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Botanicals have a long history of medicinal use for a multitude of ailments, and many
modern pharmaceuticals were originally isolated from plants or derived from
phytochemicals. Among these, artemisinin, first isolated from Artemisia annua, is the
foundation for standard anti-malarial therapies. Plants of the genus Artemisia are among
the most common herbal remedies across Asia and Central Europe. The species
Artemisia scoparia (SCOPA) is widely used in traditional folk medicine for various liver
diseases and inflammatory conditions, as well as for infections, fever, pain, cancer, and
diabetes. Modern in vivo and in vitro studies have now investigated SCOPA’s effects on
these pathologies and its ability to mitigate hepatotoxicity, oxidative stress, obesity,
diabetes, and other disease states. This review focuses on the effects of SCOPA that
are particularly relevant to metabolic health. Indeed, in recent years, an ethanolic extract of
SCOPA has been shown to enhance differentiation of cultured adipocytes and to share
some properties of thiazolidinediones (TZDs), a class of insulin-sensitizing agonists of the
adipogenic transcription factor PPARg. In a mouse model of diet-induced obesity, SCOPA
diet supplementation lowered fasting insulin and glucose levels, while inducing
metabolically favorable changes in adipose tissue and liver. These observations are
consistent with many lines of evidence from various tissues and cell types known to
contribute to metabolic homeostasis, including immune cells, hepatocytes, and
pancreatic beta-cells. Compounds belonging to several classes of phytochemicals have
been implicated in these effects, and we provide an overview of these bioactives. The
ongoing global epidemics of obesity and metabolic disease clearly require novel
therapeutic approaches. While the mechanisms involved in SCOPA’s effects on
metabolic, anti-inflammatory, and oxidative stress pathways are not fully characterized,
current data support further investigation of this plant and its bioactives as potential
therapeutic agents in obesity-related metabolic dysfunction and many other conditions.
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INTRODUCTION

Rising obesity rates around the globe are driving an epidemic of
metabolic syndrome (MS) and type 2 diabetes (T2DM), and novel
therapeutic interventions are needed. Because the pathogenesis of
obesity-related metabolic dysfunction is multifactorial and
complex, diverse strategies have been employed to hinder its
development and manifestations, namely stimulating insulin
production in pancreatic beta-cells, inhibiting hepatic glucose
output, reducing glucose reabsorption in the kidney, and
enhancing peripheral glucose uptake and insulin sensitivity (1).
The molecular mechanisms driving these effects include inhibition
of ATP-sensitive potassium channels in pancreatic beta-cells to
stimulate insulin release, activation of the glucagon-like peptide-1
(GLP-1) receptor or inhibition of dipeptidyl peptidase-4 activity to
enhance incretin signaling and lower circulating glucose levels,
and activation of the peroxisome proliferator-activated receptor-
gamma (PPARg) in adipocytes to improve insulin sensitivity in
peripheral tissues (2–5). Type 1 diabetes (T1DM), which
represents only about five percent of diabetes mellitus cases,
results from the progressive destruction of pancreatic beta-cells
and consequent inability to produce insulin. Therefore,
interventions to improve insulin sensitivity are ineffective for
T1DM, and insulin replacement is currently the only glucose-
lowering pharmacological treatment available (6). In addition to
strategies for controlling glycemia, treatment of both T1DM and
T2DM also includes management of diabetic complications such
as kidney disease, cardiovascular disease, and retinopathy.

The first-line medication for T2DM, metformin, is a synthetic
derivative of the phytochemical galegine, first isolated from
Galega officinalis. This plant, also known as French lilac or
goat’s rue, was used medicinally in medieval Europe for many
ailments, including symptoms that are now attributed to T2DM
(7). Metformin reduces hepatic glucose production via
mechanisms that have not been fully elucidated. While it is
known that metformin activates adenosine monophosphate
(AMP)-activated protein kinase (AMPK) in the liver, there is
evidence that several AMPK-independent mechanisms are likely
to be involved in its metabolic impacts (4, 8). These include
inhibition of mitochondrial respiration and of the gluconeogenic
pathway (8–12). In addition, metformin’s glucose-lowering
activity may be partially mediated through effects on the gut
(13–15). Therefore, although metformin has been used clinically
for over half a century, there is still significant debate around its
precise mechanisms of action.

Across the world, plants have been used medicinally for
centuries, and many pharmaceuticals are derived from natural
products. Even now, factors such as availability, cost, or cultural
practices drive the continued use of botanical products as
supplements or alternatives to pharmaceuticals. Although
rigorous and thorough investigation is often lacking, many
plants are currently being screened or studied both in vitro and
in vivo to assess their bioactivities and efficacy. One such plant,
Artemisia scoparia (SCOPA), has a long history of medicinal use
in much of Asia and Central Europe to treat liver diseases,
inflammatory conditions, and diabetes, among other ailments.
The genus Artemisia comprises hundreds of species, some of
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which are among the most widely used medicinal plants across the
world (1, 2). Perhaps the best known product of the genus is the
anti-malarial drug artemisinin, whose isolation from Artemisia
annua was awarded the Nobel Prize for Physiology or Medicine in
2015 (3). Other medicinal species include A. capillaris, A.
absinthum, A. argyi, A. capillaris and A. dracunculus, but there
are many more (4–6). Modern studies have now established that
extracts from SCOPA exert a wide range of effects in many cell
types and animal models. In addition, many individual bioactive
compounds responsible for these effects have been identified. This
review describes the traditional folk medicine uses of SCOPA and
examines what is currently known about its effects in various
animal models and cell types, with a focus on findings relevant to
metabolic health. We also discuss individual compounds in
SCOPA and their wide range of effects, including the potential
to attenuate metabolic dysfunction, particularly in the context of
diet-induced obesity. Although SCOPA has not been studied in
T1DM, some of its reported actions suggest that it may mitigate
diabetic complications in addition to improving glycemic control.
Such effects could be beneficial in T1DM as well as T2DM.

Even in the absence of a fully elucidated mechanism of action,
identifying additional agents, like metformin, from natural
products with therapeutic potential against metabolic
dysfunction is of great value in fighting the growing epidemics
of obesity, MS, and T2DM. Thus, an overarching goal of this
review is to compile and evaluate anecdotal and mechanistic
studies of A. scoparia’s ability to modulate metabolic function.
We also aim to demonstrate the potential of bioactives from A.
scoparia for modern clinical and/or complementary use to
support metabolic health, while highlighting the significant
need for additional studies to evaluate mechanism(s) of action
on a molecular level.
ETHNOPHARMACOLOGY AND
TRADITIONAL MEDICINAL USES OF
A. SCOPARIA

SCOPA is one of the most widely used medicinal plants across
many parts of Asia, and modern ethnobotany studies have
documented its many indications in Afghanistan, Pakistan,
Saudi Arabia, Iran, and China for conditions such as liver,
gallbladder, and digestive disorders; various infectious and
inflammatory diseases; ear pain; cardiovascular conditions; and
diabetes and hyperglycemia (7–33). One example of the
ethnopharmacological documentation of SCOPA is a study
conducted in the Upper Neelum Valley of Pakistan, in which
data collected from interviews were analyzed and individual
plants or medicinal indications were assigned quantitative
ethnobotanical indices. SCOPA was determined to have a high
use value in this population (21). Reported indications and
formulations for SCOPA in traditional folk medicine are
shown in Table 1 and Figure 1. It is notable that many of
these are common to distinct populations in diverse regions.

