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Copy Number Variations (CNVs) account for a large proportion of human genome and are
a primary contributor to human phenotypic variation, in addition to being the molecular
basis of a wide spectrum of disease. Multiallelic CNVs represent a considerable fraction of
large CNVs and are strictly related to segmental duplications according to their prevalent
duplicate alleles. RCCX CNV is a complex, multiallelic and tandem CNV located in the
major histocompatibility complex (MHC) class III region. RCCX structure is typically
defined by the copy number of a DNA segment containing a series of genes – the
serine/threonine kinase 19 (STK19), the complement 4 (C4), the steroid 21-hydroxylase
(CYP21), and the tenascin-X (TNX) – lie close to each other. In the Caucasian population,
the most common RCCX haplotype (69%) consists of two segments containing the genes
STK19-C4A-CYP21A1P-TNXA-STK19B-C4B-CYP21A2-TNXB, with a telomere-to-
centromere orientation. Nonallelic homologous recombination (NAHR) plays a key role
into the RCCX genetic diversity: unequal crossover facilitates large structural
rearrangements and copy number changes, whereas gene conversion mediates
relatively short sequence transfers. The results of these events increased the RCCX
genetic diversity and are responsible of specific human diseases. This review provides an
overview on RCCX complexity pointing out the molecular bases of Congenital Adrenal
Hyperplasia (CAH) due to CYP21A2 deficiency, CAH-X Syndrome and disorders related
to CNV of complement component C4.

Keywords: RCCX, haplotypes, Congenital Adrenal Hyperplasia (CAH), CAH-X, Copy Number Variation (CNV),
Complement Component C4
INTRODUCTION

Germline Copy Number Variation (CNV) is regarded as a particular DNA fragment with variable
copies compared to a reference genome and primarily includes genome duplications and deletions
(1). CNVs account for a large proportion of human genome (2), greatly influence cellular
phenotypes such as gene expression (3), and are accountable for a plethora of diseases, in
addition to representing relevant disease risk factors (4, 5). These observations raise the
possibility that CNVs could be a primary contributor to human phenotypic variation and
consequently evolve under selective pressures (5). Four major mechanisms have been proposed
n.org July 2021 | Volume 12 | Article 7097581
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as contributors to the generation of most CNVs, including
nona l l e l i c homo l o gou s r e c omb in a t i on (NAHR) ,
nonhomologous end-joining, fork stalling and template
switching, and L1-mediated retrotransposition (4). Multiallelic
CNVs constitute a considerable fraction of large CNVs and are
strictly related to segmental duplications according to their
prevalent duplicate alleles (6, 7). CNVs alleles with large,
homologous, and tandem repeats are susceptible to
rearrangements via NAHR mechanism (8) such as unequal
crossover (9) and gene conversion (10). In this Review, we
focus on the genetic complexity of the RCCX CNV discussing
the molecular bases of related human diseases as Congenital
Adrenal Hyperplasia (CAH).
RCCX CNV

RCCX CNV is a complex, multiallelic and tandem CNV located
in the major histocompatibility complex (MHC) class III region
(11, 12). It is an haplotypic structure typically defined by the copy
number of a DNA segment containing a series of genes that lie
close to each other: the serine/threonine kinase 19 (STK19), the
complement 4 (C4), the steroid 21-hydroxylase (CYP21), and the
tenascin-X (TNX) genes (13). RCCX CNV alleles commonly
consist of one, two or three segments with the prevalence of
approximately 17%, 69% and 14% in the Caucasian population
(14). The Figure 1A shows the structure of the RCCX haplotype
with two segments with the genes oriented as: STK19-C4A-
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CYP21A1P-TNXA-STK19B-C4B-CYP21A2-TNXB (15). STK19
gene (originally called G11 or RP), just upstream from C4A,
encodes a nuclear Serine/Threonine Kinase protein recently
identified as a regulator of NRAS activity (16–20). STK19B,
immediately upstream from the C4B gene, consists only of 914
bases of the 3’ end of the original gene because the C4/CYP21/
TNX locus duplication caused the lost of a large part of the
coding DNA in this region (14, 15). C4A and C4B genes encode
the two isoforms of the fourth component of serum complement
(C4), an essential element for the effector arm of the humoral
immune response (21). Each human C4 gene contains 41 exons,
and the gene size shows a dichotomous size variation between
~22 kb and 16 kb. The longer gene is the result of the integration
of the endogenous retrovirus HERV-K(C4) into intron 9 (22).
Both the C4A and C4B 3’ ends lie only 2466 bp upstream the
CYP21A1P and CYP21A2 transcriptional start sites, respectively.
In addition, the promoter regions of CYP21 genes are located in
the C4 intron 35 (23). CYP21A2 gene encodes the steroid 21-
hydroxylase enzyme (cytochrome P450c21), uniquely expressed
in adrenal cortex, responsible for the biosynthesis of the two
principal steroid hormones, aldosterone and cortisol. Both the
CYP21A2 functional gene and the CYP21A1P pseudogene
consist in a total of ten exons spanning 3.4 kb. Sequence
identity of 98% and approximately 96% characterizes their
exons and intronic regions, respectively (24, 25).

