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Seven transmembrane receptors (7TMRs), often termed G protein-coupled receptors
(GPCRs), are the most common target of therapeutic drugs used today. Many studies
suggest that distinct members of the GPCR superfamily represent potential targets for the
treatment of various metabolic disorders including obesity and type 2 diabetes (T2D).
GPCRs typically activate different classes of heterotrimeric G proteins, which can be
subgrouped into four major functional types: Gas, Gai, Gaq/11, and G12/13, in response to
agonist binding. Accumulating evidence suggests that GPCRs can also initiate b-arrestin-
dependent, G protein-independent signaling. Thus, the physiological outcome of
activating a certain GPCR in a particular tissue may also be modulated by b-arrestin-
dependent, but G protein-independent signaling pathways. In this review, we will focus on
the role of G protein- and b-arrestin-dependent signaling pathways in the development of
obesity and T2D-related metabolic disorders.
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INTRODUCTION

Type 2 diabetes (T2D) is a complex, heterogeneous disease afflicting an increasing proportion of the
population. In 2018, around 8.2% of the United States population had T2D (1). Insulin resistance is
key to the pathogenesis of T2D, and obesity is the most common cause of insulin resistance in
humans (2). As the worldwide prevalence of obesity is rising to epidemic proportions, a parallel
epidemic of T2D is eminent (3). In most individuals, insulin resistance can be compensated by
pancreatic b-cells through hyperinsulinemia. However, eventually b-cell dysfunction emerges and is
characterized by a decrease in b-cell mass, as well as poor ability of b-cells to correctly secrete insulin
in response to glucose. In this context, hyperinsulinemia is no longer able to compensate resulting in
hyperglycemia and the development of T2D (2, 4, 5). Therefore, insulin resistance and lower insulin
secretion are the two coexisting pathophysiological markers in most patients with T2D (2, 4, 5).

G protein-coupled receptors (GPCRs) regulate virtually all metabolic processes, including glucose
and energy homeostasis. In this review, we focus on GPCRs that function in metabolic disorders,
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particularly in T2D and obesity-related diseases. Several
endogenous ligands such as free fatty acids and their receptors
(e.g., GPR40, GPR41, GPR43, GPR84, GPR119, and GPR120)
have been extensively studied in the regulation of insulin secretion,
insulin sensitization, b-cell expansion, and glucose homeostasis
(Figure 1 and Table 1). Concomitantly, drugs that target these
GPCRs in metabolic tissues have emerged as attractive T2D
therapeutic targets as well (47). Thus, this review will discuss
GPCRs and their signaling pathways (G protein-dependent and/or
b-arrestin-dependent) that can be targeted pharmacologically to
treat T2D by improving insulin sensitivity (Figures 1 and 2).
GPCR SIGNALING PATHWAYS
IN METABOLISM

G Protein-Dependent Mechanisms
GPCRs are the most common target of therapeutic drugs today.
These seven transmembrane receptors (7TMRs) are synthesized,
Frontiers in Endocrinology | www.frontiersin.org 2
folded, and assembled in the endoplasmic reticulum, packed in
vesicles, and transported to the plasma membrane (48). Upon
binding to its cognitive ligands, GPCRs undergo a conformational
change, which is transmitted to the cytoplasmic portion to couple
with a heterotrimer (a, b, and g subunits) of GTP-binding protein
(G proteins) (49). GPCRs typically couple into a specific G
protein such as Gs, Gi, Gq/11, or G12/13. Coupling to Gs

stimulates adenylate cyclase (AC) to increase cAMP levels,
while coupling to Gi inhibits adenylate cyclase. Gq/11 activation
simulates phospholipase C (PLC) to hydrolyze membrane
phospholipids to release inositol 1,4,5,-triphosphate (IP3) and
diacylglycerols (DAGs), which then leads to increased
intracellular calcium concentrations. Gq/11 can also lead to PI3K
and AKT activation (49–51). Following G protein activation, a
family of G protein-coupled receptor kinases (GRKs) can
phosphorylate the cytoplasmic domain of the GPCR, which
recruits b-arrestin adapter molecule. Once recruited to the
GPCR, b-arrestin can facilitate internalization of the receptor or
propagate a separate signaling cascade mediating distinct
biological effects.
FIGURE 1 | Expression and function of various GPCRs in metabolic tissues. Various GPCRs target insulin resistance, obesity, and T2D-related pathophysiology in
the metabolic tissues. KA, kynurenic acid; LCFA, long-chain fatty acid; SCFA, short-chain fatty acid; OEA, oleylethanolamide; PUFA, polyunsaturated fatty acid; CCK,
cholecystokinin; GLP-1, glucagon-like peptide 1; GIP, gastric inhibitory polypeptide.
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TABLE 1 | Selection of GPCRs and their endogenous agonists act as signaling molecules.

GPCR Endogenous ligands Expression and metabolic effects G-protein/b-arrestin signaling Refs.