SCOPA is very prominent in Traditional Chinese Medicine
(TCM), particularly for its hepatoprotective and choleretic effects.
February 2022 | Volume 12 | Article 727061

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Boudreau et al. Health-Promoting Properties of Artemisia scoparia
Its uses are extensively described in the canon of TCM literature
(41–44) and cited in the current Chinese Pharmacopoeia (35).
“Artemisia scopariae herba” (ASH), or “Yinchen”, refers to the
dried aerial parts of SCOPA or of its close relative, Artemisia
Frontiers in Endocrinology | www.frontiersin.org 3
capillaris, with the two plants being used interchangeably for its
preparation. A decoction of Yinchen is the principal constituent of
many TCM formulae, in which ASH is combined with other herbal
products. Importantly, a distinction is made between ASH from
TABLE 1 | Documented indications and geographic locations for traditional uses of A. scoparia.

Medicinal Use Region Plant Part Formulation ROAb Ref(s)

Diabetes/ Hyperglycemia Pakistan/Afghanistan border Root Decoction Oral (10)
Lower Kurram, Pakistan Root (28)
Zhejiang Province, China Root Infusion Oral (23)
Uttarakhand, India Leaves Powder Oral (34)
Shigar Valley, Pakistan Leaves Infusion Oral (32)

Cancer Pakistan/Afghanistan border Root Decoction Oral (10)
China (35)a

Hepatitis, jaundice, liver or gallbladder
disease

Neelum Valley, Pakistan Leaves Infusion Oral (21)
China (35)a

China Aerial parts Decoction Oral (36)
Pakistan/Afghanistan border Root Decoction Oral (10)
Onaizah Province, Saudi Arabia Whole plant Decoction Oral (37)
Zhejiang Province, China Flowers Decoction Oral (23)

Digestion Neelum Valley, Pakistan Leaves Infusion Oral (21)
Hormozgan Province, Iran Leaves Decoction Oral (25)
Ilam Province, Iran Flowers Internal (16)
China (38)
Pakistan (39)
Samahni Valley, Pakistan Leaves, roots Juice, Decoction Oral (27)
Onaizah Province, Saudi Arabia Whole Plant Decoction Oral (37)
Zhejiang Province, China Root Infusion Oral (23)
Swat District, Pakistan Young shoots (19)
Spiti Valley, Western Himalaya, India (20)
Uttarakhand, India Leaves Powder Oral (34)
Gujranwala District, Pakistan Whole plant Powder, roasted Oral (13)

ENT/Dental Pakistan Topical (26, 39)
Ilam Province Iran (Kurd tribe) Flowers Internal (16)
Samahni Valley, Pakistan Leaves, roots Juice, decoction Topical (27)
Onaizah Province, Saudi Arabia Whole plant Decoction Ear drops (37)
Spiti Valley, Western Himalaya, India Leaves, seeds Poultice Topical (20)

Depurative “blood purification” Lower Kurram, Pakistan Roots Decoction Oral (28)
Pakistan Infusion Oral (26, 39)
Samahni Valley, Pakistan Leaves, roots Juice, decoction Oral (27)
Uttarakhand, India Leaves Powder Oral (34)

Fever, microbial or parasitic
infections, snake or scorpion venom

Pakistan (39)
China (38)
Pakistan Whole plant (40)
Zhejiang Province, China Leaves Decoction Oral (23)
Swat District, Pakistan Whole plant Decoction Oral (17)
Swat District, Pakistan Young shoots (19)
Uttarakhand, India Leaves Powder, roasted Oral (34)
Gujranwala District, Pakistan Leaves Topical (13)
Gujranwala District, Pakistan Flowers, shoots Decoction Oral (13)

Burns/wounds/skin/hair Pakistan Twigs Smoke External (26, 39)
Ilam Province, Iran Flowers Internal (16)
Spiti Valley, India Smoke External (20)
Uttarakhand, India Leaves Paste Topical (34)
Gujranwala District, Pakistan Leaves Extract+oil, boiled Topical (13)

Cardiovascular Pakistan Whole plant (40)
China (38)
Onaizah Province, Saudi Arabia Whole plant Decoction Oral (37)
Zhejiang Province, China Roots Infusion Oral (23)

Respiratory Pakistan (39)
Pakistan Whole plant (40)
Zhejiang Province, China Leaves Decoction Oral (23)
Uttarakhand, India Leaves Powder, roasted Oral (34)
February 2022 | Vo
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small Spring seedlings (Mian Yin Chen) and that from flowering
plants in late Summer (Yen Chin Hao), each preferable for treating
distinct sets of ailments (41, 45). Chemical analyses of ASH have
confirmed that its constituents vary greatly depending on the time
of harvest (36, 46). While TCM preparations are derived from the
aerial parts of SCOPA, the roots of the plant are used in Pakistan
(27) and the use of its flowers has been reported in Iran (16).
EFFECTS OF A. SCOPARIA ON
DETERMINANTS OF METABOLIC HEALTH

Metabolically Favorable Effects of
A. scoparia in Experimental Models of
Obesity and Diabetes
As mentioned above, the use of SCOPA in folk medicine for
diabetes and hyperglycemia has been amply documented. A 2016
study found that administration of SCOPA during the second
trimester of pregnancy improved insulin sensitivity, fasting plasma
glucose levels, and circulating adiponectin levels in patients with
gestational diabetes (47). With the exception of that study, SCOPA
has not been evaluated in humans for effects on measures of
metabolic health such as insulin sensitivity, glycemic control, or
cardiovascular risk factors. Likewise, few animal studies have been
conducted to examine SCOPA’s metabolically relevant effects.
However, in a mouse model of diet-induced obesity (DIO) and
insulin resistance, SCOPA administration by gavage or
supplementation of diet was found to improve insulin sensitivity
as measured by homeostatic model assessment for insulin
Frontiers in Endocrinology | www.frontiersin.org 4
resistance (HOMA-IR) or insulin tolerance test (ITT) (48–50).
Circulating levels of triglycerides, free fatty acids (FFAs), glycerol,
and insulin (fasting) were reduced, while adiponectin levels were
increased (49–51). In liver, SCOPA supplementation reduced
hepatic triglyceride and cholesterol content and enhanced
insulin-induced phosphorylation of the signaling proteins insulin
receptor substrate (IRS-1), insulin receptor subunit beta (IRb),
protein kinase B (AKT1), and RAC-beta serine/threonine protein
kinase (AKT2) (50). Moreover, adenosine monophosphate (AMP)-
activated protein kinase (AMPK) activity was enhanced and
expression levels of genes involved in de novo lipogenesis were
reduced by SCOPA in liver, consistent with the observed
improvements in hepatic lipid accumulation (50). SCOPA also
had pronounced effects in adipose tissue (AT), where it was shown
to robustly enhance insulin-induced phosphorylation of AKT
protein in epididymal, but not retroperitoneal or inguinal, white
adipose tissue (WAT) depots (49). Levels of monocyte
chemoattractant protein 1 (MCP-1), an inflammatory cytokine
known to be highly expressed in obesity and insulin resistance,
were also significantly reduced in SCOPA-treated animals (48).