With respect to the C4 and CYP21, both the TNXA and TNXB
genes are located in the opposite DNA strand with, consequently,
an opposite transcriptional orientation. These genes partially
A

B

FIGURE 1 | Organization of the human RCCX CNV on chromosome 6. (A) RCCX structure with two segments containing the genes STK19-C4A-CYP21A1P-TNXA-
STK19B-C4B-CYP21A2-TNXB, with a telomere-to-centromere orientation. Arrows indicates the transcriptional orientation of genes. (B) RCCX structures with one,
two and three segments. Each segment is indicated with two letters, the first represents the allele of the HERV-K(C4) CNV [L, Long allele (insertion) or S, Short allele
(deletion)], and the second indicates the types of C4 gene (A or B). SB, A RCCX structure with one segment including a C4B gene without HERV-K(C4) insertion.
LALB, A RCCX structure with two segments including two C4 genes, A and B, both with HERV-K(C4) insertion. LA SB SB: A RCCX structure with three segments
including a C4A gene with HERV-K(C4) insertion and two C4B genes without HERV-K(C4) insertion.
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overlap the 3’ ends of the CYP21 genes: the last exon of TNXA
and TNXB lies within the 3’ untranslated region of exon 10 in
CYP21A1P and CYP21A2, respectively, and contain fibronectin
type III repeats (26, 27). TNXB gene, encoding the extracellular
matrix protein TNX, consists of 68.2 kb of DNA and includes 44
exons (28). The TNXB gene appears to be unique in having both
its 5’ and 3’ ends buried in other genes. In fact, several start sites
located into or near the CREB-RP gene are responsible for the
TNXB transcription initiation. The CREB-RP gene lie
immediately upstream of TNXB and encoding a protein related
to the CREB transcription factor (29, 30). TNXA is a duplicated
section of TNXB and consists in a truncated pseudogene
containing a 120 bp deletion that causes a frameshift and a
premature stop codon that render the gene non-functional (31).

An haplotypic RCCX CNV structure is traditionally described
by the copy number of the repeated segment of RCCX CNV
(CNV allele), and, per segment, by the alleles of HERV-K(C4)
CNV and the type of C4 gene (13). Usually, a RCCX segment is
indicated with two letters, the first representing the alleles of the
HERV-K(C4) CNV [L: long allele (insertion allele) or S: short
allele (deletion allele)] and the second indicating the type of C4
gene (A or B). The multiplication of these two letters indicates
the presence of two and three segments (Figure 1B) (11, 13).
Very rare RCCX CNV alleles with four segments have been also
reported (32, 33). In addition, in order to define the exact
structure (presence or absence of HERV-K(C4) insertion and
type of C4 gene) of a RCCX CNV, specific molecular approaches
have been proposed (11, 34).
RCCX-ASSOCIATED DISEASES

The genetic diversity of the RCCX is highly attributable to
NAHR: unequal crossover facilitates large structural
rearrangements and copy number changes, whereas gene
conversion mediates relatively short sequence transfers (9, 10).
The results of these events increase the RCCX genetic diversity
and are responsible of specific human diseases.

CAH Due to 21-Hydroxylase Deficiency
CAH is a group of genetic autosomal recessive disorders that
affects adrenal steroidogenesis in the adrenal cortex. The vast
majority of the CAH cases, approximately 95%, are related to 21-
hydroxylase deficiency due to pathogenic variants accounted in
CYP21A2 gene. 21-hydroxylase enzyme is responsible for the
conversion of 17-hydroxyprogesterone to 11-deoxycortisol and
progesterone to deoxycorticosterone (35, 36). The impairment of
cortisol and aldosterone production is directly related to the
clinical form of the disease that ranges from classic (CL) or severe
to non-classic (NC) or mild late onset (37, 38). As above-
mentioned, both the CYP21A2 gene and its CYP21A1P
pseudogene are composed by a total of 10 exons, sharing a
high rate of homology (25, 39). The CYP21A1P pseudogene is
inactivated by multiple deleterious variants (small insertions/
deletions and point pathogenic variants) responsible for the
synthesis of a non-functional protein. Intergenic recombination
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events represent more than 95% of deleterious variants leading to
21-hydroxylase deficiency. Approximately 75% of the deleterious
variants are transferred by small conversions from the pseudogene
during meiosis. These conversions can involve one
(microconversions) or more pseudogene variants (40–42).
Differently, 5-10% of CAH alleles observed in most populations
are characterized byCYP21A2 pathogenic variants that do not result
in gene conversions (43–45).