GPR35 KA; 2-acyl-LPA Immune cells: anti-inflammatory Gi; G12/13 (6–9)
Enteroendocrine cells: ↑ CCK secretion
CNS: neuronal excitability and nociception
Adipocytes: ↑ lipolysis/energy expenditure

GPR40 LCFAs Endocrine pancreas: ↑ insulin secretion Gq/11; b-arrestin2 (10–14)
Enteroendocrine cells: ↑ GLP-1 and GIP secretion

GPR41 SCFAs (acetate, propionate, butyrate) Immune cells: anti-inflammatory Gi/o; Gbg; b-arrestin2 (15–20)
Enteroendocrine cells: ↑ GLP-1 secretion
Endocrine pancreas: ↓ insulin secretion

GPR43 SCFAs (acetate, propionate, butyrate) Immune cells: anti-inflammatory Gi/o; Gaq; b-arrestin2 (21–25)
Adipocytes: ↓ lipolysis
Enteroendocrine cells: ↑ GLP-1 secretion
Endocrine pancreas: ↑ insulin secretion

GPR81 Lactate Adipocytes: ↓ lipolysis Gi/o; b-arrestin2 (26–33)
Ghrelin cells: ↓ Ghrelin secretion
Immune cells: anti-inflammatory

GPR119 OEA; LPL; 2-MAG Endocrine pancreas: ↑ insulin and glucagon;
Enteroendocrine cells: ↑ GLP-1 and GIP secretion

Gs; b-arrestin2 (34–40)

GPR120 PUFAs (w3-FAs; w6-FAs) Immune cells: anti-inflammatory Gi/o; Gq/11 b-arrestin2 (41–46)
Endocrine pancreas: ↓ SST secretion;
Stomach: ↓ ghrelin and SST secretion;
Adipocytes: ↑ insulin mediated glucose uptake
Frontiers in End
ocrinology | www.frontiersin.org
 3
 August 2021 | Volume 12 | Article
KA, kynurenic acid; LPL, lysophosphatidic acid; LCFAs, long-chain fatty acids; SCFAs, short-chain fatty acids; OEA, oleylethanolamide; LPL, lysophospholipid; 2-MAG, 2-monoacyl-
glycerol; PUFAs, polyunsaturated fatty acids; CCK, cholecystokinin; CNS, central nervous system; GLP-1, glucagon-like peptide 1; GIP, gastric inhibitory polypeptide; SST, somatostatin.
↑ indicates ‘increased’, ↓ indicates ‘decreased’.a
A B C

FIGURE 2 | The concept of GPCR signaling: biased signaling. (A) G protein-biased agonist. Biased agonists selectively activate the GPCR-dependent signaling
pathway. Previous studies demonstrate that sustained G protein-mediated signaling can affect cellular response through second messenger activation. (B) b-Arrestin
biased agonist. Biased agonists selectively activate the b-arrestin-dependent signaling pathway. The b-arrestin-mediated signaling leads to distinct physiological
outcomes. (C) Balanced agonist. Balanced agonists activate both the G protein- and b-arrestin-dependent signaling pathway.
715877
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G Protein-Independent/b-Arrestin-
Dependent Mechanisms
b-Arrestin1 (arrestin 2) and b-arrestin2 (arrestin 3) are
ubiquitously expressed cytosolic adaptor proteins that were
originally discovered for their inhibitory roles in GPCR
signaling via the G protein-mediated signaling pathway (52).
b-Arrestin1 and 2 share ~80% amino acid sequence identity and
highly conserved structural features, but present unique, as well
as shared roles in GPCR signaling and regulation (53). In
response to receptor activation, b-arrestins can act as adaptor
proteins to trigger the removal of activated GPCRs from the cell
surface via clathrin-coated pits (54). This ability of b-arrestin1
and b-arrestin2 to terminate GPCR signaling through
internalization is known as their classical or canonical actions
(54, 55). While receptor desensitization requires b-arrestin
interaction with activated GPCRs, b-arrestins can also
transduce intracellular signaling as an adaptor protein (56, 57).
For example, b-arrestins have been shown to form signaling
scaffolds for mitogen-activated protein kinases (MAPKs) such as
the extracellular signaling kinases (ERKs) and c-Jun N-terminal
kinase 3 (JNK3) on endosomes with internalized GPCRs.
Subsequently, b-arrestins have been known to promote some
of these pathways even when the G protein activity is disabled.
The finding that b-arrestins can mediate the G protein-
independent signaling pathway of GPCRs led to the discovery
that the two signaling pathways are pharmacologically distinct.
In other words, it is possible to identify agonists that can
selectively activate either G protein-dependent or b-arrestin-
dependent signaling. Such agonists, which can selectively activate
one or the other signaling pathway, are termed “biased agonists,”
and this phenomenon of selective activation is termed “biased
agonism” (58). Although “biased agonism” is often used in a
sense to refer to “b-arrestin-biased agonism” in GPCR signaling
(59, 60), it generally describes the disparity of the efficacies of
agonists in activating signals mediated by different downstream
effectors, for example, different G protein isoforms, G protein
versus b-arrestin, or biases from many other signaling pathways
(61). In some cases, the biased agonist could act as an antagonist
or an inverse agonist for G protein-dependent signaling but as an
agonist for b-arrestin-dependent signaling in a single GPCR (62,
63). Unlike G protein-mediated signaling pathways, which are
transient and rapid, the b-arrestin-mediated pathway is often
persistent and slow (58, 64, 65).

