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Ébert A and Venglovecz V (2021)
Mechanisms of Post-Pancreatitis

Diabetes Mellitus and Cystic
Fibrosis-Related Diabetes:

A Review of Preclinical Studies.
Front. Endocrinol. 12:715043.

doi: 10.3389/fendo.2021.715043

REVIEW
published: 10 September 2021

doi: 10.3389/fendo.2021.715043
Mechanisms of Post-Pancreatitis
Diabetes Mellitus and Cystic
Fibrosis-Related Diabetes:
A Review of Preclinical Studies
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Anatomical proximity and functional correlations between the exocrine and endocrine
pancreas warrant reciprocal effects between the two parts. Inflammatory diseases of the
exocrine pancreas, such as acute or chronic pancreatitis, or the presence of cystic fibrosis
disrupt endocrine function, resulting in diabetes of the exocrine pancreas. Although novel
mechanisms are being increasingly identified, the intra- and intercellular pathways
regulating exocrine–endocrine interactions are still not fully understood, making the
development of new and more effective therapies difficult. Therefore, this review sought
to accumulate current knowledge regarding the pathogenesis of diabetes in acute and
chronic pancreatitis, as well as cystic fibrosis.

Keywords: diabetes of the exocrine pancreas (DEP), acute pancreatitis (AP), chronic pancreatitis (CP), cystic
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INTRODUCTION

The pancreas is a unique organ, having both the endocrine and exocrine functions. The exocrine
pancreas is composed of acini, which are dome-shaped clusters of acinar cells that produce and
secrete enzymes involved in the digestion of food. Enzymes are secreted into the ductal tree that is
formed by another cell type, the HCO−

3 -producing ductal cells that neutralise low pH from the
stomach and provide an optimal environment for the enzymes to operate. Unlike the exocrine
component, the endocrine pancreas produces hormones that enter the bloodstream and regulate
carbohydrate metabolism. There is ever-accumulating evidence supporting the existence of a strong
functional interrelationship between the exocrine and endocrine pancreas, and the repercussion of
endocrine dysfunction in the exocrine function and vice versa (1–5). Therefore, understanding
exocrine–endocrine interactions is crucial for the diagnosis and treatment of pancreatic diseases.
Diabetes of the exocrine pancreas (DEP) develops secondary to exocrine pancreatic disorder. One of
the most common diseases of the exocrine pancreas is acute and chronic pancreatitis (AP and CP,
respectively). AP is a sudden inflammation of the pancreas, whereas CP is a persistent condition that
arises from repeated damage of the pancreas and is associated with fibrosis, calcification and
destruction of the gland. In both forms of pancreatitis, the risk of developing diabetes is high (6, 7);
however, the underlying mechanism is not completely known. In addition to pancreatitis, cystic
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fibrosis (CF) is also often associated with diabetes, especially at
advanced age (8–10). Although CF is not specifically an
inflammatory disease, the secretory defect due to the
dysfunction of the cystic fibrosis transmembrane conductance
regulator (CFTR) Cl- channel causes inflammation and fibrosis
of the pancreas that can also affect the endocrine functions.

Recently, DEP has been increasingly emphasized in clinical
practice (11–14), although concerns remain regarding its
treatment. Compared to type 1 (T1DM) and type 2 (T2DM)
diabetes mellitus (DM), the pathogenesis of DEP has been
relatively less researched, with most experimental data focusing
on CF. Considering the lower incidence of DEP compared to the
other two types of diabetes and the limited data available,
diagnosing DEP remains difficult. In addition, no specific
guidelines have been established for the treatment of DEP,
although more and more recommendations have recently
emerged (3, 15–18). Two recent reviews provided a detailed
and comprehensive analysis of the current diagnostic and
treatment guidelines for DEP and recommended the use of a
novel nomenclature (12, 14) Accordingly, the classification of
DEP includes new-onset diabetes after pancreatitis, i.e., post-
pancreatitis diabetes mellitus (PPDM); pancreatic cancer-related
diabetes; and CF-related diabetes (CFRD). Based on this,
diabetes after AP should be termed PPDM-A, whereas diabetes
after CP should be termed PPDM-C.

