemia/glucoprivation suppress hypothalamic

FIGURE 6 | R481 activates AMPK and enhances glycolysis during low glucose in murine pancreatic o.-cells. Murine oiTC1.9 pancreatic o-cells treated with R481
during hypoglycemia. (A) Representative Western blot for AMPK (pT172), total AMPK, ACC (pS79), total ACC and Actin. Densitometric analysis of the mean pooled
data for phospho-AMPK normalized to total AMPK in (B) (n=5) and phopho-ACC normalized to total ACC in (C) (n=6) for cells treated with R481 (50 nmol/L) or
vehicle in 1 mmol/L glucose (*P<0.05 unpaired t-test). (D) Glucagon measured by ELISA in aTC1.9 cells treated with R481 (50 nmol/L) or vehicle for 1 hrin 0.5
mmol/L glucose (Veh n=8; R481 n=10). Measurement of baseline oxygen consumption rate in (E) (n= 138; *P<0.05; unpaired t-test) prior to and change in
extracellular acidification rate in (F) (n= 24; delta reflects change from baseline glucose-free levels) following acute treatment with glucose (0.1-11.7 mmol/L) in cells
treated for 1 hr with R481 (50 nmol/L) or vehicle. (G) Representative trace of basal ECAR for cells treated with R481 (50 nmol/L) or vehicle with or without SBI-
0206967 (Vehicle n=54; R481 n=60, SBI n=59, R481+SBI n=54) in 0.5 mmol/L glucose with assessment of glycolytic proton efflux rate (glycoPER) in (H)

AMPK activation (6, 13) and that direct genetic suppression of
VMH AMPK expression/activity suppresses the glucagon and
adrenaline responses to hypoglycemia (12), it is plausible that
hypothalamic AMPK activity is blunted in diabetes, leading, at
least in part, to defective CRR. In our study, R481 may activate an
AMPK-ANS-HGP axis, whilst also increasing plasma glucagon
levels to better defend against hypoglycemia. Delineating the
central versus peripheral actions of pharmacological AMPK
activation during hypoglycemia requires further study. It will
also be interesting to determine the effect of R481 when given
chronically and by a method that provides slower release of
R481, such as with an osmotic mini-pump, as the action of R481
was limited to 2-2.5 hours when delivered by the intraperitoneal
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route. One of the limitations of our study was that we were
unable to conclusively demonstrate increased AMPK
phosphorylation or activity in brains from rats treated with
R481. We have demonstrated a trend towards increased
AMPK phosphorylation following R481 but not R419
treatment in the medial basal hypothalamus. However, we did
not observe statistically significant differences, which may be due
to increased basal AMPK activation as a consequence of hypoxia
during anaesthesia prior to tissue extraction (28).

Importantly, our data highlight that the likely net effect of
brain AMPK activation is to increase glucose delivery to the
brain (27), indicating that, at the level of the whole organism,
central AMPK activation may supersede peripheral activation in
a hierarchical manner, akin to that suggested for subcellular
pools of AMPK (29). This raises the interesting possibility that
centrally biased AMPK activating drugs could be used to raise
blood glucose levels and peripheral activators to reduce
glycaemia, meaning that a drug or combination of drugs that
activate central and peripheral AMPK could be used to attenuate
the peaks and troughs in blood glucose seen in diabetes. Our data
also raise the interesting possibility that if metformin were to
activate AMPK in the brain, this possible glucose-raising action
could compete with the effect of metformin in the liver to
suppress gluconeogenesis (30). The blood brain barrier is more
leaky in T2D/obesity (31-33) and several clinical studies have
shown possible central effects of metformin (34, 35), suggesting
that metformin may enter the brain at efficacious levels in some
circumstances. Taken together, this could raise the possibility
that metformin “failure” in T2D could be caused by metformin-
induced activation of brain AMPK, stimulating ANS-mediated
HGP, competing against the actions of the drug in the liver.

In summary, our data indicate that peripheral delivery of a
brain permeable AMPK activator raises glycaemia, likely to
protect brain function. We provide proof-of-concept that
pharmacological activation of central AMPK may be a suitable
therapeutic target for amplifying the defense against
hypoglycemia. This requires testing in rodent models of T1D
and T2D and in rodents with defective CRR where careful
optimization of the dose to amplify CRR without worsening
fasting/fed hyperglycemia will be needed. To be clinically useful,
any anti-hypoglycemic drug would need to be taken prior to the
unpredictable development of hypoglycemia. A drug with an
optimized pharmacodynamic/pharmacokinetic profile
permitting dosing, for example, before bedtime, could be taken
to prevent the development of nocturnal hypoglycemia. It will
also be interesting to determine whether central AMPK
activating drugs could be used as a treatment for severe
hypoglycemia to promote rapid recovery of blood glucose
levels. In conclusion, development of brain permeable allosteric
activators of AMPK could be useful for the prevention/treatment
of hypoglycemia in diabetes.
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