GPCRs in Metabolic Tissues and Cells
A number of GPCRs have been extensively studied in metabolic
tissues (i.e., white and brown adipose tissue, gut, liver, and
pancreatic b-cells), which are shown to modulate metabolic
response such as insulin secretion, glucose homeostasis, as well
as energy expenditure and more (41, 47). Certain GPCRs play
important roles in improving inflammation and insulin response
in adipose tissue. Given their pleiotropic effects, GPCRs in white
adipose tissue (WAT) and brown adipose tissue (BAT) are
potential targets for the treatment of metabolic diseases (66–
68). GPCRs are also involved in the regulation of insulin
Frontiers in Endocrinology | www.frontiersin.org 4
secretion. Although the molecular mechanisms of islet GPCR
remain to be elucidated, functional studies of the b-cells have
shown that activation of GPCRs can modulate b-cell signaling
through alterations in intracellular levels of cAMP, IP3, and Ca

2+,
as well as in protein phosphorylation and acylation (23, 48, 69,
70). Such alterations modulate insulin secretion, indicating that
b-cell GPCRs are promising targets for the development of
antidiabetic therapeutics. Additionally, some GPCRs are
abundantly expressed in macrophages and regulate diverse
macrophage functions, including cell–cell contact, survival,
chemotaxis, and the activation of inflammatory mediator
production (42). These macrophage-enriched GPCRs are also
implicated in metabolic dysfunction related to obesity. In fact,
their agonists may interact with components of multiple
pathways in macrophages to modulate signaling crosstalk with
metabolic tissues, coordinating a precise and appropriate cellular
response in order to improve the insulin signaling and other
obesity-related metabolic disorders.

The following sections will discuss the role of GPCR signaling
in key metabolic tissues (Table 1).

GPR35
GPR35 is a class A (rhodopsin-like) GPCR identified in 1998
(71). It is expressed in various tissues, such as central and
peripheral nervous tissues, the gastrointestinal tract (GI), and
lymphoid tissues (72–74). In the nervous tissues, several
investigators have suggested that GPR35 activation regulates
neuronal excitability, synaptic release (6), and nociception (73).
In the GI tract, GPR35 has been linked to the development of
gastric cancer (74), but it also actively modulates energy balance
through the secretion of peptide hormones, such as
cholecystokinin (CCK). GPR35 is coexpressed with the CCK1
receptor and the proton sensing receptors in GI vagal afferents
neurons, suggesting that it may be part of the gut–brain signal
axis that regulates energy balance (75).

The endogenous ligand for GPR35 has remained controversial.
Kynurenic acid (KYNA), a tryptophan metabolite, was first
proposed as a potential ligand candidate (72, 76). However, even
at very high concentrations, KYNA seems to be almost inactive on
human GPR35 (7). 2-Acyl lysophosphatidic acid is another
endogenous ligand for GPR35. Oka et al. described that 2-acyl
lysophosphatidic acid induces Ca2+ response, activates RhoA,
increases the phosphorylation of ERKs, and also triggers the
internalization of GPR35 in GPR35-expressing HEK293 cells
(7). Additionally, the chemokine CXCL17 has also been
proposed as a GPR35 endogenous agonist (8); however,
subsequent studies by other teams (77, 78) have failed to
support this study. Thus, despite the significant efforts to
identify the real endogenous activator(s) for GPR35, GPR35
remains as a liganded orphan receptor.

Although the search for the selective and sensitive GPR35
ligands is underway, there are a number of studies to characterize
the metabolic function of GPR35 in animal models. Agudelo
et al. have shown that KYNA alleviates metabolic alterations
triggered by high fat diet (HFD)-feeding, as it reduced weight
August 2021 | Volume 12 | Article 715877
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gain, improved glucose tolerance, and remarkably reduced
circulating TG levels. These effects of KYNA were associated
with increased expression of adipose tissue thermogenic genes,
specifically the expression of peroxisome proliferator-activated
receptor-g coactivator 1a (PGC-1a) in adipocytes. Interestingly,
the effects of KYNA are lost in GPR35 KO mice, which are more
susceptible to the effects of HFD-feeding, gaining more weight,
developing glucose intolerance, and showing reduced browning
of the subcutaneous adipose tissue (9). These findings identify a
newmetabolic role of GPR35 that can potentially be exploited for
the treatment of obesity-related metabolic disorders and T2D.

GPR40
G protein‐coupled receptor 40 (GPR40), or free fatty acid
receptor 1 (FFAR1), is found in pancreatic islets, being
particularly enriched in the pancreatic b-cells (Figure 1).
GPR40 can be activated by medium‐ to long‐chain free fatty
acids (FFAs) (76, 79). Activation of GPR40 by FFAs or synthetic
agonists enhances insulin secretion (10–12), partly through the
amplification of intracellular calcium signaling in a glucose‐
dependent manner (11, 12). GPR40 couples to the Gq/11,
leading to the formation of IP3 and increasing intracellular
calcium. Although enhancement of glucose-stimulated insulin
secretion (GSIS) in b-cells requires extracellular calcium
signaling (79), GPR40 stimulation increases intracellular
calcium, which is dependent on glucose levels (12) and is
mediated through the activation of PLC and an L-type Ca2+

