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Mesenchymal stem cell-derived exosomes have been under investigation as potential
treatments for a diverse range of diseases, and many animal and clinical trials have
achieved encouraging results. However, it is well known that the biological activity of the
exosomes is key to their therapeutic properties; however, till date, it has not been
completely understood. Previous studies have provided different explanations of
therapeut ic mechanisms of the exosomes, including ant i- inflammatory,
immunomodulatory, and anti-aging mechanisms. The pathological effects of oxidative
stress often include organ damage, inflammation, and disorders of material and energy
metabolism. The evidence gathered from research involving animal models indicates that
exosomes have antioxidant properties, which can also explain their anti-inflammatory and
cytoprotective effects. In this study, we have summarized the antioxidant effects of
exosomes in in vivo and in vitro models, and have evaluated the anti-oxidant
mechanisms of exosomes by demonstrating a direct reduction in excessive reactive
oxygen species (ROS), promotion of intracellular defence of anti-oxidative stress,
immunomodulation by inhibiting excess ROS, and alteration of mitochondrial
performance. Exosomes exert their cytoprotective and anti-inflammatory properties by
regulating the redox environment and oxidative stress, which explains the therapeutic
effects of exosomes in a variety of diseases, mechanisms that can be well preserved
among different species.

Keywords: mesenchymal stem cell, exosome, inflammation, metabolism, oxidative stress
INTRODUCTION

Mesenchymal stem cells (MSCs) are pluripotent stem cells that can be isolated from various adult or
foetal tissues, including fatty tissue, bone marrow, and cord blood (1). Owing to the unique ability to
regenerate and differentiate into other cells, MSCs are widely used to treat various diseases (2). They
are considered a promising option for the treatment of various types of diseases, such as limb
ischemia, skin wound, and cartilage defects (3–5). Despite the potential to replace damaged tissues
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with a vast array of cells, the potential risks like tumorigenesis
and tissue transplant rejection, and ethical issues problems
associated with stem cell therapy greatly limit their clinical use
(6, 7). This risk persists for a long time (8). In addition, the
preparation method of stem cells and the best storage method to
maintain the viability of stem cells also pose challenges to their
application (9).

The previous studies have shown that the indirect interactions
between donor cells and somatic cells rely on the release of
exosomes (10). The release of exosomes is precisely regulated by
cells. Exosomes are produced in multi-vesicular bodies (MVBs)
containing intraluminal vesicles (ILVs) in the cells (11). ILVs are
ultimately secreted as exosomes with a size range of 30–200 nm,
through the fusion of MVBs to the plasma membrane and
exocytosis (11, 12). A series of proteins such as endosomal sorting
complex required for transport (ESCRT), transmembrane 4
superfamily (M4SF), Rab protein, and soluble N-ethylmaleimide-
sensitive fusion protein attachment protein receptor (SNARE)
participate in exosome formation, transportation, transfer, and
release (13–15). Almost all cell types can release exosomes via the
plasma membrane. In addition, exosomes transfer specific protein
and genetic information to target cells for intercellular
communication (16). The protective lipid bilayer membrane
provides exosomes with long-term stabi l i ty in the
microenvironment (17). After release, exosomes can be widely
distributed in body fluids (i.e., serum, urine, saliva, breast milk,
and semen), and circulate throughout the body through the blood.
Target cells can take up exosomes in a variety of ways, including
direct fusion, clathrin/caveolin-dependent endocytic pathways,
macropinocytosis, phagocytosis, and lipid raft-mediated
endocytic pathways (15, 18, 19). The uptake of exosomes by cells
is an energy-consumingprocess (20). Inaddition, different cells take
up exosomes in different ways and often rely on one of the above-
mentioned pathways. Therefore, the corresponding uptake
behaviour can be inhibited by inhibiting its key proteins such as
caveolin and clathrin. At the same time, the pH of the environment
is also one of the influencing factors. An acidic environment can
enhance the uptake of exosomes, mainly because the acidic
environment can increase the expression of caveolin-1 on the
surface of exosomes (21, 22). In addition, exosomes may also
undergo cell uptake and release cycles in multiple cells to
exchange substances. The researchers have also conducted bio-
distribution studies on exosomes. After oral administration,
exosomes are mainly distributed in the liver, lung, kidney,
pancreas, spleen, ovary, colon, and brain, but intravenous
administration makes them mainly distributed in the liver,
followed by spleen, lung, and gastrointestinal tract (23, 24).
Intravenous injection leads to rapid elimination of exosomes
from the bloodstream (25), while intranasal administration
facilitates the delivery of exosomes to the brain (26, 27). Further
inmost tissues,macrophagesoftenmediate the uptakeof exosomes,
and the size of exosomes also affects transportation and bio-
distribution. Large-sized exosomes are more likely to accumulate
in the bone and liver (28).