This review sought to accumulate current experimental
knowledge regarding the endocrine–exocrine interactions,
focusing on PPDM-A, PPDM-C, and CFRD.
EFFECT OF THE EXOCRINE PANCREAS
ON ENDOCRINE FUNCTION UNDER
PHYSIOLOGICAL CONDITIONS

Since the discovery of the “insulo-acinar axis” in early 1960s (19),
the impact of insulin on pancreatic exocrine function has been
extensively studied both in vivo and in vitro and these studies
indicated that insulin has a significant effect on exocrine function
(20–27). In contrast, much less information is available regarding
the effect of exocrine cells on the endocrine function. In pigs, oral
pancreatic enzyme pretreatment was shown to decrease plasma
insulin levels for intravenous glucose tolerance test (GTT) and test
meal (28). The same workgroup demonstrated that in exocrine
pancreatic insufficient pigs, supplementation of exocrine enzymes
reduced plasma insulin levels after both starvation and oral or
intravenous GTT (29). Similarly, alpha-amylase supplementation
also reduced plasma insulin levels after both intravenous and
duodenal GTT, while it increased glucagon levels several folds in
pigs with T1DM and T2DM (30). The inhibitory effect of amylase
on insulin secretion has also been demonstrated in the insulin-
producing cell line, BRIN-BD11 (30), and in hamsters with
induced peripheral insulin resistance (IR) (31–33). In addition
to amylase, lipase also plays an important role in insulin secretion
by reducing the formation of long-chain fatty acids, which regulate
glucose-induced insulin secretion through the activation of
G-protein-coupled receptor, GPR40 (32, 34). These data indicate
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that amylase and lipase not only play a role in the breakdown of
carbohydrates and fats but also directly or indirectly inhibit insulin
release after ingestion of large amounts of carbohydrates or fats.
The purpose of the inhibitory effect of amylase and lipase may be
to keep insulin at a normal level; however, the exact significance of
this is not entirely clear. One possible explanation is a regulatory
mechanism that acts against insulin overproduction and thus
exhaustion of beta cells. Among the proteases, chymotrypsin
does not affect either insulin secretion, islet size, or the number
of beta cells; however, this has only been demonstrated in
hamsters and no other studies have been conducted to confirm
these results in humans (32). In contrast, intracellular trypsin
significantly increases the activity of KATP and reactivates the
channel after complete rundown by modifying the regulatory
protein of KATP or the channel itself (35, 36). Opening of the
channel causes K+ efflux and, as a result, hyperpolarization of the
membrane, which in turn inhibits voltage-gated Ca2+ channels
and exocytosis of insulin granules. The physiological significance
of the inhibitory effect of trypsin on insulin secretion is not fully
understood, but it is likely to play an important role in
normalizing serum insulin levels after a meal, such as amylase
and lipase. Beside the regulation of insulin secretion, trypsin also
plays a role in islet formation and differentiation through PAR-2
receptor activation and calcium signalling (37).
EFFECT OF THE EXOCRINE PANCREAS
ON ENDOCRINE FUNCTION UNDER
PATHOPHYSIOLOGICAL CONDITIONS

Under certain pathological conditions, the secretion of digestive
enzymes is altered. Inflammation of the pancreas destroys the
parenchyma, and prolonged inflammation leads to the
development of exocrine pancreatic insufficiency, a condition in
which the production of pancreatic enzymes is greatly reduced.
Due to decreased enzyme production, insulin secretion is released
from the inhibitory effect of digestive enzymes that leads to
hyperinsulinemia. Clinical studies have demonstrated that serum
insulin level increases after AP and CP, although in both cases,
hyperinsulinemia is explained by the decreased insulin clearance,
and not by the overproduction of insulin (38, 39). Regardless of
the cause of hyperinsulinemia, it is unclear whether this transiently
high insulin level plays a role in DEP. Previous studies have
demonstrated that hyperinsulinemia may be responsible for the
development of IR (40–42), a condition in which cells become less
sensitive to insulin. Because IR is considered as a precursor of
diabetes, hyperinsulinemia during AP and CP may be a sign of
subsequent DEP development. The following chapters describe
the mechanisms that are thought to play a role in the development
of DEP in AP, CP, and CF.