channel (80).
GPR40-mediated signal transduction is known to be

primarily through G protein-dependent mechanisms (10, 12).
However, GPR40 can also activate the functionally distinct G
protein-independent, but b-arrestins-dependent signaling
pathway (13). The GPR40–b-arrestin2-mediated signaling axis
is functionally linked to insulin secretion (14). Further studies
with various GPR40 agonists’ activation indicate that G protein-
and b-arrestin-biased signaling can be differentially modulated
by different ligands, thus eliciting ligand-specific responses
(biased agonism; Figure 2). While GPR40 agonists, palmitic
acid, and oleic acid act through Gq/11-mediated mechanisms, the
synthetic agonist TAK-875 can act as a b-arrestin2-biased
agonist, engaging b-arrestin2-dependent signaling to induce
the insulinotropic activity of GPR40 (13). The biased GPR40
activation has shown a promising potential as a therapeutic
target to enhance insulin secretion in T2D (79), but phase III
clinical trials with TAK-875 were recently terminated due to
signs of liver toxicity in patients (81). Therefore, therapies based
on GPR40 agonism provide an attractive alternative in the
discovery of antidiabetic drugs, but further studies are needed
to determine if potential side effects induced by this approach
can be avoided.

GPR41
GPR41, also known as free fatty acid receptor 3 (FFA3), is
expressed in adipose tissue, pancreas, spleen, lymph nodes,
bone marrow, and peripheral blood mononuclear cells
including monocytes (15–17). GPR41 and GPR43 (described in
Frontiers in Endocrinology | www.frontiersin.org 5
the next section) are activated by short-chain fatty acids (SCFAs)
such as acetate, propionate, and butyrate, which are produced
during dietary fiber fermentation by gut resident bacteria (76).
Despite similarities in the receptor sequence, KO mice studies
revealed contradictory results about the effects of GPR41 and/or
GPR43 loss-of-function on metabolism (18, 19, 21–23, 69, 82).
Those studies indicated opposite effects of the two SCFA sensing
GPCRs on insulin secretion. GPR41 was found to inhibit
glucose-dependent insulin secretion (69), while GPR43 was
reported to potentiate insulin secretion (19, 23). Therefore, the
effects of SCFAs on insulin secretion seem to be fine-tuned by the
balance between GPR41 and GPR43 expression and activation.
However, high selective agonists and antagonists for GPR41 and
43, as well as tissue-specific GPR41 and/or GPR43 KO mice, are
required to fully elucidate the involvement of these receptors in
SCFA-mediated effects. Since loss of GPR41 caused decreased
GPR43 expression (83) and dual GPR41 and GPR43 KO mice
exhibited higher insulin secretion and improved glucose
tolerance, determination of specific function of each receptor
in the regulation of insulin secretion is complex (84).

Both SCFA receptors, GPR41 and GPR43, seem to have a
preference for Gi/o signaling, resulting in the inhibition of AC
and the reduction in cAMP production (16, 19). In pancreatic
islets, the activation of GPR41 by its endogenous ligand,
propionate, inhibited the glucose-dependent insulin secretion
through the Gai/o pathway (19). However, other G protein-
dependent pathways may also be triggered by GPR41 activation,
as it was observed that SCFAs and ketone bodies induced
GPR41-mediated activation of sympathetic neurons through
Gbg-PLCb-MAPK signaling, stimulating body energy
expenditure and helping to maintain metabolic homeostasis
(18). The role of b-arrestin signaling by GPR41 and GPR43
activation is not clear; however, in monocytes, it was described
that GPR41 and GPR43 form a heteromer, which, in addition
to enhancing Ca2+ signaling, also induced b-arrestin-2
recruitment (20).

Although promising, together these findings show how
essential future studies are in order to more clearly define the
role and mechanisms of GPR41 in insulin secretion, as well as the
potential druggability of its agonists/antagonists to improve T2D
and obesity-related metabolic abnormalities.

GPR43
G protein‐coupled receptor 43 (GPR43), also known as free fatty
acid receptor 2 (FFA2), has been reported to be present in cells of
the distal ileum, colon, and adipose tissue, with the highest
expression found in immune cells such as monocytes and
neutrophils (15, 16, 85). GPR43 appears to play a role during
inflammation, as immune challenges such as LPS, TNFa, or
granulocyte-macrophage colony stimulating factor (GM-CSF)
were found to raise GPR43 transcript levels in human monocytes
(86, 87). Although GPR43 was not identified in the human
adipose tissue (17), GPR43 inhibits lipolysis in mouse
adipocytes (21). Adipocytes treated with GPR43 natural
ligands, acetate and propionate, exhibit a reduction in lipolytic
activity. Since this reduction in the lipolytic activity was
August 2021 | Volume 12 | Article 715877
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abolished in adipocytes isolated from GPR43 KO mice, it seems
to be the result of GPR43 activation (21). In addition to higher
lipolysis and higher energy expenditure, deletion of GPR43 was
also reported to improve the glucose homeostasis in obesity, as
HFD-fed GPR43 KO mice exhibited lower body fat mass and
increased insulin sensitivity (22). Despite the beneficial effects of
the deletion of GPR43 in adipocytes, HFD-fed GPR43 KO mice
exhibited dysfunctional b-cells, which showed reduced cell mass
and lower expression of b-cell differentiation genes. Those
abnormalities blunted the insulin secretion in GPR43 KO mice
(23, 24). On the other hand, the treatment with acetate,
endogenous GPR43 agonist, improved insulin secretion in
mouse but not in human islets (23, 24).

It has been shown that acetate and synthetic GPR43 agonists
can differently modulate GPR43 activation via coupling to
multiple G protein pathways in mouse and human islets (69).
PA ((S)-2-(4-chlorophenyl)-3,3-dimethyl-N-(5-phenylthiazol-2-
yl)butanamide), a synthetic GPR43 agonist, potentiated insulin
secretion in isolated murine islets, human islets, and Min6 cells
in vitro by increasing intracellular IP3 and Ca2+ levels in a
GPR43-, Gq-, and PLC-dependent manner (23). However,
another GPR43 synthetic agonist, 4-CMTB (4-Chloro-a-(1-
methylethyl)-N-2-thiazolyl-benzeneacetamide), invariably
inhibited GSIS in human pseudoislets, contrary to mouse islets,
where it augmented GSIS (88). This finding that mouse and
human islets responded differently to acetate and GPR43
agonists in GSIS assay will require close attention in future
studies, since GPR43 is considered as a potential T2D target.

It has been proposed that b-arrestin2-mediated signaling can
also be activated by GPR43 agonists, causing further inhibition of
NF-kB and downregulation of its inflammatory gene targets (25).
However, this is the only study where GPR43 and b-arrestin2
internalization was triggered by PA (25). Therefore, the idea of
GPR43 biased agonism might be plausible, but more studies are
necessary to verify its potential druggability for T2D and obesity-
related metabolic disorders.

GPR81
GPR81 is a member of the hydroxyl-carboxylic acid receptor
family. GPR81 is highly expressed in adipose tissue but also found
in kidney, skeletal muscle, and liver (26, 89). Lactate is an
endogenous ligand for GPR81. In adipocytes, the activation of
GPR81 inhibits lipolysis by decreased cAMP and phosphorylation
of PKA, which consequently reduces the activity of the hormone-
sensitive lipase (27–29). GPR81 stimulated by lactate decreases
intracellular cAMP and lipolysis, which was also found to work
synergistically with insulin (90). In fact, Ahmed et al. observed that
lactate and GPR81 unexpectedly functioned in an autocrine and
paracrine loop tomediate insulin-induced antilipolytic effects (90).
Additionally, GPR81 might also be linked to obesity, since HFD-
fed GPR81 KO mice exhibited lower weight gain (90).

Obesity is also associated with increased inflammation, and
several studies observed that GPR81 plays a role in inflammation.
GPR81 expression in adipocytes and endothelial cells is reduced
under inflammatory conditions (30, 31). Similarly, GPR81
expression is significantly decreased in the white adipose tissue of
Frontiers in Endocrinology | www.frontiersin.org 6
HFD-fed mice (91), as well as in adipocytes of ob/ob mice, an
animal model of T2D characterized by high inflammation (30).
Despite the clear link between inflammation and GPR81 function
in the adipose tissue, the effects of GPR81 in macrophages and
other immune cells are not fully understood. There are several
reports that the expression of GPR81 in immune cells promote
downregulation of the innate immune response (26, 32, 33). Hoque
et al. observed that the immunosuppressive function of GPR81 was
attributed to the downregulation of TLR- and/or NLRP3-mediated
signaling (33). This GPR81-stimulated reduction of the
inflammatory responses in macrophages/monocytes seems to be
due to downstream signaling of GPR81 and b-arrestin2 and not
due to a reduction in cAMP (G protein-dependent) (33). The exact
mechanism for how GPR81 and b-arrestin2 counteract the NLRP3
and TLR pathways is currently unknown and will require further
studies. Given the strong association between inflammation and
obesity-related metabolic dysfunction, GPR81 biased agonism
might be a valuable drug therapy for T2D and needs to be
further investigated.

GPR119
GPR119 is a Gs-coupled receptor that is expressed in pancreatic
b-cells and gastrointestinal enteroendrocrine cells (34). GPR119
directly leads to an increase in insulin secretion in b-cells and
promotes the release of both glucagon-like peptide-1 (GLP1) and
gastric inhibitory polypeptide (GIP) in enteroendocrine cells
(34–36). Thus, GPR119 stimulation can augment insulin
secretion both by direct effects on b-cells and indirectly
through GLP1 (34–36). GPR119 couples to Gs in response to
several lipid-based agonists, with highly constitutive activity.
GPR119 was originally described as a receptor for N-
acylethanolamines, such as oleylethanolamide (OEA), which
are generated locally in enterocytes (92). Lysophospholipids
(LPL), another known class of endogenous GPR119 ligands,
are directly absorbed from the diet or generated by catalysis of
endogenous phospholipids (93). 2-Monoacylglycerols (2-
MAGs), generated in high amounts during intestinal digestion
of triglycerides, also bind and activate GPR119 (36). These
findings illustrate that the most effective endogenous, fat-
derived ligand for GPR119 is still ill defined, with OEA, LPL,
or 2-monoacylglycerols being potential candidates (36, 76).
Despite the debate about potential agonists, GPR119 signaling
through Gs is well established, inducing cAMP accumulation
and/or downstream activation of CREB (cAMP response
element binding protein) in response to both natural ligands
and synthetic GPR119 agonists (34, 37–39). GPR119 activation
has also been proposed to induce ligand-mediated calcium
release (94).

G protein-independent signaling via b-arrestin recruitment
has only been sparsely described in the GPR119-mediated
signaling pathway (40, 95). Hassing et al. described that
GPR119 activation by OEA can trigger a b-arrestin biased
signaling (40). Given the effects of GPR119 in b-cells (34–36),
more studies are necessary to understand the effects of GPR119
biased agonism and investigate whether it might be plausible to
stimulate the insulin release and treat T2D.
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GPR120
GPR120 (a.k.a. free fatty acid receptor 4 (FFA4)) is the most
abundant one among free fatty acid receptors in the mouse
adipose tissue (17); however, GPR120 is also found in the
pancreas, where expression is suggested to be restricted to the
d-cells (96), in lung (97), and in immune cells, specifically
macrophages (41) (Figure 1). GPR120 is highly expressed in
different types of macrophages (monocytes, Kupffer cells in the
liver, osteoclasts in the bone, resident macrophages in the lung)
and plays an important role in the regulation of inflammation
(42). GPR120 is described as a receptor for omega-3
polyunsaturated fatty acids (w3-FAs) (76), the activation of
which reduces adipose tissue inflammation and protects
against global insulin resistance (41, 43). The pathways
coupled to GPR120 stimulation diverge between G protein-
and b-arrestin-dependent pathways (98) and are critical for the
regulation of metabolic or inflammatory processes (41). We and
others have shown that GPR120 effectively responds to w3-FAs,
and the activation of GPR120 stimulates the PI3K/Akt pathway
triggering GLUT4 translocation to the cell membrane and
increasing glucose uptake in adipocytes by a Gq/11-dependent
mechanism, not by the b-arrestin-dependent pathway (41). In
addition, Paschoal et al. showed that GPR120 agonist stimulation
in adipocytes displayed biphasic ERK phosphorylation with G
protein-mediated acute phase of ERK activation followed by a
steady-state, b-arrestin-mediated ERK signaling pathway (44).

Although GPR120 stimulation leads to both Gq/11 and b-
arrestin-mediated pathway activation, it has been shown that the
G protein-independent, b-arrestin2-dependent signaling pathway
is responsible for the GPR120-mediated anti-inflammatory effects
in macrophages (43). The activation of GPR120 signaling pathways
regulate the macrophage phenotypic switch, influencing their
response to inflammation and ability to migrate to other
tissues (43).

Mechanistically, it has been shown that GPR120 activation
and concomitant recruitment of b-arrestin-2 promote further
interactions between b-arrestin-2 and TAB-1. This receptor
mediated b-arrestin-2/TAB-1 interaction is suggested to
prevent the formation of a TAB-1/TAK-1 (transforming
growth factor kinase) complex, blocking the subsequent
signaling that results in the activation of inflammatory
responses (41, 43). b-Arrestin-2 pull-down experiments
demonstrated the physical interaction between b-arrestin-2,
GPR120, and TAB-1 in macrophages after stimulation with
DHA or DHA plus LPS, respectively (41). Similar results have
been reported using a synthetic agonist of GPR120 to replace the
fatty acid: compound A (cpdA) (41). This molecule produced
anti-inflammatory effects in macrophages in both in vitro and
in vivo models (43). Treatment of primary macrophages with
cpdA in conjunction with LPS inhibited the phosphorylation of
many of the previously discussed phospho-regulated kinases that
are typically activated in inflammatory processes (e.g., p-IKK, p-
JNK, pTAK-1) (43).

The functions of GPR120 in the adipose tissue can be linked
to pathological ramifications of obesity (41, 43, 99, 100); thus,
GPR120 as a target for the development of novel compounds to
Frontiers in Endocrinology | www.frontiersin.org 7
treat metabolic syndrome becomes a very promising approach.
However, efforts to identify or generate GPR120 biased agonists
are still ongoing (101).

GLP-1R
The glucagon-like peptide-1 receptor (GLP-1R) is a GPCR
predominantly expressed in the b-cells, intestine, heart, breast,
and brain (102). GLP-1R mediates a number of physiological
effects, and due to its functions, the GLP-1R is a major
therapeutic target for treatment of type 2 diabetes and obesity.
It increases insulin secretion by direct stimulation of gene
expression, synthesis, and secretion of insulin from pancreatic
b-cells; it enhances b-cell mass by increasing neogenesis and
proliferation, while decreasing apoptosis; it suppresses glucagon
secretion and inhibits gastric emptying; and extra-pancreatically
GLP-1 also acts at a range of sites such as the nervous system,
where it signals satiety, reducing food intake (103–105). A large
number of GLP1-based therapeutics are already well established,
and the scientific basis underlying these therapeutic approaches
is quite advanced; therefore, this subject will only be
briefly reviewed.

The GLP-1R physiological effects rely on downstream
signaling pathways mediated by GLP-1 interaction. This
receptor activates Gas proteins enhancing the formation of
cAMP; however, it can pleiotropically interact with multiple
other G proteins including Gi/o and Gq proteins, leading to the
activation of downstream signaling pathways that include the
mobilization of intracellular calcium and the phosphorylation
of mitogen activated protein kinases such as extracellular
regulated kinases 1/2 (ERK1/2), protein kinase B (Akt/PKB),
phosphoinositide 3 (PI3) kinase, and p38, among others (102,
106). In addition to signaling viaG proteins, the GLP-1R can also
promote b-arrestin-1 biased, non-G protein-mediated cellular
signaling (47, 102).