Pro- and Anti-Adipogenic, and
Anti-Lipolytic Effects of A. scoparia
in Adipocytes
As described above, an ethanolic extract of SCOPA has
metabolically favorable effects in a mouse model of DIO,
including improvements in adipose tissue function. This same
extract has been shown to enhance adipogenesis of 3T3-L1 cells,
a widely used model to study adipocyte differentiation, as measured
FIGURE 1 | Traditional uses and observed biological effects of A. scoparia and its constituents. Illustration of the ethnopharmacology of A. scoparia, experimental
models used in the study of its bioactivity, and its principal observed effects in pathophysiological conditions. Center: A photograph of A. scoparia is shown along with a
diagram of the plant parts used in traditional medicine and in modern studies. For use or study of SCOPA, extracts, fractions, or isolated bioactive compounds have been
obtained from its flowers, leaves, stems, roots, and seeds, as well as the whole plant. Left: Traditional folk medicine indications and formulations as documented in
ethnobotanical studies. Right: Modern scientific studies have included numerous model systems, such as humans, rodents, and microorganisms; in vitro studies in
differentiating and mature adipocytes, immune cells, and cancer cells; and cell-free assays of antioxidant or enzymatic activities. Data from scientific studies support some
of the ethnopharmacology claims and reveal additional pathophysiologies that may benefit from use of SCOPA extracts or its isolated bioactive constituents.
February 2022 | Volume 12 | Article 727061
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by both lipid accumulation and adipogenic gene expression (48). A
recent study has revealed that SCOPA can promote adipogenesis in
the absence of 3-isobutyl-1-methylxanthine (MIX), a key
component in the classic adipocyte differentiation cocktail, and
SCOPA significantly induces the expression of several PPARg target
genes, also regulated by MIX, that enhance lipid accumulation
during adipogenesis. These data suggest that SCOPA’s adipogenic
effects are partially mediated by increased PPARg activity (52).
Another research group investigating individual compounds
isolated from a different SCOPA extract reported that 4 of the 19
compounds tested significantly inhibited lipid accumulation in
3T3-L1 cells during differentiation, while other compounds
enhanced adipocyte development (53). In this study, no total or
parent extracts of SCOPA were tested. A third laboratory observed
inhibition of lipid accumulation in 3T3-L1 cells with their crude
SCOPA extract as well (54). These apparent discrepancies illustrate
three great challenges that accompany the study of botanical
extracts: Individual compounds have complex interactions and
often fail to mirror effects observed with the parent extracts;
plants from different geographic regions, grown in different
conditions or harvested at different times of the year may have
very different chemical compositions; and variable extraction
methods across studies make it impossible to confidently
compare results.

Given that obesity drives insulin resistance and diabetes,
interventions to reduce fat mass have been pursued as a means
to counter obesity-associated metabolic disease. Lowering
adiposity through increased energy expenditure or reductions in
food intake can indeed have favorable metabolic effects. However,
adipogenesis is typically impaired, not enhanced, in obese and
insulin resistant states, and limiting adipose tissue expansion in
conditions of positive energy balance by inhibiting adipocyte
development is generally considered detrimental, as it promotes
dyslipidemia and ectopic lipid accumulation (55). This point is
underscored by the fact that drugs such as the thiazolidinediones
(TZDs), which stimulate adipogenesis via PPARg activation, are
potent insulin sensitizers (56). Since TZDs have fallen out of use
in recent years due to significant side effects, efforts are ongoing to
identify natural product partial agonists of PPARg to combat
metabolic syndrome (57–60). Researchers investigating SCOPA
in adipocytes have employed these alternate strategies (inhibition
or promotion of adipogenesis) and have therefore focused on
different bioactivities in SCOPA. It should be noted that unlike
the pro-adipogenic extract described above, SCOPA extracts that
were found to inhibit adipogenesis have not been evaluated in
vivo for effects on insulin sensitivity, lipid metabolism, or
glycemic control.

Obesity and insulin resistance result in abnormally high rates of
lipolysis in the fed state, driven by the impaired action of insulin to
inhibit lipolysis, as well as by the chronic inflammation
characteristic of obese states (61). As mentioned previously,
SCOPA supplementation in the food of high-fat diet-fed mice
lowered circulating FFAs and glycerol, consistent with reduced
lipolysis rates in adipose tissue (62). In cultured adipocytes,
inflammation-associated lipolysis was inhibited in the presence
of this same SCOPA extract, indicating that SCOPA has cell-
Frontiers in Endocrinology | www.frontiersin.org 5
autonomous antilipolytic activity in adipocytes. Interestingly,
lipolysis induced by adrenergic stimulation or unstimulated basal
lipolysis were not altered by SCOPA (62). A different SCOPA
extract has been shown to modestly increase lipolysis in adipocytes
under basal conditions but was not tested in inflammatory
conditions (63). Given that unstimulated lipolysis rates are very
low, this observation may not be relevant in the context of obesity,
where inflammatory cytokines drive high lipolysis rates.

Hepatoprotective Effects of A. scoparia
Liver and gallbladder conditions including jaundice and cholestasis
are among the illnesses most commonly treated with Yinchen (A.
scoparia or A. capillaris). Research aimed at characterizing these
hepatoprotective and choleretic properties has focused mostly on
TCM formulations containing Yinchen in combination with other
herbs, or on individual compounds isolated from Yinchen, rather
than on theArtemisia extracts. However, two studies by Gilani et al.
have demonstrated that SCOPA extract could attenuate liver injury
induced by acetaminophen in mice (64) or by carbon tetrachloride
in rats (65). Hepatic glucose output and lipid metabolism are major
contributors to the regulation of circulating glucose and lipid levels,
and thus liver function is key in preserving metabolic homeostasis.
Likewise, metabolic dysregulation in obesity can lead to ectopic
lipid accumulation in liver and non-alcoholic fatty liver disease
(NAFLD). It is therefore plausible that beneficial effects of SCOPA
in liver could preserve glycemic control and maintain appropriate
circulating lipid levels in conditions of hepatic stress or, conversely,
protect the liver from the deleterious effects of obesity and insulin
resistance. This is supported by the mouse DIO study described
above, in which SCOPA improved insulin sensitivity and reduced
hepatic lipid accumulation (50).

Anti-Inflammatory and Antioxidant Effects
of A. scoparia
Obesity and T2DM are considered inflammatory states.
Infiltration of macrophages and altered resident immune cell
populations in adipose tissue promote inflammation and insulin
resistance (66, 67). Many conditions treated by SCOPA in TCM
or folk medicine have an inflammatory component [(41) and
Table 1], and SCOPA has been shown to have anti-inflammatory
properties in a wide range of conditions, including inhibition of
heat-induced protein denaturation in vitro (68) and reducing
inflammatory cytokine production, cell infiltration, and edema in
carrageenan-induced acute inflammation in rats and mice (69,
70). Similarly, topical application of SCOPA diminished clinical
symptoms, cell infiltration, inflammatory cytokine levels,
caspase-1 activity in lesions, and circulating levels of histamine
in a mouse model of atopic dermatitis (71). Reductions in
markers of adipose tissue inflammation in DIO mice have also
been observed with SCOPA supplementation (48, 49). In
addition, there are abundant data showing anti-inflammatory
actions of SCOPA in cultured cell lines relevant to metabolic
function. In lipopolysaccharide (LPS)-stimulated RAW 246.7
murine macrophages, an ethanolic SCOPA extract, previously
found to attenuate lipolysis and markers of adipose tissue
inflammation, also inhibited the expression of several
February 2022 | Volume 12 | Article 727061
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inflammatory genes (72). In this same cell line, a different
ethanolic extract reduced nitric oxide (NO) production in cells
treated with LPS and interferon gamma (IFNg) (53), while a
methanolic extract from a third source failed to inhibit NO
release from LPS-treated RAW 264.7 cells (63). Although the
reason for this discrepancy cannot be ascertained, the three
studies investigated extracts prepared from different plant
material originating from diverse geographic locations, using
various extraction methods and solvents, and tested at different
doses; one or more of these factors could explain these seemingly
conflicting results. Similar studies were conducted in isolated
bone marrow-derived macrophages (BMDM) from mice, in
which NO, inducible nitric oxide synthase (iNOS), and
inflammatory cytokine levels were all reduced by SCOPA
treatment in stimulated cells (69). Comparable effects of
SCOPA have been observed in the THP-1 human monocyte
cell line, undifferentiated 3T3-L1 murine preadipocytes, and in
the HMC-1 human mast cell line (69, 73). Moreover, reduced
pro-inflammatory NF-kB promoter activation in IL-1b-treated
pancreatic beta-cells, which are also vulnerable to obesity-related
inflammation, has been observed in response to SCOPA (72).
Taken together, these data from multiple models and treatment
conditions clearly indicate that SCOPA is a potent anti-
inflammatory agent and that it can antagonize inflammation in
conditions consistent with metabolic dysregulation.