Post-Acute Pancreatitis Diabetes Mellitus
AP is an inflammatory disorder of the pancreas and one of the
most frequent reasons for hospitalisation related to a
gastrointestinal condition (43). AP can progress rapidly and
cause severe symptoms like systemic inflammatory response,
September 2021 | Volume 12 | Article 715043
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which may lead to multi-outcome and predisposes patients to
diabetes. Research regarding the incidence of post-acute
pancreatitis diabetes mellitus (PPDM-A), as well as factors
associated therewith, has remained controversial. A recently
published systematic review and meta-analysis that examined
the incidence of new-onset DM after AP based on various
criteria, including the severity of pancreatitis, aetiological factors,
presence of necrosis and follow-up duration (7), showed a 23%
overall incidence of DM after AP. Although similar results had
been found by Das et al. (1), other workgroups showed much
higher (44–47) or lower incidences (48, 49). Severity of
pancreatitis, aetiology and the presence of necrosis have also
been considered the most important risk factors for the
development of diabetes (7). With regard to severity, some
studies found no correlation between the development of
diabetes and severity of pancreatitis (1, 44, 50–53), whereas
others found a strong association between them, with the extent
of necrosis being a decisive factor (44, 47, 51, 54, 55). Generally,
the number of functionally active beta cells decreases as the extent
of necrosis increases, leading to altered insulin secretion. Research
regarding aetiological factors has been inconsistent. Majority of
the studies indicate that diabetes is most often associated with
alcohol-induced pancreatitis (7, 55), which may be partly
explained by the increased incidence of diabetes among patients
with alcoholic and biliary AP in such studies. With regard to other
aetiological factors, hyperlipidaemia-induced pancreatitis has been
found to cause diabetes in more patients (86%) compared to the
other aetiologies (53). In addition, prior to the onset of diabetes,
patients with AP often develop IR. Obesity is a risk factor in the
development of IR (56, 57). Accumulated adipose tissue releases a
number of inflammatory mediators that can affect insulin receptor
or insulin binding to the receptor through various signalling
pathways. Consistent with this, it has been reported that obesity
increases the risk of IR development in patients with AP (58).
Furthermore, in non-obese AP patients, increased intra-pancreatic
fat deposition was associated with an increased HOMA-IR
(homeostasis model assessment-IR) index (59). Among the
inflammatory mediators, the adipocytokine IL-6 has been shown
to be associated with elevated levels of chronic hyperglycaemia
and IR after AP (60). This proinflammatory cytokine is released
from adipose tissue and can inhibit both the insulin receptor and
the action of insulin (61). Upregulation of IL-6 has been also
shown in experimental models of AP where it is associated with
enhanced local and systemic response. The association between IR
and AP severity was investigated in a prospective clinical study,
where IR was shown to be an independent factor in predicting AP
severity (62). These data suggest that in addition to increasing the
risk of diabetes development, IR also exacerbates the outcome
of pancreatitis.

Experimental studies on rats have shown that sodium
taurocholate-induced pancreatitis did not alter islet morphology
or GLUT-2 expression but reduced insulin secretion in response
to glucose stimulation, indicating functional deterioration of beta
cells (63). Similar results were obtained in an L-arginine-induced
rat model wherein no change in alpha and beta cell counts but a
significant decrease in insulin secretion was observed 1 month
Frontiers in Endocrinology | www.frontiersin.org 3
after the induction of pancreatitis (64). Kinami et al. also found no
morphological abnormalities in islet cells after the induction of AP
but did observe a significant decrease in the serum levels of insulin
and glucagon (65). Interestingly, they found that damage occurred
earlier in alpha cells than beta cells. The exact mechanism that
leads to a decrease in hormone production after AP is not
completely known. Experiments in rats with acute necrotizing
pancreatitis have shown that endoplasmic reticulum stress and
nitric oxide production play significant roles in beta cell
dysfunction (66–68), although other factors are presumably also
involved. Our workgroup had also investigated the morphology
and function of the endocrine pancreas after caerulein-induced
AP in mice (unpublished data). Accordingly, we found that mice
with caerulein-induced AP showed lower fasting insulin levels in
the acute inflammation phase but higher fasting glucagon levels
compared to the untreated control group. Fasting blood glucose
levels were nonetheless normal. Intraperitoneal glucose tolerance
tests in the same animals showed normal response to glucose by
both hormones but significantly lower insulin levels in the
caerulein-treated group. Blood glucose levels were normal and
did not differ in caerulein-treated versus control mice.
Immunofluorescent staining of whole pancreas tissue sections
against insulin and glucagon did not reveal significant
differences in islet morphology between the caerulein-treated
and control groups. The aforementioned results suggest that the
high levels of tissue necrosis observed in AP do not significantly
affect islet morphology or islet cell counts but significantly alter
serum hormone levels, particularly the level of insulin, which
presumably leads to the deterioration of metabolism observed in
patients with AP.