The components of exosomes are complex and diverse,
including various types of lipids, proteins, mRNAs, and
Frontiers in Endocrinology | www.frontiersin.org 2
microRNAs, which enable them to act as carriers of various
signalling molecules in cells (29–31). Numerous pathological
processes have been shown to be related to the exosomes,
including tumorigenesis, inflammation, cardiovascular disease,
and diabetes (32–35). In addition, exosomes have been reported
to perform therapeutic functions and regulate receptor cells
through intercellular communication (36, 37). In particular, the
application of stem cell-derived exosomes has been proven to
maintain functions similar to that of stem cells and avoid the
obvious side effects of stem-cell therapy (38). Therefore,
exosomes show good therapeutic potential in various diseases.
For example, previous reports have confirmed the cell-protective
effects of exosomes in the heart, skin, and skeletal muscle diseases
(39–41). Recently, the role of exosomes in reducing oxidative and
nitrosation damage has attracted a lot of attention. In the
pathophysiological process of many diseases, redox environment
regulation plays an important role. Numerous studies have
evaluated the antioxidant effects of exosome in different disease
models, such as the damage caused by hyperglycaemia and obesity
(42, 43), alcohol-related brain damage (44), Parkinson’s disease
(PD) (45), musculoskeletal diseases (e.g., intervertebral disc
degeneration (IVDD), radiation-induced bone loss, osteoarthritis
(OA)) (46–48), liver injury (49), ischemia injuries (50), colitis (51),
and skin wounds (41) (Figure 2). Further, exosomes can directly
alleviate oxidative stress in various types of cells such as glial cells
(44), neurons (45), cardiomyocytes (52), endothelial cells (53),
immune cells (54), hepatocytes (49), and nucleus pulposus cells
(46) in vitro.

Oxidative stress plays a key role in the pathophysiology of
many diseases, by causing cell damage, inflammation, and
metabolic disorders. In all living cells, similar components are
responsible for mediating excessive oxidative stress and
unbalanced reduction. Therefore, exosomes can regulate
these molecular components which can be used to treat
different diseases. The functions of exosomes are conserved
across species.
OVERVIEW OF OXIDATIVE STRESS

In 1985, Sie et al. first introduced the concept of oxidative stress
to the field of redox biology and medicine (55). Oxidative stress is
very common under normal physiological conditions, and low
levels of oxidative stress may help prevent ageing (56). Mild
oxidative stress does not cause any cell damage. It works
synergistically with antioxidants to maintain cell homeostasis
and plays a role in host defence, gene transcription, and
apoptosis (57).

Antioxidants mainly include antioxidant enzymes, such as
catalase (CAT), superoxide dismutase (SOD), glutathione
peroxidase (GPX), glutathione-S-transferase, and non-enzymatic
antioxidant factors, such as melatonin, carotenoid, and some
microelements (57). However, when redox homeostasis is
disturbed, peroxides and free radicals are produced, which damage
proteins, lipids, and DNA. This process is involved in various
diseases, such as cancer (58), PD (59), Alzheimer’s disease (60),
November 2021 | Volume 12 | Article 727272
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colitis (51), diabetes (61), liver diseases (62), and the diseases of the
musculoskeletal system (63).

The activation of NADPH oxidase (PHOX) is an important
pathway to produce reactive oxygen species (ROS), such as H2O2

(hydrogen peroxide), O−
2 (superoxide radical), OH- (hydroxyl

radical), and NO· (nitric oxide). PHOX is a protein that transfers
electrons across biological membranes. Generally, the oxygen is
the electron acceptor, the procedure of the electron transfer
reaction produces superoxide. Therefore, the production of ROS
is the key biological function of PHOX (64).

Four cytosolic subunits (p47phox, p40phox, p67phox, and the small
GTPase Rac1/2) and b558, a membrane-bound flavocytochrome
form thePHOX.PHOX is activated after the phosphorylationof the
cytosolic subunit p47phox. PHOX plays an important role in redox
signalling, which can protect vascular functions and regulate
eukaryotic initiator factor 2a-mediated stress signalling (64).
Conversely, overexpression of PHOX results in the production of
excessive ROS, triggering cell damage and apoptosis (65).

The leakage of active oxygen from the mitochondria is
considered another source of ROS. Mitochondria are the
organelles that produce ATP to provide energy for subcellular
processes (66). Several processes involved in cell respiration occur
within the mitochondria, including the Krebs cycle, oxidative
phosphorylation, and fatty acid b-oxidation. Oxidative
phosphorylation plays an important role in the cellular
respiration and metabolic pathway and is performed by the inner
mitochondrial membrane (IMM) protein complexes and
molecules. It mainly includes the following two steps: the electron
transport chain (ETC) and the synthesis of ATP. Complex I
Frontiers in Endocrinology | www.frontiersin.org 3
(NADH-Q reductase, FMN, and Fe-S) is the first proton pump in
the electron transport chain. It combineswithNADHand transfers
the two high-energy electrons on NADH to the FMN prosthetic
group to oxidize NADH. FMN is reduced to FMNH2, and then the
electrons are transferred to Fe-S. Complex II (succinate-Q
reductase, FAD, Cytb) transfers the electrons of FADH2 to the
electron transport chain via Fe-S, and the relatively high transfer
potential energy of the electrons is harnessed. Complex III
(Cytochrome reductase, