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Purpose: The inhibition of estrogen receptor alpha (ERa) or the activation of ERb can
inhibit papillary thyroid cancer (PTC), but the precise mechanism is not known. We aimed
to explore the role of ERa and ERb on the production of endogenous peroxisome
proliferator-activated receptor gamma (PPARg) ligands in PTC.

Methods: 2 PTC cell lines, 32 pairs of PTC tissues and matched normal thyroid tissues
were used in this study. The levels of endogenous PPARg l igands 15(S)-
hydroxyeicosatetraenoic acid (15(S)-HETE), 13-S-hydroxyoctadecadienoic acid (13(S)-
HODE), and15-deoxy-D12,14-prostaglandin J2 (PGJ2) were measured by ELISA.

Results: The levels of PGJ2 and 15(S)-HETE were significantly reduced in PTC, but 13(S)-
HODE was not changed. Activation of ERa or inhibition of ERb significantly downregulated
the production of PGJ2, 15(S)-HETE and 13(S)-HODE, whereas inhibition of ERa or
activation of ERb markedly upregulated the production of these three ligands. Application
of endogenous PPARg ligands inhibited growth, induced apoptosis of cancer cells, and
promoted the efficacy of chemotherapy.

Conclusion: The levels of endogenous PPARg ligands PGJ2 and 15(S)-HETE are
significantly decreased in PTC. The inhibition of ERa or activation of ERb can inhibit PTC by
stimulating the production of endogenous PPARg ligands to induce apoptosis in cancer cells.

Keywords: papillary thyroid cancer, peroxisome proliferator-activated receptor gamma, estrogen receptors, PGJ2,
15(S)-HETE
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INTRODUCTION

There is increasing evidence indicating that activation of
peroxisome proliferator-activated receptor gamma (PPARg) by
its ligands can inhibit the growth of thyroid cancer, likely via
multi-mechanisms including stimulation of the anti-tumor
immune system, induction of cancer cell differentiation, increase
of radioiodine uptake in thyroid cancer cells, cell cycle arrest, and
promotion of apoptosis of cancer cells (1–12). However, the
rationale for administration of PPARg ligands to treat thyroid
cancer is not clear as some studies have shown a reduction in
PPARg expression, yet others revealed normal PPARg expression
or the occurrence of PAX8-PPARg which can inactivate rather
than decreasing PPARg in thyroid cancer (13–19).

Therefore, the defect in PPARg pathway needs further
investigation. Moreover, some publications have also
challenged the safety of synthetic PPARg ligands that are
currently employed as anti-tumor agents in most studies. The
administration of synthetic PPARg ligands is now known to
produce some significant side-effects including an increased risk
of bladder cancer and cardiovascular diseases (3, 20, 21). These
adverse effects have limited the therapeutic application of
synthetic PPARg ligands.

It is known that estrogen receptors (ERs) are involved in the
development of thyroid cancer that is predominant in females.
Estrogen executes its functions usually through its traditional
receptors (ERa and ERb). The activation of either ERa or ERb
appears to be associated with different outcomes (22). In cancers,
ERa is positively associated with cell proliferation/growth. In
contrast, ERb negatively regulates cell growth. Tumors develop
in ERb-knockout mice but not in wild type mice (23). Although
both normal and malignant thyroid tissues are known to express
ERa and ERb, the level of ERa appears to be more pronounced in
malignant thyroid tissues and the ratio of ERb to ERa is
significantly higher in normal thyroid tissues when compared to
malignant thyroid tissues (24–31). The increased level of ERa has
been shown to stimulate the growth of thyroid tumor cells whereas
the increased level of ERb can suppress their growth (27–31).