Oxidative stress plays an important role in insulin resistance,
the progression to diabetes, and diabetic complications. Indeed,
hyperglycemia induces the production of reactive oxygen and
nitrogen species, and the resulting oxidation of lipids, proteins,
and DNA mediates diabetic complications such as neuropathy,
nephropathy, retinopathy, and vascular damage. Although
oxidative stress occurs in response to hyperglycemia, it can
also drive metabolic dysfunction, as it hinders insulin signaling
and glucose uptake in cultured adipocytes, myocytes, and
vascular smooth muscle cells (74–80). Mechanisms involved in
these effects have been attributed to mitochondrial dysfunction,
inhibition of insulin signaling proteins, and negative modulation
of the expression and translocation of the glucose transporter
GLUT-4 [reviewed in (80)]. Furthermore, reactive oxygen
species (ROS) have a range of deleterious effects on pancreatic
beta-cell function, including increased apoptosis, reduced beta-
Frontiers in Endocrinology | www.frontiersin.org 6
cell neogenesis, mitochondrial dysfunction, and impaired insulin
secretion (78, 81). Finally, oxidative stress can contribute to
insulin resistance by activating inflammatory pathways (80).
Essential oils and extracts of SCOPA have been reported to
have antioxidant and free radical-scavenging properties (82–85),
which could be consistent with improvements in metabolic
function. Studies and reviews of SCOPA’s anti-inflammatory
and antioxidant effects are shown in Table 2.

Cardiovascular Effects of A. scoparia
Metabolic syndrome is a cluster of risk factors for cardiovascular
disease and diabetes. Obesity, insulin resistance, and diabetes
promote hypertension, hyperlipidemia, and vascular damage,
thereby increasing risks of coronary artery disease, stroke, and
peripheral vascular disease. SCOPA has been used as an anti-
hypertensive, a vasodilator, and an anti-hypercholesterolemic
agent in traditional medicine (Table 1), and data from modern
studies have been consistent with these historical uses. As is the
case for SCOPA’s hepatoprotective properties, investigations
have focused on SCOPA-containing TCM preparations or on
single compounds isolated from SCOPA, but Cho et al. have
shown that diet supplementation with an aqueous SCOPA
extract lowered blood pressure and produced other favorable
effects in spontaneously hypertensive rats (88). Beneficial effects
included reductions in angiotensin converting enzyme (ACE)
activity, angiotensin II (AngII) levels, and lipid peroxidation in
serum. Given these observations, it is plausible that SCOPA’s
effects on the cardiovascular system could mitigate some of the
complications of metabolic syndrome or diabetes. Studies
showing cardiovascular effects of SCOPA appear in Table 2.
EFFECTS OF BIOACTIVE COMPOUNDS
FOUND IN A. SCOPARIA

Coumarins
SCOPA is rich in plant coumarins (93). The three related
coumarins scoparone (6,7 - dimethoxycoumarin), scopoletin
(7-hydroxy-5-methoxycoumarin), and esculetin (6,7 -
dihydroxycoumarin) are found in many Artemisia species and
TABLE 2 | In vitro and in vivo studies of A. scoparia.

Extract Metabolic
Complications

Cardiovascular/
dyslipidemia

Hepatic
dysfunction

Cancer Inflammation/
oxidative stress

Neurological/
Behavioral

Anti-microbial Renal

Ethanolic extract (48–50, 62, 72, 86) (62) (72)
Methanolic extract (63) (63, 87) (83, 84) (84)
Aqueous Extract or fraction (88) (68, 69) (89)
Total flavonoid (68, 90)
Essential oil (82, 91) (92)
DCMa extract (83)
Commercial extract, n.s.b (47)
Crude extract (54) (65) (68)
Whole extract, n.s.b or
butanol fraction

(71)
Fe
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are considered major components of SCOPA (36, 41). Many
coumarins have potent anti-inflammatory or antioxidant effects
that account for a wide range of bioactivities (94). In addition,
natural and synthetic coumarins are under investigation as
promising treatments for many conditions, cancer in particular
(95–102). The therapeutic potential of these coumarins is
supported by molecular docking analyses (94, 103–112) and
structure-activity relationship (SAR) studies (111, 113–117).

Scoparone
Scoparone, a prominent compound in TCMpreparations, has long
been known to have hypotensive and vasodilatory properties (118–
125) and has been found to have several additional favorable
cardiovascular effects, including inhibition of ACE activity in
vitro (126) and reduction in AngII-induced myocardial changes
in rodents, cultured myocytes, and cardiac fibroblasts (127, 128).
Furthermore, there is evidence that scoparone can mitigate cardiac
ischemia/reperfusion injury in in vitro and in vivo settings (129).
Scoparone also has anti-atherogenic effects including the inhibition
of vascular smooth muscle cell proliferation and migration (130,
131), inhibition of platelet aggregation (132), and the attenuation of
atherosclerotic plaque formation and dyslipidemia in
hyperlipidemic diabetic rabbits (133, 134). One study also found
that scoparone decreased peroxisome proliferator-activated
receptor gamma (PPARg) activity, expression of PPARg target
genes, and lipid accumulation in differentiating 3T3-L1
adipocytes (135). In cultured rat mesangial cells, high glucose-
induced production of extracellular matrix proteins was reduced
with scoparone treatment (136), a finding with potential
implications for renal diabetic complications.

As is the case for SCOPA extracts and traditional preparations,
hepatoprotective effects have been reported for scoparone in
NASH (137, 138) and in conditions of hepatotoxicity or liver
injury induced by carbon tetrachloride or alcohol (139–141).
Consistent with folk uses of SCOPA in the treatment of
jaundice and cholestasis, scoparone also promotes bilirubin
clearance through activation of the constitutive androstane
receptor (CAR) (142). Interestingly, CAR activation has been
shown to improve insulin sensitivity, glucose metabolism, and
hepatic lipid accumulation in leptin-deficient ob/ob mice (143),
and to prevent obesity, insulin resistance, and hepatic steatosis in
HFD-fed mice (144). CAR agonism has been proposed as a
therapeutic target for obesity, insulin resistance, and diabetes
(142–146). In a recent study, a panel of natural and synthetic
coumarin derivatives was screened for the ability to activate CAR,
and scoparone was found to improve glucose tolerance in leptin
receptor-null db/db mice (147).

Anti-inflammatory and antioxidant properties of scoparone
have been demonstrated in a wide range of conditions, and some
of the pathways impacted by these effects have been described.
Studies in the murine RAW 264.7 macrophage cell line
demonstrated that scoparone could attenuate the LPS- or IFNg-
inducedproduction of inflammatory cytokines, aswell as iNOSand
cyclooxygenase2 (COX2)protein levels andcorrespondingNOand
prostaglandin E2 (PGE2) release (148). Similar results were
obtained in a human monocyte cell line, in which scoparone
attenuated phorbol-12-myristate-13-acetate (PMA)-induced
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inflammatory cytokine production by inhibiting nuclear factor
kappa-light-chain-enhancer of activated B cells (NF-kB)
activation (149).