Furthermore, there is growing evidence that the exocrine
pancreas and endocrine pancreas interact with each other not
only through their secretions but also indirectly, through
dysbiosis, resulting from inflammation. Sun et al. have shown
that the level of an antimicrobial peptide, cathelicidin-related
antimicrobial peptide (CRAMP), changes during inflammation
(69). This peptide is produced by beta cells and plays an
important role in shaping the immune environment of the
pancreas. Production of CRAMP is regulated by short-chain
fatty acids (SCFAs) which are produced by the gut microbiota.
Since AP is associated with dysbiosis, the production of SCFAs
and thus the level of CRAMP decreases during AP, which may
lead to the development of T1D through the formation of an
unfavourable immune environment (69). These data suggest that
the development of diabetes in AP is a highly complex process, in
which—besides the direct effect of the inflammatory
environment in the pancreas—other indirect factors also play
a role.

Post-Chronic Pancreatitis Diabetes
Mellitus
CP is a progressive disease characterised by parenchymal
destruction, as well as the presence of inflammation and
fibrosis. Heavy alcohol consumption has been the most
common cause of CP worldwide, although other factors, such
as genetic mutations, hypertriglyceridemia, hypercalcaemia and
September 2021 | Volume 12 | Article 715043
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pancreatic duct obstruction, may also play a role. According to the
necrosis–fibrosis hypothesis, recurrent acute attacks on the
pancreas cause irreversible damage of the exocrine pancreas and
lead to the development of CP (70). Loss of islet cells and the
development of hepatic IR are often associated with long-standing
CP, which results in diabetes among such patients (71). CP is
typically considered to be one of the major causes of DEP (72).
Around 30% of CP patients develop diabetes, although such rates
can reach as high as 90% depending on the follow-up duration
and region (6, 73, 74). Alcoholism and distal pancreatectomy have
been considered the most common independent risk factors for
DEP in CP (75–77), while male sex, steatorrhea, and biliary
stricture have also emerged as risk factors for diabetes
development, with divided opinions regarding smoking (73, 74).
Only a limited number of guidelines are available for the diagnosis
and treatment of DEP in CP. The most accepted and currently
used guideline was developed by the HaPanEU/United European
Gastroenterology, which contains specific diagnostic and
therapeutic recommendations (78). According to current
recommendations, therapy should include treatment of
hyperglycaemia, steatorrhea and malnutrition. Although recent
efforts have been made to improve treatment, such patients still
have higher mortality rates compared to those with CP alone, with
the presence of diabetes considerably impairing their quality of
life. Therefore, comprehensive knowledge regarding the
pathomechanism of PPDM-C would definitely promote
substantial improvements in therapy.