Several groups have reported GLP-1R biased agonism; for
instance, the drugs Oxyntomodulin and exendin are GLP-1R
biased agonists that recruit b-arrestin in a higher potency than
G protein-mediated cAMP and ERK1/2 activation (102, 107,
108). In addition to direct evidence of biased agonism by
different peptide ligands, there is also some evidence that the
kinetics of GLP-1R internalization and recycling mediated by
distinct peptides may contribute to biased agonism profiles. The
potencies of GLP-1 and exendin-induced internalization are 10-
fold higher than that of liraglutide (107). With emerging
evidence that internalized GLP-1Rs can continue to signal
inside the cell and that spatial-temporal control of signaling
pathways promotes distinct physiological functions, this ability
of different ligands to promote different kinetics of
internalization and recycling of the GLP-1R may contribute to
the observed ligand-biased agonism (107). Taken together, all
these studies indicate that biased signaling occurs at this
receptor, and this may have the potential to be exploited in
drug development.

Together, these findings highlight the current lack in
understanding the role of the biased G protein- and/or b-
arrestin-mediated mechanism in GPCR signaling, even for
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well-known GPCRs. Therefore, future studies that identify and
synthesize biased agonists for each GPCR, as well as explore the
biased signaling mechanism in target tissues, are imperative
(Figure 2). In the next section, we will discuss promising
approaches that b-arrestin biased activation may uniquely
represent to treat T2D and obesity-related comorbidities.
ROLE OF b-ARRESTINS IN METABOLISM

Among four members of the arrestin family, b-arrestin1 (arrestin
2) and b-arrestin2 (arrestin-3) are widely expressed in different
tissues and implicated in many GPCR signaling pathways to
regulate cellular responses. b-Arrestin signaling serves multiple
purposes; it can modulate the activity of several cellular signaling
proteins such as PI3K and AKT (109), c-Src, MAPKs, cAMP
phosphodiesterase, calmodulin, protein phosphatases, ubiquitin
ligases, deubiquitinating enzymes, and many others (54, 110). It
is still unclear whether these noncanonical b-arrestin functions
require prior recruitment by GPCRs, as the main function of
these proteins is to terminate GPCR cellular pathways. Since b-
arrestins can act independently as signaling molecules, therefore,
it is important to understand their independent role in metabolic
homeostasis (111). An increasing number of studies have
focused on the role of b-arrestins in metabolic tissues, such as
white and brown adipose tissue, liver, and the pancreatic b cell.
Table 2 and the following sections will provide new insights for
the role of b-arrestins in metabolic tissues, regardless of G
protein-dependent or independent signaling.

Adipocytes
It is known that white adipocytes play essential roles in storing
extra lipids as energy and releasing fatty acids as resources. In
contrast, mutilocular brown adipocytes oxidize fatty acids and
other substrates to produce heat for maintaining body
temperature in mammals. During the past few years, many
laboratories have used mouse genetics to identify the role of b-
arrestin1 and 2 in adipocyte function and whole-body glucose
homeostasis (118, 119). Pydi et al. (120) reported that selectively
lacked b-arrestin1 in adipocyte (b-arr1 AKO) mice on HFD are
glucose intolerance and insulin resistance (Table 2). On the other
hand, mice overexpressing b-arrestin1 in adipocytes (b-arr1 AOE)
were protected against HFD-induced metabolic deficits (120). In
contrast to b-arrestin1, mice lacking b-arrestin2 in adipocytes
(barr2-AKO) display improved metabolic phenotypes (118).
These findings convincingly identify that b-arrestin1 and 2 not
only are required for the maintenance of glucose homeostasis in
their own right but also strongly suggest that strategies aiming to
enhance b-arrestin activity in adipocytes may be beneficial for the
treatment of T2D and obesity-related metabolic disorders.

b-Cells
Insulin resistance is a key etiological factor in the development of
T2D. It can be triggered by desensitization of insulin signaling at
several steps (2). Studies have demonstrated that b-arrestin1 can
function as a nodal point for heterologous desensitization and
crosstalk between receptor tyrosine kinases (RTKs) and GPCR
Frontiers in Endocrinology | www.frontiersin.org 8
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signaling pathways (121, 122). b-Arrestin1 has been showed to
modulate ubiquitination and degradation of one major substrate
in the insulin cascade, the RTK, and insulin receptor substrate
(IRS) (122). b-Arrestin1 competes with IRS proteins for
ubiquitination and degradation, such that b-arrestin1 deficiency
accelerates insulin-induced IRS degradation, exacerbating cellular
insulin resistance, whereas overexpression of b-arrestin1 restrains
this process, leading to increased insulin signaling downstream of
IRS-1 and improving cellular insulin sensitivity (122).

Pancreatic b-cell specific b-arrestin2 KO mice on HFD
(barr2-bKO mice) showed impaired insulin release and glucose
tolerance, whereas the b-cell specific overexpression of b-
arrestin2 mice on HFD (barr2-bOE mice) exhibited improved
GSIS and glucose tolerance compared to HFD-fed control mice
(116). These data indicate that b-arrestin2 act as an important
regulator of b-cell function.