In a mouse model of acute lung injury, pulmonary edema,
histological changes, and LPS-mediated inflammatory cytokine
production were improved by scoparone in vivo, while in vitro
experiments in alveolarmacrophages revealed that the compound’s
anti-inflammatory effects were mediated through the toll-like
receptor 4 (TLR4)/NFkB pathway (150). Anti-inflammatory
effects of scoparone in a rat model of colitis have also been
reported (151), while in BV2 microglial cells, scoparone
attenuated LPS-induced neuroinflammatory responses by
blocking interferon regulatory factor 3 (IRF3) and extracellular
signal-regulated kinase (ERK) activation (126). In amousemodel of
acute seizures, scoparone preserved blood-brain barrier integrity,
prevented inflammation and apoptosis, and inactivated the
phosphoinositide 3-kinase (PI3K)/AKT signaling pathway in
vivo. This same study determined that scoparone could also
inhibit astrocyte activation elicited by LPS (152).

In addition to interferingwith inflammatorypathways, scoparone
has been shown to provide protection from oxidative stress, as
demonstrated in 2,2-diphenyl-1-picrylhydrazyl (DPPH) and lipid
peroxidation assays in vitro (151, 153), and to inhibit production of
ROS and preserve antioxidant enzyme activity in response to several
types of oxidative stressors (154, 155). Antioxidant activity has also
been implicated in scoparone’s ability to protect against kidney
damage elicited by the chemotherapeutic agent cisplatin (156), to
reduce markers of pancreatic fibrosis in cultured pancreatic stellate
cells (157), and to prevent osteoclast differentiation and bone
resorption in vitro (158).

Effects of scoparone have been observed in many other systems
and models, including immunosuppressive functions associated
with autoimmunity, allergies, and graft rejection (159, 160);
neurite outgrowth and dopamine synthesis and release in the
PC12 neuronal cell line (161–163); proliferation and migration of
cancer cells (105, 164); bactericidal, antifungal, and antiparasitic
properties (165–167); promotion of melanogenesis; and activation
of the cystic fibrosis transmembrane conductance regulator
(CFTR) (168, 169). Table 3 presents a summary of the wide
range of bioactivities attributed to scoparone.

Scopoletin
Scopoletin is a naturally fluorescent compound found in many
plants (191, 214, 215, 246). It is a substrate for peroxidases, which
convert scopoletin to non-fluorescent compounds, and has thus
been widely used for many decades, in combination with
horseradish peroxidase, as the basis for high-sensitivity
hydrogen peroxide detection assays (495–498). Several studies
have demonstrated scopoletin’s antioxidant capabilities in vitro,
using common cell-free methods such as the DPPH, Trolox
equivalent antioxidant capacity (TEAC), ferric reducing ability of
plasma (FRAP), or beta-carotene/bleaching assays, while
superoxide, hydrogen peroxide, nitric oxide, and peroxynitrite
are among the reactive species shown to be effectively scavenged
by scopoletin (114, 180, 216–223, 247). Hepatoprotective
antioxidant effects of scopoletin have also been observed in
cultured HepG2 cells and primary hepatocytes (154, 200),
February 2022 | Volume 12 | Article 727061

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Boudreau et al. Health-Promoting Properties of Artemisia scoparia
however one study failed to detect significant antioxidant activity
for scopoletin (499).

Given the important role of oxidative stress in the etiology of
numerous disorders, it is not surprising that some of scopoletin’s
favorable effects in disease states are attributed to its antioxidant
properties. For example, scopoletin has been reported to have
antioxidant effects in hyperthyroid-induced hyperglycemia in rats
(224), as well as in oxidant-induced hemolysis of rat erythrocytes
(225). The brain is particularly vulnerable to oxidative stress, which
is known tobe central tomanyneurodegenerative conditions (500).
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A study performed in mouse brain homogenates revealed that
scopoletin strongly inhibited the oxidative protein modifications
induced by copper (226), which can contribute to the pathologies
associated with atherosclerosis, Alzheimer’s disease (AD), and
Wilson’s disease (501–503). A recent study examined several
aspects of oxidative stress involved in the pathogenesis of
Parkinson’s disease (PD) and showed that scopoletin attenuated
depletion of cellular reduced glutathione or ATP, inhibited ROS
generation, and prevented cell death in oxidative conditions in vitro
(227). These findings were extended to aDrosophilamutant model
TABLE 3 | In vitro and in vivo effects of bioactive compounds found in A. scoparia.

Compound Metabolic
Complications

Cardiovascular/
dyslipidemia

Hepatic
dysfunction

Cancer Inflammation/
oxidative
stress

Neurological/
Behavioral

Anti-
microbial

Renal Reproduction Asthma/
Allergy

Other

Coumarins
Scoparone (132–136,

147)
(119, 122–134) (137, 138,

140, 142,
154, 170–

174)

(105,
164)

(149–151,
153–155, 157,

175, 176)

(126, 152,
161–163)

(165–
167)

(136,
156)

(177) (159,
160,
175)

(178)a

(158,
179);b

(169);c

Scopoletin (108, 116,
180–190)

(126, 132, 191–
199)

(154, 200–
202)

(97,
203–
213)

(114, 154,
214–245)

(106, 109,
110, 227,
246–264)

(165,
265–278)

(279) (175,
251,
280–
288)

(289,
290)d

(291–
293);b

(294,
295);e

(296–
298);a

Esculetin (116, 180,
299–312)

(303, 313–317) (139, 171,
318–320)

(96,
321–
349)

(226, 307,
318, 350–366)

(111, 367–
372)

(165,
314, 373–

375)

(107,
339,
376–
378)

(379) (282,
354,
380–
383)

(384–
386)b

(387,
388);f

(389);g

Flavonoids
Flavonolsh (57, 390–397) (395, 398–402) (395, 403,

404)
(395,
405,
406)

(395, 407) (393, 395) (395,
408)

(395) (395) (395,
409)

Rutin (394, 397,
410–416)

(402, 417) (412, 415,
418–421)

(422,
423)

(419, 420,
424, 425)

(418,
420)

(418, 420) (417) (421)d

(412,
425);e

Flavanonesi (426–429) (427, 430, 431) (432) (427,
433)

(427, 428,
434)

(435,
436)

(429)b

(437);c

Chromones
Capillarisins (116) (438, 439) (440–

443)
(444–449) (448) (450) (451) (452)g

Phenolic
Acids
Chlorogenic
Acidsj

(453–455) (455–458) (459) (460,
461)

(71, 73, 222,
462–464)

(465–467) (468–
470)

(471)d

Prenylated
coumaric
acidsk

(472–477) (478–
485)

(464, 472,
486–489)

(490,
491)

(492) (493)d

(488);e

(494);l
February
 2022 | Volume
 12 | Article
aMelanogenesis.
bOsteoprotection.
cRespiratory.
dAging and healthspan.
eGastrointestinal.
fOphthalmic.
gCartilage or muscle.
hQuercetin and Isorhamnetin.
iNaringenin and Blumeatin.
jCaffeic acid, Dicaffeoylquinic acids, Chlorogenic acid.
kArtepillins, Capillartemisins, Drupanin, Scopa-coumaricins.
lHypoxia/ischemia.
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of PD, where scopoletin treatment reduced accumulation of
mitochondrial ROS and promoted recovery from degenerative
phenotypes (227). Several other studies have shown that
scopoletin can prevent oxidative injury in models relevant to
diseases such as PD and AD. These include prevention of
oxidative injury and induction of antioxidant gene expression in
HT-22 and SHSY-5Y cells (248, 249), as well as inhibition of
monoamine oxidase activity (106, 250).