A number of experiments have been conducted to identify
intra- and extracellular mechanisms related to the development
of diabetes in CP. Most of these studies have used the long-term
partial pancreatic duct ligation (PDL) technique for the
induction of CP that causes extensive acinar cell damage and
tissue fibrosis. According to the most widely accepted view, the
major cause of impaired metabolism or diabetes in CP is
defective insulin secretion (79–81). As the disease progresses,
the pancreas becomes more fibrotic, which impedes proper blood
supply to the islets, causing progressive loss of beta cells and
impaired islet function. However, alterations in glucose
metabolism have also been observed not only during disease
progression but also during the early stages, which predisposes
patients to the development of diabetes (82). In a clinical cohort,
patients with CP who had no diabetes and pancreatic
calcification showed higher fasting and mixed-meal glucose
levels and lower insulin sensitivity compared to healthy
controls (82). However, those with advanced CP without
diabetes exhibited reduced beta cell mass, and the expression
of pancreatic and duodenal homeobox gene as well as insulin
gene decreased in these patients (83). Recent research has shown
that the decrease in beta cell number among patients with CP
was not due to cell death, but rather the epithelial–mesenchymal
transition (EMT) of beta cells (84). Xiao et al. demonstrated that
high levels of transforming growth factor b1 (TGF-b1) regulates
EMT through the SMAD3/Stat3 signalling pathway. This
hypothesis is supported by previous studies showing that
TGF-b1 overexpression promotes massive fibrosis, abnormal
islet distribution and the appearance of fibroblast-like cells and
Frontiers in Endocrinology | www.frontiersin.org 4
macrophages (85). Furthermore, the Stat3 antagonist forkhead
box protein O1 has been shown to prevent the development of
EMT, as well as diabetes. Furthermore, the inflammatory milieu
resulting from pancreatitis also contributes to beta cell
dysfunction. Several inflammatory mediators have been shown
to inhibit insulin release (IL-1b, IFN-g) or to be associated with
IR (IL-6) (86–88). The accumulation of IFN-g within the islets is
presumably due to the differentiation of Th17 cells into IFN-g-
producing Th1 cells by the inflammatory environment (89).
Under phys io log i ca l cond i t i ons , in su l in inh ib i t s
gluconeogenesis and glycogenolysis in the liver and promotes
glycogen synthesis (90). Andersen et al. had shown that the
inhibitory effect of insulin on hepatic glucose production is
mediated by the reduction in hepatic GLUT-2 receptors (91).
However, given the lack of sufficient insulin in cases with CP, no
such reduction was observed, while GLUT-2 internalisation was
inadequate (91, 92). In addition, they showed that insulin
receptors interact with GLUT-2 transporters, a mechanism
that allows insulin to regulate hepatic glucose transport (93).
Apart from insulin, other islet hormones, such as PP, also have
decreased secretion in CP, which can play a significant role in
altered glucose metabolism (94). Several studies have revealed
that PP cells on the periphery of the islets protect beta cells in the
centre, while decreased PP production may be a sign of reduced
insulin production and can be used to predict the development of
diabetes (95–97). Bastidas et al. who characterised the effect of PP
infusion on glucose tolerance and insulin response in CP dogs
found that intravenous administration of PP did not improve
glucose tolerance or insulin response (98) but did increase
hepatic sensitivity to insulin. CP decreases the number of
insulin receptors on hepatocytes, which probably plays role in
the development of hepatic IR (99). Exogenous administration of
PP increases the expression of hepatic insulin receptors, as well
as the binding of insulin to its receptor (99, 100), thereby
enhancing the sensitivity of hepatocytes to insulin (100).
Studies have shown that intravenous administration of PP
restored hepatic IR in rats, dogs and humans with CP (101–
103), which could suggest the therapeutic use of PP. Banerjee
et al. showed that packaging of PP into micelles increases its half-
life and thus its efficacy (104). A randomised clinical trial
investigating the effects of PP on insulin requirements in 10
patients with T1DM or DEP found that subcutaneous
administration of PP reduced insulin requirements in these
patients (105). In contrast to decreased hepatic insulin
sensitivity, peripheral insulin sensitivity increases in CP, which
may be explained by an increase in the number of insulin
receptors on blood cells and an increase in insulin binding to
its receptors (106, 107). However, activated inflammatory cells
and cytokines present systemically in CP may play a role in the
development of IR. Immune cells in the peripheral blood of CP
patients show elevated expression of the cytokines, IL-2, IL-6,
IL-12 and IFN-g, and decreased expression of IL-4 and IL-10,
indicating an increased inflammatory state (108). Similarly,
plasma levels of IL-6, TNF-a and adiponectin are significantly
elevated in CP (109). Chronic low-grade inflammation has long
been considered to promote the development of IR (110). TNF-a
September 2021 | Volume 12 | Article 715043
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is an adipose tissue-derived proinflammatory cytokine that
causes IR by enhancing adipocyte lipolysis and increasing the
serine/threonine phosphorylation of insulin receptor substrate-1
(IRS-1) through the JNK and IKKb/NF-kB pathways (110–113).
IFN-g is suggested to promote IR by inhibiting insulin action and
adiponectin secretion in adipocytes (114) and was shown to
inhibit glucose-stimulated insulin response in CP (87). IL-6 is
also recognised as an inflammatory mediator that causes IR by
reducing the expression of GLUT4 and IRS-1 by activating the
Janus kinase-signal transducer and activator of transcription
(JAK-STAT) signalling pathway and increasing suppressor of
cytokine signalling 3 (SOCS3) expression (115, 116). Through
activation of STAT3, IL-6 can also lead to IR in skeletal muscle
by inducing the expression of toll-like receptor-4 (TLR-4), which
is suggested to be a major upstream molecule in the activation of
NF-kB. Furthermore, IL-6 is also found to induce IR by
impairing the synthesis of glycogen through downregulating
the expression of miR-200s and upregulating that of FOG-2
(56, 117–119). Cytokines released from adipose tissue may
therefore damage the insulin responsiveness also of skeletal
muscle and further exacerbate IR in CP. Intramuscular adipose
tissue content has been shown to affect the disease severity and
survival rate in patients with pancreatic diseases (120, 121). IR in
CP is exacerbated by obesity, which is a common concomitant
condition in CP patients. In fact, obesity can be characterised as a
state of chronic low-grade inflammation, promoting IR (122,
123). Clinical studies show that the duration of DM in CP
patients correlates positively with BMI and obese patients are
more likely to develop severe AP with a more intense systemic
inflammatory response (124–126).