Although both ERs and PPARg belong to the family of nuclear
receptor proteins and both can regulate thyrocyte proliferation
and growth, there are very few studies on the relationship between
ERs and PPARg in cancer cells. This study therefore aimed to
examine the impact of ERs on endogenous PPARg ligands in
papillary thyroid cancer (PTC), the most common form of thyroid
cancers. Endogenous PPARg ligands are in vivo metabolic
products which are nontoxic at physiological concentrations.
Unfortunately, studies have not been actively conducted to
explore the therapeutic modulation of these natural endogenous
ligands for possible treatment of cancers.
METHODS

Reagents
15(S)-hydroxyeicosatetraenoic acid (15(S)-HETE), 13-S-
hydroxyoctadecadienoic acid (13(S)-HODE), 15-deoxy-D12,14-
prostaglandin J2 (PGJ2), PGJ2 ELIS kits and 15(S)-HETE ELISA
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kits were purchased from Cayman Chemical (Ann Arbor, MI).
13(S)-HODE ELISA kits were from Enzo Life Sciences
(Farmingdale, NY). 4,4’,4”-(4-propyl-[1H]-pyrazole-1,3,5-triyl)
trisphenol (PPT, ERa agonist), 2,3-bis(4-hydroxy-phenyl)-
propionitrile (DPN, ERb agonist), 1,3-bis(4-hydroxyphenyl)-4-
methyl-5-[4-(2-piperidinylethoxy)phenol]-1H-pyrazole
dihydrochloride (MPP, ERa antagonist), 4-[2-phenyl-5,7-bis
(trifluoromethyl)pyrazolo[1,5-a]pyrimidin-3-yl]phenol
(PHTPP, ERb antagonist) and paclitaxel were obtained from
Tocris (Bristol, UK).

Thyroid Tissue Samples
Papillary thyroid cancer (PTC) tissue samples of both tumor and
non-tumor tissue from the same thyroid gland were collected
from 32 patients including 6 males (35-58 years old) and 26
females (33-57 years old). All patients underwent routine
thyroidectomy. All subjects provided written informed consent
prior to specimen collection. Human Ethics approval (No.
2019.587) was obtained from the Joint Chinese University of
Hong Kong-New Territories East Cluster Clinical Research
Ethics Committee, and the study was performed in accordance
with the 1964 Declaration of Helsinki.

Cell Cultures
Two human PTC cells (K1 and BCPAP) were used in this study.
K1 cells were obtained from the European Collection of
Authenticated Cell Cultures (ECACC) and BCPAP cells were
kindly provided by Dr. Mingzhao Xing (Johns Hopkins
University School of Medicine, Maryland). Both cell lines have
been authenticated to be human papillary thyroid cancer cells
(32). K1 and BCPAP cells were cultured in RPMI 1640
supplemented with 10% FBS at 37° in an atmosphere with 5%
CO2 and were used for the experiments in their early passages
(less than 25). In our early study, we have demonstrated that
both K1 and BCPAP cells can express certain basic levels of ERa,
ERb and PPARg proteins (33).

Cell Growth
The growth of cells was estimated by cell survival assay, which
was determined by 3-(4,5-Dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium (MTT) protocol (33, 34).

Measurement of PGJ2, 15(S)-HETE
and 13(S)-HODE
The levels of PGJ2, 15(S)-HETE and 13(S)-HODE were
determined by ELISA kits and the assays were performed
according to the instructions of the manufacturers. Briefly, for
tissue samples, they were measured wet weight and then
homogenized in 2 ml 1 x PBS (pH 7.4) using a homogenizer
on ice. For cultured cell samples, cells were lysed by lysis buffer
(10 mM Tris-HCl, pH 7.4, 400 mMNaCl, 1 mM EDTA and 1.0%
SDS) and samples were centrifuged at 5000 rpm for 1 min at
4°C to obtain the supernatant. The tissue homogenates or the
lysed cell samples were acidified by adding 2M HCl to pH 3.5, left
at 4°C for 15 min. Samples were centrifuged at 2000 rpm for 20 min
at 4°C. Samples were applied to these C18 reverse phase column
and the columns were washed with 10 mL water followed by 10 mL
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15% ethanol, and 10 mL hexane. The sample was eluted from
column by addition of 10 ml ethyl acetate and then evaporated
under a stream of nitrogen. 25 ml ethanol and 250 ml Assay Buffer
were added to dry samples. A standard curve was generated by serial
dilutions of the standard supplied in these kits. The levels of the
ligands were calculated according to the standard curve.
Concentrations of 15(S)-HETE, 13(S)-HODE and PGJ2 were
calculated by 4 parameter logistic curve fitting program.