One important contributor to oxidative stress inmany cell types
is the xanthine oxidase (XO)/xanthine dehydrogenase (XDH)
system (201, 504, 505). XO activity in the liver produces uric acid,
which is released into circulation and excreted by the kidney.
Hyperuricemia, due to excessive uric acid production in the liver
or impaired clearance in the kidney, causes accumulation of uric
acid crystals in joints (gout) and in the kidney. Scopoletin shows
inhibitory activity in enzymatic assays of XO in vitro (506).
Additionally, scopoletin administered either by intraperitoneal
injection or by oral gavage of scopoletin-loaded micelles was
shown to correct hyperuricemia in mice through two separate
mechanisms, namely inhibiting hepatic XO activity and
enhancing uric acid excretion by the kidney (201, 202). Notably,
XO activity is associated with obesity-related metabolic
dysfunction, and XO inhibitors typically prescribed for gout or
hyperuricemia are proving to be effective in mitigating
cardiovascular and renal complications of diabetes (504, 507, 508).

In addition to antioxidant effects, scopoletin has potent anti-
inflammatory activity. Numerous studies have demonstrated the
ability of scopoletin todiminish the productionofproinflammatory
mediators such as cytokines and eicosanoids in many cell types,
including macrophages, mast cells, fibroblasts, and platelets (228–
237). In vivo effects of scopoletin in rodent ear orpawedemamodels
and inmodels of inflammatory conditions such as arthritis, gastro-
esophageal disease, gastric ulcers, gout, pleurisy, pancreatitis, aswell
as nociceptive or analgesic properties, have also been described
(215, 237–242, 291, 509, 510).Mechanisms involved in scopoletin’s
anti-inflammatory effects include negative regulation of
inflammatory signaling pathways and inhibition of lipoxygenase
and cyclooxygenase enzyme activities (214, 239, 243, 247, 280, 281).
Scopoletin’s anti-inflammatory properties have also been
implicated in its effects on various pathologies, particularly in the
realm of immunity, as it has been shown to regulate complement
pathway activation, mast cell degranulation, as well as several
aspects of innate, humoral, and adaptive immune function,
suggesting potential roles in allergies, asthma, and autoimmune
diseases such as multiple sclerosis and rheumatoid arthritis (175,
251, 282–288, 511).

Scopoletin has been studied in several models of neurological
dysfunction and has an array of favorable effects. Some of these are
at least partly attributable to its antioxidant or anti-inflammatory
properties, like reducing inflammation-induced anxiety in mice or
attenuating neural deficits, brain edema, and inflammatory
cytokine production in intracerebral hemorrhage in rats (252,
253). In addition, several groups have demonstrated scopoletin’s
ability to inhibit acetyl- and butyryl-cholinesterases in vitro (110,
247, 254–257, 512) and in vivo (258). Antidepressant, anti-
psychotic, and anti-amnesic effects were also observed in
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behavioral studies in mice (246, 258–261). A study investigating
anticonvulsant effects of Benkara malabarica (Linn.) root extract
found that scopoletin inhibited GABA transaminase activity (262).
Consistent with this finding, molecular docking analysis has
demonstrated affinity of scopoletin for both GABA transaminase
and for the GABA-A receptor (252). The anticonvulsant drug
vigabatrin is an irreversible inhibitor of GABA-T, and there is
convincing evidence that it is effective in attenuating anxiety
symptoms (513). Formation of amyloid beta peptide 42 (Ab42)
anda-synuclein fibrils, processes central to the pathogenesis of AD
and PD respectively, have both been shown to be inhibited by
scopoletin (109, 110).These actions are likely complementary to the
antioxidant mechanisms described above (227) in combatting
neurodegenerative diseases. Finally, scopoletin improves neuronal
plasticity, as measured in ex vivo electrophysiological assays, and
exerts neuroprotective activity in a rat spinal cord injury model
(263, 264).

In conditions related tometabolichealth, scopoletinacts favorably
on many pathways in vivo, as well as in various cell types and
experimental conditions. In animal models of diet-induced obesity,
diabetes, or alcohol-induced metabolic dysfunctions, scopoletin
restored insulin sensitivity, reversed disruptions in circulating
lipids, glucose, insulin, and inflammatory cytokines, while also
attenuating lipid accumulation and fibrosis in liver, restoring
adiponectin levels in white adipose tissue, and reducing oxidative
stress in the pancreas (181–187). Consistent with these in vivo
observations, scopoletin has been shown to mitigate insulin
resistance and improve metabolic functions in cultured
hepatocytes, adipocytes, and pancreatic beta-cells (184, 185, 188,
514). In vitro assays have revealed that enzymes involved in glucose
homeostasis (protein tyrosine phosphatase 1b, a-glucosidase and a-
amylase)or indiabetic complications (aldonereductase) are inhibited
by scopoletin (108, 116, 180, 184, 187, 189, 190). While effects
described above are likely to improve cardiovascular health in the
context of metabolic syndrome, scopoletin also acts directly on the
heart and vasculature. Scopoletin has antihypertensive actions (126,
191–193), anti-atherosclerotic capabilities (132, 194–196), and
vascular spasmolytic/vasodilatory effects (191, 193, 197–199).

Scopoletin is a compound of interest in cancer research, as it
has been shown to have apoptotic, cytotoxic, anti-proliferative,
anti-angiogenic, and anti-metastatic activities in various cancer
cell lines (97, 203–212). Efforts are ongoing to develop synthetic
derivatives of scopoletin and to characterize and improve its
bioavailability and pharmacokinetic properties (96). Finally, a
handful of other bioactivities have been reported for scopoletin,
among them the promotion of melanogenesis (296–298) and
osteoprotective (292, 293), antitussive (515), gastrokinetic (294),
and antimicrobial properties (165, 265–278, 516), as well as anti-
aging effects in skin and lung fibroblasts (289, 290).

It is notable that many of the same signaling pathways are
modulated by scopoletin across the wide variety of experimental
models and conditions in which it has been investigated.
Scopoletin can activate the AMPK pathway (181, 182, 186,
263, 514) and the PI3K/AKT pathway (184, 186, 188, 514),
and inhibit the inflammatory TLR4/myeloid differentiation
factor 88 (MyD88) and NF-kB pathways (94, 181, 183, 233,
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237, 241, 251, 252, 517, 518). There is also substantial evidence
that scopoletin can inhibit the MAPK pathway in a variety of cell
types (199, 235, 237, 241, 252, 290, 297).

Esculetin
Like scoparone and scopoletin, esculetin’s well-documented
antioxidant and anti-inflammatory properties are central to its
beneficial effects in biological systems (226, 350–355, 384, 519).
A broad range of inflammatory or oxidative conditions have
been shown to be impacted by esculetin. These include lung
injury and fibrosis (356, 357, 520); fibromyalgia (521); neuronal
oxidative stress (522); psoriasis (523); arthritis (358); nociception
(359); colitis (360); allergy, immunity, and asthma (282, 354,
380–383); and sepsis (361). The effects of esculetin on numerous
cancer cell types have been extensively studied (94, 321–342, 519,
524, 525) and are the basis for efforts to develop novel
therapeutics (98, 341). Neuroprotective and behavioral actions
of esculetin have also been described (111, 299, 367–371, 526–
528). Selected publications highlighting these effects of esculetin
are featured in Table 3.