Serum glucagon levels can also change during CP. A previous
study by Donowitz et al. involving 10 patients with CP found that
CP reduced basal glucagon levels, while the infusion of L-alanine,
an endogenous stimulator of glucagon secretion, was unable to
enhance glucagon response (127). Moreover, basal blood glucose
levels in these patients were higher compared to controls,
indicating that glycaemic control is disturbed in CP. Similar
results were found in another study that compared patients with
T2DM to those who developed PPDM-C (128). This study found
that both the diabetes and CP groups had higher serum glucose
levels after OGTT compared to controls and the serum glucagon
level also showed an initial increase in these groups, which is
presumably due to the fact that postprandial glucagon release is
not inhibited due to decreased endogenous insulin production.
Interestingly, this increase in glucagon levels was not observed
during intravenous GTT, suggesting that other intestinal
hormones, such as incretin hormones, may also play a role in
abnormal glucagon levels (129). In contrast, glucagon levels
decreased under hypoglycaemic conditions. Previous studies
have also observed low levels of g lucagon during
hypoglycaemia in patients with pancreatitis, with the rate of
decrease being directly proportional to the stage of the disease
(130, 131). Defective alpha cell function in diabetes and CP can
be partly explained by damage to most of the beta cells, which
render them unable to properly control the function of alpha
cells (128). In addition, a recent study on a patient with advanced
Frontiers in Endocrinology | www.frontiersin.org 5
CP who had previously undergone partial pancreatectomy found
that the number of alpha cells significantly increased mostly
around middle-size ducts and in the lumen of the ducts,
suggesting that newly formed alpha cells during regeneration
may have ductal origin or that ductal cells play a substantial role
in islet neogenesis (132). Figure 1 shows a possible mechanism
for the development of DEP in CP.

Cystic Fibrosis-Related Diabetes
CF, the most common genetic disorder in Caucasian populations
with a prevalence of 1 out of 3,500 individuals in the United
States (133), is caused by mutations in the CFTR gene (134).
Approximately, 2,000 CFTR gene mutations have been identified
and classified into six groups depending on their biological
effects (135). F508del, the most common mutation, causes an
abnormal folding of the CFTR protein, which consequently
degrades immediately after synthesis or does not function as a
Cl− channel even when it reaches the cell membrane. The CFTR
channel is located at the apical membrane of secretory epithelial
cells and mediates the transport of Cl− and HCO−

3 ions (136).
The lungs and pancreas are the most affected organs in patients
with CF. In the lungs, CFTR plays an essential role in the
formation of airway surface liquid (ASL) (137) that lines the
airway epithelium and ensures mucociliary clearance (138).
Owing to the decreased Cl− secretion and increased Na+

absorption in CF, the volume and composition of ASL change,
leading to airway surface dehydration and decreased mucociliary
transport that favours airway infections (139). Persistent
infections induce consecutive inflammation and greatly impairs
respiratory function, ultimately leading to the death of patients
with CF (140). The pancreas of patients with CF displays
extensive fibrosis, fat infiltration and significant loss of islets
(50%) (141). In the pancreas, CFTR is expressed on ductal cells
and with the CI−=HCO−

3 exchanger, responsible for the secretion
of HCO−

3 -rich pancreatic fluid (136). Defects in HCO−
3 secretion

increase the viscosity of the pancreatic fluid, which favours the
formation of mucus plugs in the ductal tree and leads to
premature activation of digestive enzymes, resulting in the
destruction of the pancreas (142).