Analysis of Apoptosis
Cells were seeded in 6-well plates and incubated overnight to
allow cells to attach to the plate. Terminal deoxynucleotidyl
transferase Dutp nick end labeling (TUNEL) was conducted
using an APO-DIRECT TUNEL assay kit (BD Biosciences, San
Jose, CA). In brief, cells were suspended in 1% (w/v)
paraformaldehyde in PBS, Ph7.4 at a concentration of 2×106

cells/ml after treatment. The cell suspension was then placed
on ice for 60 min. After centrifuging cells for 5 min at 300 g,
the supernatant was discarded. The cells were washed in 5 ml
of PBS and the cell pellet was resuspended in PBS in a tube
by gentle vortexing. The cells were then incubated in ice-cold
70% (v/v) ethanol overnight at -20°C prior to staining for
apoptosis. Apoptosis was measured according to the protocol
provided by the kit and the result was presented as folds of
control conditions.

Statistical Analysis
Data were analyzed by student’s t test or one-way ANOVA
followed by the student’s t test. All data were presented as
means ± SD. The value was considered significant when p<0.05.
RESULTS

The Levels of PGJ2, 15(S)-HETE and
13(S)-HODE in PTC
The concentrations of PGJ2 and 15(S)-HETE were much lower
in PTC tumor tissues than in the non-tumor tissues (Figure 1).
The concentration of 13(S)-HODE was decreased in PTC tumor
tissues compared with that in the non-tumor tissues but the
difference did not reach a significant point (p>0.05, data
not shown).
Frontiers in Endocrinology | www.frontiersin.org 3
Impact of ER Modulation on the Levels of
PGJ2, 15(S)-HETE and 13(S)-HODE
in PTC Cells
In order to assess whether the production of endogenous PPARg
ligands, PGJ2, 15(S)-HETE and 13(S)-HODE, could be regulated
by ERa and ERb, PPT (ERa agonist), DPN (ERb agonist), MPP
(ERa antagonist) and PHTPP (ERb antagonist) were employed
in this study. These 4 agents have been well documented to
modulate the activities of ERa and ERb (35, 36). It was found
that the activation of ERa by PPT markedly and dose-
dependently inhibited the production of PGJ2 in both K1 and
BCPAP cells. In contrast, the inactivation of ERa by MPP
significantly and dose-dependently enhanced its production in
both PTC cells (Figure 2A). Different from ERa activation, the
activation of ERb (by DPN) clearly increased the level of PGJ2
whereas the inactivation of ERb by PHTPP decreased the
PGJ2 production in both PTC cells (Figures 2B, C). Similar to
PGJ2, the levels of 15(S)-HETE and 13(S)-HODE were regulated
by these 4 ER modulators in both PTC cells. It appeared that
their impact on 15(S)-HETE was more obvious than that on 13
(S)-HODE.

Impacts of the ER Modulation and
Endogenous PPARg Ligands on Cell
Survival and Growth
The modulation of ERa and ERb exerted opposite effects on PTC
cell survival and growth (Figure 3). The activation of ERa (by
PPT) or inactivation of ERb (by PHTPP) dose-dependently
increased the survival and growth in both K1 and BCPAP cells
(Figures 3A, D) whereas activation of ERb (by DPN) or
inactivation of ERa (by MPP) significantly decreased the
survival and growth in both K1 and BCPAP cells (Figures 3B,
C). All three endogenous PPARg ligands markedly reduced the
survival and growth in both PTC cells and the effects of PGJ2 and 15
(S)-HETE were stronger than those of 13(S)-HODE (Figure 3E).

Impact of ER Modulation and Endogenous
PPARg Ligands on Apoptosis
PTC cells treated with the ERa agonist PPT or ERb antagonist
PHTPP barely affected the apoptosis compared with those
without PPT or PHTPP treatment (control) (Figure 4A).
However, both PPT and PHTPP significantly sensitized the
FIGURE 1 | The concentrations of PGJ2 and 15(S)-HETE in PTC. Thyroid tumor tissues and its matched non-tumor tissues were obtained from 32 patients. The
concentrations of PGJ2 and 15(S)-HETE were measured using ELISA kits from Cayman Chemical (Ann Arbor, MI) and Enzo Life Sciences (Farmingdale, NY). The ELISA
was performed according to the instructions of the manufacturers. The concentrations of these 2 ligands were expressed in ng or pg per mg wet weight of tissues.
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cells to apoptosis induced by paclitaxel, a chemotherapeutic
agent that is commonly used in the treatment of thyroid
cancer (37). The activation of ERb (by DPN) or inactivation of
ERa (by MPP) significantly stimulated apoptosis of PTC cells
compared with the control, and both DPN and MPP further
enhanced apoptosis induced by paclitaxel (Figure 4A). All three
endogenous PPARg ligands clearly induced apoptosis in both
PTC cells and the effects of PGJ2 and 15(S)-HETE appeared to be
stronger than that of 13(S)-HODE (Figure 4B). These three
endogenous PPARg ligands, especially 15(S)-HETE, also
significantly enhanced the apoptosis induced by paclitaxel.
DISCUSSION