Flavonoids and Chromones
Flavonoids are highly abundant compounds in all plants; they are
extensively studied for variousbioactivities andhave awide range of
effects inmany biological systems. Numerous flavonoids have been
identified in SCOPA, however their relative abundance varies
widely among plants and extracts from different sources (36, 41).
Since there exists abundant literature regarding the bioactivities of
flavonoids, we will present only a subset of the most commonly
reported, most abundant, or most thoroughly investigated
flavonoids in SCOPA. As a representative example, cirsmaritin
has been shown tohave anti-proliferative, anti-metastatic, and anti-
carcinogenic effects in cancer cell lines (529–534), diabetes- and
metabolism-related effects (535–537), as well as anti-inflammatory,
antioxidant, and antimicrobial properties (538–543). Studies have
also demonstrated that cirsimaritin can modulate neurological,
immune, and digestive functions (544–548), and attenuate renal
injury (549, 550). Additional activities of selected flavonoids are
shown in Table 3.

The chromone capillarisin is known as a major constituent of
Artemisia capillaris. It is also relatively abundant in SCOPA but
is not known to be a bioactive constituent of other plants. There
are multiple reports of anti-inflammatory and antioxidant effects
of capillarisin (444–448, 551), which has also been shown to
inhibit tumor cell invasion, inhibit signaling transducer and
activator of transcription 3 (STAT3) activation, slow cell
growth, and promote apoptosis in various cancer cell lines
(440, 441, 443, 552). Other reported effects of capillarisin
include anti-asthmatic activity (451) and promotion of penile
erection in a rabbit model (450). Studies of capillarisin and its
derivatives that are found in SCOPA are summarized in Table 3.

Phenolic Acids
Chlorogenic acid, caffeic acid, 3,5-dicaffeoylquinic acid, and 4,5-
dicaffeoylquinic acid are related phenolic acids found in many
plants or, in the case of caffeic acid, all plants. Chlorogenic acid and
its derivatives are abundant in SCOPA and have been shown to
Frontiers in Endocrinology | www.frontiersin.org 10
mediate some of SCOPA’s effects (71, 73, 85). Unlike the ubiquitous
chlorogenic acid derivatives, prenylated coumaric acids (PCAs) are
not common in plants, and the most thoroughly characterized of
these compounds, artepillin C, drupanin, and baccharin, have been
primarily studied from Brazilian green propolis (476, 553–555). The
most prominent bioactivities of chlorogenic acids and PCAs are
presented in Table 3. Although not all studies of SCOPA’s chemical
constituents have detected PCAs, capillartemisin B and drupanin
have been identified in SCOPA (53, 556–558), and additional PCAs
have been reported in Artemisia capillaris (559, 560). PCAs are not
considered major constituents of SCOPA, however several of them
have been isolated from a SCOPA extract with potent adipogenic
activity (556, 557). Fractions of this extract that weremost effective in
promoting adipogenesis were rich in PCAs, and activity was
confirmed for three PCAs isolated from these fractions, including
two co-purified isomers of a novel PCA, termed “cis-scopa-trans-
coumaricin” and “cis-scopa-cis-coumaricin”. Like the PCAs from
SCOPA,PCAs frompropolis canactivatePPARg, promote adipocyte
differentiation, and mitigate obesity-associated metabolic
dysfunction (472–474, 561–563). Given that these compounds
have not been reported in SCOPA extracts found to inhibit
adipogenesis, the presence or absence of PCAs is a plausible
explanation for the seemingly divergent effects of SCOPA on
adipocytes in studies using different extract preparations.
Interestingly, a unique enzyme has recently been isolated from A.
capillaris that catalyzes two successive prenylations of p-coumaric
acid to yield artepillin C, with drupanin as a mono-prenylated
intermediate (564). It appears likely that an equivalent enzyme may
exist in SCOPAand in other plants that synthesize these compounds.

BRIDGING THE GAP: SCOPA AS A
MODERN INTERVENTION TO PROMOTE
METABOLIC HEALTH

We have reviewed multiple lines of evidence for metabolic benefits
of SCOPA. However, these data have emerged in a piecemeal
fashion, and comprehensive studies to adequately assess SCOPA
as a therapeutic or preventive intervention for metabolic
dysfunction are lacking. One ethanolic SCOPA extract has been
shown to have beneficial effects on adipose tissue function, hepatic
lipid accumulation, and insulin sensitivity in amousemodel ofDIO
(48–50), and a different extract was found to attenuate gestational
diabetes in a small human study (47). Ethnopharmacological data,
as well as the broad range of bioactivities of SCOPA observed in
various cell lines anddiseasemodels, alsoprovide strong rationale to
investigate SCOPA inhumanswith obesity ormetabolic syndrome.
Thewidespreadmedicinal use of SCOPA inmanyparts of theworld
suggests favorable safety and toxicity profiles, however these have
not been formally studied, and such data will be needed in the
assessment of SCOPA’s potential as a therapeutic intervention. For
example, since SCOPA is known to affect hepatic function and to
increase whole-body insulin sensitivity in mice, adverse effects in
the liver or risk of hypoglycemia are potential concerns. Given the
high variability in the chemical composition of SCOPA extracts,
their rigorous characterization, using unbiased and standardized
methods will also be crucial in interpreting results from different
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extracts and in guiding pharmacokinetic evaluation of potential
therapeutic extracts. In our view, details of extract composition
reported for SCOPA are generally insufficient, and greater efforts
are required to characterize extracts that are being studied for the
promotion of metabolic health. Repositories of serum and tissue
samples from in vivo studies would also be helpful in laying the
groundwork for pre-clinical or translational studies. Differences in
biological effects and chemical composition among various SCOPA
preparations could also serve as a resource for correlating
constituent compounds with bioactivity.

SCOPA’s reported hepatoprotective and antioxidant
properties, as well as its beneficial effects on cardiovascular
parameters are consistent with favorable metabolic effects but
have not been investigated in the context of human metabolic
disease. In addition, SCOPA’s potential effects in many cell types
and experimental models relevant to obesity or metabolic
syndrome have not yet been interrogated. These include
measures of insulin sensitivity or glucose uptake in skeletal
muscle cells, glucose output from hepatocytes, and insulin
secretion from pancreatic beta-cells. SCOPA’s ability to
mitigate diabetic complications is also unknown, although its
documented antioxidant and anti-inflammatory effects suggest
that it may protect against the consequences of chronic
hyperglycemia. All these aspects of SCOPA bioactivity merit
more systematic assessment in conditions of metabolic
dysfunction. Finally, mechanisms responsible for SCOPA’s
pleiotropic actions remain only partially explored. As described
in this review, SCOPA or its constituent compounds have been
shown to regulate various signaling pathways or enzyme
activities, but the molecular players, mechanistic details, and
implications of these effects remain to be elucidated. Thus, a wide
range of experimental observations offer promising evidence of
SCOPA’s metabolic benefits, but critical pieces of data are needed
to realize its full promise as a bona fide therapeutic.

CONCLUSION

The historical and anthropological importance of botanicals in
health and disease is unquestionable. Not only are plants used in
folk medicine applications around the world, but they are also
consumed as nutritional supplements and are the origin of many
modern pharmaceuticals. Despite the successes of synthetic drug
development, there is great value in investigating complex botanical
extracts for several reasons. First, there is a need to characterize and
evaluate botanicals in current use. A cross-sectional study
conducted between 2002 and 2012 reported that 18% of adults in
the US use dietary supplements (565). According to the American
Botanical Council, sales of botanical supplements topped 8.8B$ in
2018 and were on the rise (abc.herbalgram.org). This market is
largely unregulated, and rigorous studies addressing the safety,
modes of action, and efficacy of such supplements are desirable.
Second, synergistic interactions between phytochemical
compounds are common, and individual constituents often fail to
recapitulate activities of their parent botanical extracts (566, 567).
Third, the thorough study of complex botanical extracts enables the
identification of novel and unique lead compounds that may not
Frontiers in Endocrinology | www.frontiersin.org 11
otherwise emerge or thatmay be challenging to synthesize, as in the
case of the PCAs reported in Artemisia species including SCOPA.