Impaired b-cell function is a major etiological defect
underlying T2D. The failure to maintain compensatory
hyperinsulinemia and the following decrease in plasma insulin
levels is a key cause of hyperglycemia (2, 4, 5). Therapeutic
measures to increase endogenous insulin secretion, and, indeed,
administration of exogenous insulin itself, have been the
cornerstones of T2D treatment for decades. In recent years,
several developments have emerged that focus attention on the
role of b-arrestins as therapeutic targets to enhance b-cell
function and lower glucose levels.

Agouti-Related Peptide (AgRP) Neurons
Different areas of brain play key roles in regulating and
maintaining euglycemia. Neuronal subpopulations of the
arcuate nucleus (ARC) of the hypothalamus, which synthesize
and release agouti-related peptide (AgRP), have been studied
extensively in relation to metabolic function (123). Numerous
studies have shown that AgRP neurons play a key role in
regulating food intake and energy homeostasis (124–127).
Recent studies have shown that mice lacking b-arrestin1 in
AgRP neurons on HFD displayed impaired glucose tolerance
and insulin sensitivity accompanied with liver steatosis and
increase in the plasma FFA level (112). Interestingly, they
found that mice with specific deletion of b-arrestin1 in AgRP
neurons (barr1-AgKO) have increased PKA activity in adipose
tissue, resulting in the accumulated lipolysis (112). In contrast, a
mouse model where b-arrestin1 was overexpressed in these
neurons (barr1-AgOE) has significantly improved glucose and
insulin tolerance (112). Collectively, these metabolic phenotypes
may provide a novel way to improve glucose tolerance and
insulin sensitivity in the AgRP neurons through the increased
activation of b-arrestin1. Further studies are necessary to
delineate the importance of GPCR signaling and the
association between b-arrestin1 and related GPCRs in
AgRP neurons.

Hepatocytes
Hepatocytes play a significant role in T2D by controlling lipid
metabolism and whole body glucose homeostasis (57). Insulin
and glucagon are the two major hormones that regulate the
Frontiers in Endocrinology | www.frontiersin.org 9
metabolic function of hepatocytes (128). Many studies focus on
the Gs-coupled glucagon receptor (GCGR) in hepatocytes. The
GCGR can trigger the cAMP/PKA-dependent signaling pathway
to promote gluconeogenesis and glycogen breakdown, thereby
increasing hepatic glucose production (129, 130).

Zhu et al. generated liver (hepatocyte) specific b-arrestin1 and
b-arrestin2 KOmice (barr1-HKO and barr2-HKO) (131). While
barr1-HKO mice did not show any significant difference in
metabolic phenotype compared to the control mice, barr2-
HKO mice displayed impaired glucose tolerance and
hyperglycemia (131). When barr2-HKO mice were treated
with anti-GCGR antibody, the blood glucose level of these
mice was back to the normal level. However, in mice where
hepatocytes overexpressed b-arrestin2 (barr2-HOE), the
opposite metabolic phenotype was observed (131). Consistent
with in vivo studies, they also found that glucagon treatment in
primary hepatocytes isolated from control mice caused the
internalization of the GCGR, whereas this effect was absent in
hepatocytes isolated from barr2-HKO mice (131). Collectively,
both in vivo and in vitro data demonstrate that b-arrestin2 plays
a negative role in GCGR signaling.

Skeletal Muscle
Skeletal muscle is a major insulin target tissue for regulating whole
body glucose homeostasis. Skeletal muscle specific b-arrestin2 KO
mice (barr2-SMKO) on HFD displayed slight improvements of
glucose tolerance and insulin sensitivity (117). More detailed
studies need to be done to illustrate how b-arrestin2 deficiency
in skeletal muscle influences insulin signaling. In summary,
skeletal muscle expressed GPCRs represent promising
therapeutic targets for modulating insulin sensitivity and
treating T2D and obesity-related metabolic disorders.
CONCLUDING REMARKS AND
PERSPECTIVES

GPCRs are uniquely druggable targets that form the basis of
the leading antidiabetic treatments, as evidenced by the large
number of GLP1R/GLP1 therapies currently in use. Additionally,
GPCRs that can influence insulin resistance, b-cell dysfunction,
or both have recently been identified, and preclinical studies hold
great promise. In addition, b-arrestins are crucial regulators of
GPCR signaling. Although aspects of the GPCR/b-arrestin
signaling network had been previously well established, the
novelty of the recent studies highlighted in this review is the
ability of b-arrestins to orchestrate a complex signaling network
with or without GPCR activation that specifically controls
metabolic homeostasis. Studies with b-arrestin KO mice have
provided several key insights into the physiological implications
of b-arrestin-dependent signaling. The multitudes of important
metabolic processes that are regulated by b-arrestins offer new
perspectives for the development of novel classes of therapeutic
agents for the treatment of T2D and obesity-related
pathophysiological conditions. Biased agonists for several
GPCRs present a unique opportunity to explore the
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possibilities of developing a novel class of drugs. Such drugs may
include G protein- or b-arrestin biased agonists that can
interrupt or enhance metabolically relevant interactions of b-
arrestin1 and b-arrestin2 with key signaling molecules. In this
regard, additional preclinical studies are warranted to further
analyze the effect of potential G protein- or b-arrestin biased
signaling machinery to instruct novel therapeutic regimes for the
treatment of metabolic disease.
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