The results of this study have led to two novel findings. Firstly,
the concentrations of endogenous PPARg ligands, PGJ2 and 15
(S)-HETE (38–41), were significantly reduced in PTC, though
Frontiers in Endocrinology | www.frontiersin.org 4
the level of 13(S)-HODE was not different between tumor tissues
and non-tumor tissues. Secondly, the activation of ERa
negatively controlled the production of endogenous PPARg
ligands whereas the activation of ERb positively regulated
them. These two novel findings are significant in elucidating
the roles of PPARg and ERs in the growth and potential
treatment of PTC.

The activation of PPARg ligands is well known to cause the
death of cancer cells via multiple channels such as activating the
anti-tumor immune system, differentiating cancer cells, arresting
cell cycle, promoting apoptosis and increasing radioiodine
uptake (1–12). The rationale for the application PPARg ligands
to treat thyroid cancer is inconsistent or unclear. Some studies
have indicated that the expression of PPARg is reduced in
thyroid cancer while others revealed the normal expression of
PPARg or the inactivation of PPARg by the Pax-8-PPAR-g fusion
protein (PPFP) (14–19, 33). If the low expression of PPARg is the
major factor that causes the PPARg system unable to function
A

B

C

FIGURE 2 | The impact of ER modulation on the levels of PGJ2, 15(S)-HETE and 13(S)-HODE in PTC cells. K1 and BCPAP cells were respectively treated with
PPT, MPP, DPN and PHTPP at the given concentrations (0, 0.1, 0.5, 1, 2, 4µM for all 4 modulators) for 48 hours. At the end of the treatment, the levels of PGJ2 (A),
15(S)-HETE (B) and 13(S)-HODE (C) in cells were measured by ELISA kits (Cayman Chemical (Ann Arbor, MI, and Enzo Life Sciences, Farmingdale, NY). The ELISA
was performed according to the instructions of the manufacturers. *p < 0.05, **p < 0.01, compared with the control (0 dose).
September 2021 | Volume 12 | Article 708248

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Yang et al. Estrogen Receptors and PPARg in PTC
normally, the proper treatment strategy should be to enhance the
expression of PPARg rather than the administration of PPARg
ligands. Thus, in such a situation, the administration of PPARg
ligands may not be an effective strategy to upregulate
PPARg functions. However, in practice, the induction of death
in cancer cells is usually caused by the application of PPARg
ligands rather than by the upregulation of PPARg itself.
Therefore, the low expression of PPARg itself is unlikely to be
a key issue associated with the application of PPARg ligands to
treat thyroid cancer. Our study has demonstrated the decrease of
endogenous PPARg ligands, PGJ2, 15(S)-HETE and 13(S)-
HODE in thyroid cancer. Insufficient PPARg ligands can
significantly downregulate the activity of PPARg (38, 42), thus
Frontiers in Endocrinology | www.frontiersin.org 5
causing the PPARg system unable to attack cancer cells.
Accordingly, our findings have led to the discovery of a new
pathway in which the activity of PPARg is reduced by the low
production of endogenous PPARg ligands such as PGJ2, 15(S)-
HETE and 13(S)-HODE. This new concept may well explain the
rationale for the application of PPARg ligands to treat
thyroid cancer.