The 20–25% of the cases of 21-hydroxylase deficiency is
related to large misalignment due to unequal crossing over
during meiosis process. This kind of event may cause gene
deletion or amplification, and also broader deletions involving
CYP21A2 gene and the other contiguous genes (40–42).
CYP21A1P/CYP21A2 chimeric gene is the result of a
recombination between CYP21A1P and CYP21A2 genes, as an
unequal crossing over occurs during meiosis. Based on the C4B
form of the gene, i.e. long or short, the rearrangement results into
a 26 or 32 Kb deletion, encompassing the 3′ end of CYP21A1P,
all of the C4B gene, and the 5′ end of the CYP21A2 gene. This
event leads to a single non-functional chimeric gene containing
the CYP21A1P at the 5’ end and the CYP21A2 at the 3’ end
(Figure 2A). To date 9 different chimeric CYP21A1P/CYP21A2
genes have been found and characterized (46–55). In particular,
two groups of chimeras, classic and attenuated, have been
identified: chimeric genes where the junction site is located
downstream of the c.293-13C/A>G mutation in the intron 2
(CH-1, CH-2, CH-3, CH-5, CH-6, CH-7, CH-8) are associated
with the severe Salt Wasting form of CAH. In contrast, CH-4 and
CH-9 chimeras, carrying the weaker CYP21A1P promoter and
the sole p.(Pro30Leu) variant, are commonly related to a milder
phenotype (47).

Unequal crossover is also the cause of copy number changes
of RCCX segment. The most well-known case is an haplotypic
RCCX CNV structure containing three distinct segments with
two CYP21A2 gene copies and one CYP21A1P pseudogene copy
(56–62). Generally, the CYP21A2 gene located downstream the
TNXA gene shows a wild-type nucleotide sequence, or carries
one or more deleterious variants. Conversely, the presence of the
CYP21A2 p.(Gln319Ter) mutation characterized the gene copy
located next to TNXB gene (13, 57–64). To date, 8 different
haplotypes with two active CYP21A2 genes on a chromosome 6
have been detected (63). The absence of a clear correlation
between genotype and phenotype observed in many
individuals is solved by the existence of these rare haplotypes,
underlying the need of the RCCX CNV assessment in the
molecular diagnosis of 21-hydroxylase deficiency (56, 65, 66).

Finally, the complete deletion of CYP21A2 gene can occur as
the result of an unequal crossing over between TNXA and TNXB
genes. This event produces a chromosome with two copies of
CYP21A2 gene and a chromosome where the arrangement of the
RCCX segment shows the C4-CYP21A1P-TNXA/TNXB
sequence, lacking CYP21A2 gene copy. This condition is
associated to the CAH-X Syndrome (67).