The introduction of novel therapies has considerably
improved the survival of patients with CF in recent years.
Currently, the median predicted survival age of patients with
CF is 41–46 years, depending on the type of mutations and the
gender of the patients (143, 144). A retrospective cohort analysis
had shown that females have worse survival than males (144), for
which the female hormone, oestrogen, is at least partly
responsible. Oestrogen increases the incidence of the mucoid
form of Pseudomonas aeruginosa in the lungs, which shows
greater resistance to antibiotics and thus induces more severe
inflammation (145). Nevertheless, the increased age of patients
with CF has also been associated with an increased incidence of
comorbidities. The most common comorbidity associated with
CF is CF-related diabetes (CFRD) (8), a multifactorial disease
that, although present more frequently in advanced age, can
develop at any age (146). Over the age of 40, 83% of women and
64% of men with CF have been found to develop diabetes (147).
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Moreover, a strong correlation exists between the type of CFTR
mutation and the development of diabetes. Patients with mild,
class IV or class V mutations are less likely to develop diabetes
than those with more severe, class I or class II mutations (147).
Those with class I, II and III mutations exhibited significantly
greater impairment in pancreatic exocrine functions compared
to those with class IV and V mutations (148), which explains
why diabetes is more common among class I and II mutations
(147). The presence of diabetes substantially reduces the life
expectancy of patients with CF (149), especially women (147,
150). Lewis et al. had shown that patients with CFRD had a 3.5
times higher mortality rate compared to those with CF (147).
The shorter life expectancy among patients with CFRD can be
mainly attributed to accelerated deterioration of lung function
due to continuous bacterial infections. Hyperglycaemia in these
patients provides energy for bacteria and promotes their growth
(151). Furthermore, patients with CFRD present with poor
nutrit ional status and microvascular complications
(nephropathy, retinopathy and neuropathy) (9).

Diabetes in patients with CF is not considered T1DM or
T2DM. Basically, severe damage to the exocrine pancreas
destroys beta cells, resulting in decreased insulin secretion and
therefore the development of CFRD. However, the exact
molecular background for the development of diabetes is not
fully elucidated in CF, partly due to the controversial role of
CFTR on beta cells. One of the main reasons for this controversy
is that CFTR is differentially expressed in different species and
has various endocrine functions. Using isolated islets or a
pancreatic beta cell line, mouse islets have been shown to
Frontiers in Endocrinology | www.frontiersin.org 6
express functionally active CFTR (152–156). Studies using
genetically (F508del) or pharmacologically (CFTRinh172)
developed CF mice have demonstrated characteristic changes
in the morphology of the islets in the absence of CFTR (155,
156). Accordingly, although the size and insulin content of the
islets decreased significantly, the cell number remained
unchanged. In addition, centralisation of alpha cells can be
observed. In both CF models, a non-hyperglycaemia-associated
decrease in pancreatic and serum levels of insulin had been
noted. Pharmacological inhibition of CFTR did not significantly
affect serum glucagon levels but did increase it several folds in
F508del mice (155, 156). The importance of CFTR in insulin
secretion has also been confirmed in a mouse insulinoma cell
line, MIN6, where genetic or pharmacological inhibition of
CFTR caused a reduction in insulin secretion that was further
decreased in the presence of oxidative stress (154). Guo et al. had
shown that CFTR activation in beta cells is required for
membrane depolarisation and calcium mobilisation associated
with insulin secretion. They also demonstrated that incubation of
F508del beta cells with the VX-809 corrector (Lumacaftor) dose-
dependently increased insulin secretion (153). Nonetheless, oral
administration of the CFTR corrector and activator (Lumacaftor
and Ivacaftor) to patients with CF who have the F508del
mutation did not improve glucose tolerance or insulin
secretion (157, 158). In contrast to mice, Boom et al. found
that CFTR was mainly localised to alpha cells in rat pancreatic
islets (159). In the ferret CF model, the size and composition of
islets show a dynamic change as the disease progresses (160). A
comparison of CF ferrets at different stages showed that islet sizes
FIGURE 1 | Putative mechanism for the development of DEP in CP. Under normal conditions, food ingestion triggers secretion of enzymes from acinar tissue, insulin
from beta cells, and pancreatic polypeptide from PP cells and inhibits secretion of glucagon from alpha cells. In chronic pancreatitis, fibrosis and inflammatory milieu
lead to destruction of islets and decreased hormone production, especially insulin and pancreatic polypeptide, resulting in decreased glycogen formation and
increased hepatic IR, respectively. Taken together, this leads to post-prandial hyperglycaemia and predisposes patients to the development of diabetes at advanced
stages. Furthermore, the early stage of the disease is often associated with hyperinsulinemia, which together with obesity, may play a role in the development of IR,
which is a known precursor to diabetes.
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and the number of alpha, beta and gamma cells increased
significantly at more advanced stages. One study also
demonstrated that the increased islet cell count presumably
results from the transdifferentiation of ductal cells into islet
cells, in which matrix metalloproteinase-7, a remodelling
factor, plays an essential role (160).