This review of SCOPA’s ethnopharmacology, bioactivities, and
constituent compounds reveals a remarkable range of traditional
uses and experimental data and provides a valuable example of
both the potential and the difficulties of studying complex
botanical extracts. Indeed, we have described promising in vivo
and in vitro data supporting SCOPA’s use for many pathologies, in
particular hepatic diseases and obesity-related metabolic
dysfunction, as well as proven effects of individual compounds
found in SCOPA. Figure 1 illustrates the principal findings related
to SCOPA. We have also presented seemingly contradictory data
regarding the adipogenic effects of SCOPA, with studies showing
both pro- (48, 49, 556, 557) and anti- (53, 54, 63) adipogenic
activities. However, analysis of the pro-adipogenic extract and
fractions revealed the presence of PCAs, known to promote
adipogenesis, while these compounds were not reported in
extracts that inhibited adipogenesis.

To be sure, investigation of botanical extracts is a challenging
endeavor due to the enormous complexity of the mixtures, the
considerable variability in extract composition from different
plants of the same species (36, 46, 568, 569), the potential for
unpredictable experimental artifacts (570), the imperfect methods
for detecting constituent compounds, and the biased nature of
investigations based on the research interests and priorities of
different investigators. However, increasingly sophisticated
preparatory, analytical, and computational methods are helping
to overcome these difficulties. In order to enhance the reliability
and translatability of natural products research, the National
Center for Complementary and Integrative Health (NCCIH) has
spearheaded the development of comprehensive good practices
for pre-clinical investigation of natural products (567). We fully
support these principles and encourage further study of the
bioactivities of Artemisia scoparia, particularly in metabolism
research, in accordance with these guidelines.
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165. Céspedes CL, Avila JG, Martıńez A, Serrato B, Calderón-Mugica JC, Salgado-
Garciglia R. Antifungal and Antibacterial Activities of Mexican Tarragon
(Tagetes Lucida). J Agric Food Chem (2006) 54:3521–7. doi: 10.1021/
jf053071w

166. Yang B, Chen G, Song X, Chen Z, Song X, Wang J. Chemical Constituents
and Antimicrobial Activities of Canthium Horridum. Nat Prod Commun
(2010) 5:913–4. doi: 10.1177/1934578x1000500620

167. Vila-Nova NS, de Morais SM, Falcão MJC, Alcantara TTN, Ferreira PAT,
Cavalcanti ESB, et al. Different Susceptibilities of Leishmania Spp.
Promastigotes to the Annona Muricata Acetogenins Annonacinone and
Corossolone, and the Platymiscium Floribundum Coumarin Scoparone. Exp
Parasitol (2013) 133:334–8. doi: 10.1016/j.exppara.2012.11.025

168. Xu LN, Na WL, Liu X, Hou SG, Lin S, Yang H, et al. Identification of Natural
Coumarin Compounds That Rescue Defective Df508-CFTR Chloride
Channel Gating. Clin Exp Pharmacol Physiol (2008) 35:878–83.
doi: 10.1111/j.1440-1681.2008.04943.x

169. Yang H, Xu LN, Liu X, He CY, Fang RY, Liu J, et al. Stimulation of Airway
and Intestinal Mucosal Secretion by Natural Coumarin CFTR Activators.
Front Pharmacol (2011) 52:52. doi: 10.3389/fphar.2011.00052

170. Yang D, Yang J, Shi D, Deng R, Yan B. Scoparone Potentiates
Transactivation of the Bile Salt Export Pump Gene and This Effect Is
Enhanced by Cytochrome P450 Metabolism But Abolished by a PKC
Inhibitor. Br J Pharmacol (2011) 164:1547–57. doi: 10.1111/j.1476-
5381.2011.01522.x

171. Tas ̧demir E, Atmaca M, Ylldlrlm Y, Bilgin HM, Demirtaş B, Obay BD, et al.
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González A, Fefer PG, Aguirre-Hernández E. Pharmacological Evaluation of
the Anxiolytic-Like Effects of Lippia Graveolens and Bioactive Compounds.
Pharm Biol (2017) 55:1569–76. doi: 10.1080/13880209.2017.1310908

546. Abdelhalim A, Karim N, Chebib M, Aburjai T, Khan I, Johnston GAR, et al.
Antidepressant, Anxiolytic and Antinociceptive Activities of Constituents
From Rosmarinus Officinalis. J Pharm Pharm Sci (2015) 18:448–59.
doi: 10.18433/j3pw38

547. Amakura Y, Yoshimura M, Takaoka M, Toda H, Tsutsumi T, Matsuda R,
et al. Characterization of Natural Aryl Hydrocarbon Receptor Agonists From
Cassia Seed and Rosemary. Molecules (2014) 19:4956–66. doi: 10.3390/
molecules19044956

548. Wang JP, Chang LC, Hsu MF, Chen SC, Kuo SC. Inhibition of Formyl-
Methionyl-Leucyl-Phenylalanine-Stimulated Respiratory Burst by
Cirsimaritin Involves Inhibition of Phospholipase D Signaling in Rat
Neutrophils. Naunyn Schmiedebergs Arch Pharmacol (2002) 366:307–14.
doi: 10.1007/s00210-002-0631-1

549. Yokozawa T, Dong E, Kawai Y, Gemba M, Shimizu M. Protective Effects of
Some Flavonoids on the Renal Cellular Membrane. Exp Toxicol Pathol
(1999) 51:9–14. doi: 10.1016/S0940-2993(99)80050-5

550. Hasrat JA, De Bruyne T, De Backer JP, Vauquelin G, Vlietinck AJ.
Cirsimarin and Cirsimaritin, Flavonoids of Microtea Debilis
(Phytolaccaceae) With Adenosine Antagonistic Properties in Rats: Leads
for New Therapeutics in Acute Renal Failure. J Pharm Pharmacol (1997)
49:1150–6. doi: 10.1111/j.2042-7158.1997.tb06059.x

551. Lee TY, Chen FY, Chang HH, Lin HC. The Effect of Capillarisin on
Glycochenodeoxycholic Acid-Induced Apoptosis and Heme Oxygenase-1
in Rat Primary Hepatocytes. Mol Cell Biochem (2009) 325:53–9.
doi: 10.1007/s11010-008-0019-8

552. Lee SO, Jeong YJ, Kim M, Kim CH, Lee IS. Suppression of PMA-Induced
Tumor Cell Invasion by Capillarisin via the Inhibition of NF-kb-Dependent
MMP-9 Expression. Biochem Biophys Res Commun (2008) 366:1019–24.
doi: 10.1016/j.bbrc.2007.12.068

553. Bastos JK, De Sousa JPB, Leite MF, Jorge RF, Resende DO, Da Silva Filho AA,
et al. Seasonality Role on the Phenolics From Cultivated Baccharis
Dracunculifolia. Evidence-Based Complement Altern Med (2011)
2011:464289. doi: 10.1093/ecam/nep077

554. Jorge R, Furtado NAJC, Sousa JPB, Da Silva Filho AA, Gregório Junior LE,
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