CAH-X Syndrome
Ehlers-Danlos syndromes (EDS) are a clinically and genetically
heterogeneous group of heritable connective tissue disorders
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characterized by joint hypermobility (JH), skin hyperextensibility,
and tissue fragility. EDS is typically caused by autosomal
dominant mutations in collagen-encoding genes or in genes
encoding collagen-modifying enzymes (68). Tenascin-X
deficiency causes a clinically distinct form of EDS due to
homozygous or compound heterozygous pathogenic variants in
the TNXB gene. Pathogenic variants account in the coding region
of the EGF-like repeats or the fibronectin type III domain of the
tenascin protein. The clinical phenotype resembles the classical
EDS type with a pattern of autosomal recessive inheritance (69,
70). Heterozygosity for severe TNXB mutations causes TNXB
haploinsufficiency and it is related to hypermobility type EDS
(hEDS), characterized by JH, recurring joint dislocations, joint
pain and structural cardiac valve abnormality (71). The CAH-X
term was first used for the description of a specific subgroup of
CAH affected subjects showing an EDS phenotype caused by
CYP21A2 monoallelic deletion extending into the TNXB gene
(72). The result of this 30 Kb deletion, caused by a recombination
event between TNXA and TNXB genes, is a chimeric TNXA/
TNXB gene (Figure 2B) (73). To date, three TNXA/TNXB
chimeras that differ in the junction site and result in a
contiguous CYP21A2 and TNXB gene deletion (CH-1 to CH-3)
have been reported (72, 74, 75). CAH-X CH-1 is characterized by
Frontiers in Endocrinology | www.frontiersin.org 4
a TNXA pseudogene derived 120-bp deletion in exon 35 that
causes the non-functionality of the gene and also results in
decreased TNX expression in both dermal and serum, claiming
an haploinsufficiency mechanism (69, 72). CAH-X CH-2 is
characterized by the variant c.12174C>G (p.Cys4058Trp) (exon
40) derived from TNXA pseudogene. This substitution deletes a
cysteine residue and leads to the loss of a critical disulfide bond in
the tertiary structure of the TNX C-terminal fibrinogen-like
domain (74). The third chimera, termed CAH-X CH-3, has
TNXB exons 41-44 substituted by TNXA and it is characterized
by a cluster of 3 closely linked variants also derived from TNXA
pseudogene: the c.12218G>A (p.Arg4073His) in exon 41 and
the c.12514G>A (p.Asp4172Asn) and the c.12524G>A
(p.Ser4175Asn) in exon 43 (75). Computational studies showed
that the p.(Arg4073His) variant interferes with TNX fibrinogen-
like domain stability. In particular, the arginine 4073 is predicted
to form a cation-pi interaction with the p.Phe4080 residue, which
is lost in the p.(Arg4073His) change, penalizing the folding energy
with a loss of 35 kcal/mol. The remaining variants in the cluster
did not significantly affect the folding energies in the models (75).
Differently to CAH-X CH-1 chimera, CH-2 and CH-3 not reduce
the TNX expression but produce altered proteins and are
associated with a dominant-negative effect.
A

B

C

FIGURE 2 | Genetic changes and clinical presentation. (A) CAH chimera (CYP21A1P/CYP21A2) is caused by recombination between CYP21A1P and CYP21A2
and causes the impairment of CYP21A2 and the deletion of C4B, but leaves safe the TNXB gene. CH-1, CH-2, CH-3, CH-5, CH-6, CH-7 and CH-8 chimeras are
involved in the severe SW form of CAH. In contrast, CH-4 and CH-9 chimeras are generally related to a milder phenotype. (B) CAH-X chimera (TNXA/TNXB) is
caused by recombination between TNXA and TNXB and produces the complete deletion of CYP21A2 gene, the impairment of TNXB gene and the deletion of C4B.
This contiguous deletion is termed CAH-X and causes CAH-X syndrome. (C) Psychiatric and autoimmune diseases due to C4 CNV: the high C4B copy number has
been described as Alzheimer’s disease risk factor, while the C4A deficiency was related to SLE.
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All the TNXA/TNXB chimeras cause EDS in monoallelic or
biallelic form regardless of CAH status, although patients with
CAH usually show more severe EDS manifestations with respect
to carriers without CAH (69, 72, 74–76). Approximately 10% of
patients with CAH due to 21-hydroxylase deficiency are affected
by CAH-X (74). Recently, Marino et al. reported that the overall
prevalence of CAH-X in a large cohort of Argentine CAH
patients was 14%, which was similar to that previously found
in a large cohort from the National Institutes of Health and in the
Chinese population (15% and 14% respectively) (77–79). In
addition, Lao et al. reported a particularly high prevalence
(29.2%) of CAH-X in 21-hydroxylase deficient patients
carrying the 30 kb deletion (78).

Regarding clinical manifestations, CAH-X affected subjects
show generalized JH, subluxation and chronic arthralgia, while
cardiac abnormalities have been observed in about 25% (80).
More severe clinical manifestations were found in patients with a
biallelic than in those with a monoallelic form (8, 10). In
addition, compared to haploinsufficiency, a dominant-negative
effect causes a more severe phenotype displayed by greater skin
and joint involvement (74). The diagnosis of EDS due to CAH-X
relies mainly on clinical evaluations including physical
examination for JH, skin characteristics and imaging. A serum
tenascin-X test, based on enzyme-linked immunosorbent assay,
has been developed to identify complete deficiency, but it is not
accurate in identifying heterozygous forms (69, 81). Molecular
diagnosis represents a valid support to the clinical evaluation of
CAH-X and, in this context, Sanger sequencing results to be the
most reliable an informative method for all TNXB variations,
even if it is laborious and expensive (82).