Earlier studies have demonstrated that the activation of ERa
promotes the growth of PTC whereas the activation of ERb
inhibits the growth (27–30, 34). However, the responsible
mechanism is not completely known. Our finding that the
activation of ERa or inhibition of ERb could significantly
downregulate the production of endogenous PPARg ligands,
A

D

E

C

B

FIGURE 3 | The impact of ER modulation and endogenous PPARg ligands on cell growth. K1 and BCPAP cells were respectively treated with PPT (A), DPN (B),
MPP (C), and PHTPP (D) at the given concentrations for 24, 48 and 72 hours. At the end of the treatment, cell survival was measured by MTT assay to estimate the
cell growth and expressed as the percentage of control culture conditions (no treatment). To assess the effect of endogenous PPARg ligands on cell growth, different
doses of PGJ2, 15(S)-HETE and 13(S)-HODE, as indicated in the figure, were used to treat K1 and BCPAP for 48 hours (E), and cell growth was determined by the
survival assay as described above. The data were presented as the mean ± SD of 3 independent experiments with triplicate wells. *p < 0.05, **p < 0.01, compared
with the control (0 dose).
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PGJ2, 15(S)-HETE and 13(S)-HODE, whereas inhibition of ERa
or activation of ERb could markedly upregulate the production
of these three endogenous PPARg ligands in PTC, uncovering
new signaling pathways through which ERa and ERb
differentially regulate the levels of endogenous PPARg ligands.
Extensive studies have shown that the activation of PPARg by its
ligands (either synthetic or endogenous) can inhibit the growth
of thyroid cancer (1–12, 40, 41). In this study, we have confirmed
that the application of PPARg ligands, PGJ2, 15(S)-HETE and 13
(S)-HODE could inhibit the growth of PTC cells and promote
apoptosis of tumor cells. Therefore, the inhibition of ERa or
activation of ERbmay inhibit PTC by stimulating the production
of endogenous PPARg ligands to induce apoptosis in PTC cells.
However, the upregulation of ERa or downregulation of ERb
may also promote the growth of PTC via decreasing the
Frontiers in Endocrinology | www.frontiersin.org 6
production of endogenous PPARg ligands, which may also
contribute to chemo-resistance. This novel concept is
supported by a recent study which demonstrated that ERa
signaling downregulates PPARg to promote the progression of
PTC (43). Nevertheless, we believe, this ER-regulated
endogenous PPARg ligand pathway should not be the sole
pathway but one of channels for ERs to affect the growth of
PTC or a certain subset of PTC.

The upregulation of endogenous PPARg ligands such as PGJ2
and 15(S)-HETE appears to be a better strategy than the
administration of a synthetic PPARg ligand to inhibit thyroid
cancer, at least in terms of side-effects. The administration of
synthetic PPARg ligands is associated with an increased risk of
bladder cancer and other side effects (5, 20, 21). Endogenous PPARg
ligands are naturally produced in vivo and the cytotoxicity of these
A

B

FIGURE 4 | The impact of ER modulation and endogenous PPARg ligands on apoptosis. K1 and BCPAP cells were respectively treated with 4 different ER
modulators (1 µM PPT, 1 µM DPN, 1 µM MPP, 1 µM PHTPP), 1 µM paclitaxel (T) or ER modulator plus T for 48 hours (A). At the end of the treatment, apoptosis
was measured by TUNEL assay kits (BD Biosciences, San Jose, CA). The apoptotic index was calculated as folds of the control condition (no treatment). To assess
the effect of endogenous PPARg ligands on apoptosis, cells were respectively treated paclitaxel (T) or PPARg ligand plus T for 48 hours (B), and apoptosis was
measured as described above. The data were presented as the mean ± SD of 3 independent experiments with triplicate wells. *p < 0.05, **p < 0.01 compared with
the control (0 dose); #p < 0.05, ##p < 0.01 compared with cells treated with T only.
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endogenous ligands should be minimal. Therefore, the development
of endogenous ligands PGJ2 and 15(S)-HETE to treat thyroid
cancer should be particularly appealing.

In conclusion, we have demonstrated that the levels of
endogenous PPARg ligands PGJ2 and 15(S)-HETE are
significantly decreased in PTC. Our data suggest that the
inhibition of ERa or activation of ERb may inhibit PTC by
stimulating the production of endogenous PPARg ligands to
induce apoptosis in cancer cells. Conversely, the upregulation of
ERa or downregulation of ERb may lead to the low production
of endogenous PPARg ligands, causing resistance of cancer cells
to chemotherapy.
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