Regarding the human pancreas, White et al. had recently
shown that less than 1% of normal adult beta cells express
CFTR (161). Further studies have indicated that insulin
secretion defects in CFRD are not due to the lack of intrinsic
CFTR function (162, 163). Hart et al. had shown that the absence
of CFTR did not affect alpha and beta cell function and CFRD
development much more related to beta cell loss and
inflammatory cell infiltration (162). Moreover, Sun et al. found
that CFTR regulates beta cells through pro-inflammatory factors
released from exocrine cells (163). However, regardless of species,
it is generally accepted that exocrine inflammation in CF damages
the entire pancreas to such an extent that the number of beta cells
and thus insulin secretion are considerably reduced (162).
However, this hypothesis somewhat contradicts the fact that the
remaining beta cells must produce enough insulin to prevent the
development of diabetes, which suggests that CFTR intrinsically
regulates insulin secretion and that the functional defect in
residual beta cells causes the development of CFRD.
Nevertheless, the development of CFRD with age suggests that
the pancreas suffers progressive damage wherein a continuous
decline of islet cells can be observed. The role of age in the
pathomechanism of CFRD is also shown by the fact that insulin
sensitivity also decreases over time in CF patients with glucose
abnormalities (164). Unlike beta cells, however, much less
information is available on the role of CFTR in alpha cells. In
pancreatic alpha cells, CFTR inhibits glucagon secretion (165–
167), presumably by stimulating KATP channels (167). Patients
with CF exhibit dysregulated glucagon secretion, which probably
also contributes to abnormalities in their glucose tolerance.
CONCLUSION

Considering that the exocrine pancreas and endocrine pancreas
affect each other’s function through a number of pathways, it is
not surprising to observe endocrine dysfunction in cases with
exocrine insufficiency. During acute or chronic inflammation of
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the exocrine pancreas, the development of diabetes is highly
dependent on the severity of the disease, whereas in CF, the
development of diabetes has been found to increase with the
length of the disease. However, all tree diseases are characterized
by dysregulated hormone secretion. Given that early detection of
disturbances in glucose homeostasis can prevent the
development of more serious complications, monitoring
carbohydrate metabolism in these patients is strongly
recommended, as well as establishing appropriate diagnostic
criteria of prime importance considering that DEP is often
misdiagnosed as T2DM. After proper diagnosis of DEP,
appropriate treatment of the disease constitutes another
problem. Owing to the yet fully elucidated pathomechanism of
DEP, developing specific therapies has remained difficult.
Currently, treatment of DEP has been based on guidelines
specific for the treatment of T2DM. Therefore, establishing
guidelines that differentiate DEP according to not only other
types of diabetes but also the different aetiologies thereof is
greatly needed. Furthermore, there needs to be a strong
emphasis on basic research considering that better
understanding of the pathomechanism of the disease can
substantially contribute to the identification of novel
therapeutic targets.
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