Complement Component C4 CNV
Complement component C4 is a central protein in the classical
and lectin pathways within the complement system (83). The two
isotypes of C4, which differ by only four amino acids,
demonstrate differential chemical reactivities: C4A displays
higher affinity for amino group-containing antigens or
immune complexes, and C4B for hydroxyl group-containing
antigens (84, 85). In the general population, the most common
RCCX haplotype consists of two segments with two C4 in
tandem genes coding for C4A and C4B. So, approximately 60%
of healthy individuals have two C4A and two C4B genes (14, 86,
87). However, deletions and duplications of C4 genes are well
documented and the human C4 locus has been identified as a
functional CNV hotspot within the RCCX region. C4 isotypes
involvement is described in several pathological conditions (88).
For instance, an high C4A gene dosage represents a relevant
schizophrenia risk factor, while both C4A or C4B high copy
number is related to Alzheimer’s disease (89, 90) (Figure 2C).
The presence of one C4A or C4B gene is called heterozygous C4A
or C4B deficiency, while the presence of no functional C4A or
C4B genes causes complete C4A or C4B deficiency and is called
homozygous C4 deficiency (14). Homozygous deficiencies of
complement C4A or C4B are detected in 1-10% of populations.
Homozygous deficiency of C4A has been reported to associate
with increased frequency of autoimmune diseases, whereas
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homozygous C4B deficiency has been associated with increased
susceptibility of bacterial and enveloped viral infections (91, 92).
Many studies support the association between homozygous C4A
deficiency and systemic lupus erythematosus (SLE) (93–
97) (Figure 2C).

C4 structural variations frequently arise in CAH affected
subjects with relevant clinical implications, particularly in
relation to psychiatric morbidity and autoimmunity (98, 99).
Moreover, Lao et al. reported in a cohort of 145 CAH subjects
with 21-hydroxylase deficiency, the correlation between C4A
copy number and the externalization of psychiatric comorbidity
(98). Interestingly, authors specified that C4B copy number was
the determinant of C4 serum levels in CAH patients because C4B
copy number varied in CAH patients carrying the 30-Kb deletion
and in NC patients carrying the p.(Val282Leu) variant. In fact, as a
consequence of 30 Kb deletion, both C4B and CYP21A2 genes are
frequently lost concurrently, producing a CYP21A1P/CYP21A2 or
CYP21A1P-TNXA/TNXB chimera (Figures 2A, B). Conversely, the
known association of the NC p.(Val282Leu) variant with high total
C4 copy number was found to be due to a duplication of C4B gene,
not C4A (98, 100).

Recently, Falhammar et al. reported an increased prevalence
of autoimmune disorders in a large cohort of Swedish patients
with 21-hydroxylase deficiency (99). However, some limitations
of the study were point out. In particular, the relatively young age
of the patients and the possible protective effects of
glucocorticoid treatment may have led to underestimates in the
lifetime risks for autoimmune disorders (99).

The complex genetics of human histocompatibility complex
provides evidences that RCCX genotype being related to C4
could represent a further risk factor for additional illnesses in
CAH affected subjects with 21-hydroxylase deficiency. However,
the role of the C4 gene dosage related to CYP21A2 genotype in
CAH patients needs to further investigations.
DISCUSSION

RCCX CNV represents a complex, multiallelic and tandem CNV
in the MHC class III region. Genetic recombination events
typically affect this genomic region due to the peculiar co-
presence of genes and pseudogenes with high sequence
homology, causing frequent misalignment during meiosis. The
challenging related to the molecular diagnosis of 21-hydroxylase
deficiency, owed to the complexity of the RCCX CNV structure,
are well documented. For this reason, it is essential to refer to
effective guidelines for the standardization of molecular genetic
testing of CAH due to CYP21A2 defects (101). In addition, as
recently suggested, including CAH-X chimeras determination in
21-hydroxylase deficiency molecular testing would be
particularly beneficial for individuals carrying an allele with the
“30Kb deletion”. In fact, a very early CAH-X diagnosis could be
offered to young children before hypermobility evaluation is
applicable, and to enable early screening for cardiac defects
(102). However, a reflection is currently in progress on the
need to carry out further studies in order to broader the
July 2021 | Volume 12 | Article 709758
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knowledge and the expertise on CAH-X before including
respective methods in routine diagnostic procedures (103, 104).

Finally, novel and larger studies are required in order to
elucidate the role of C4 dosage in several disorders, especially in
CAH patients with 21-hydroxylase deficiency.
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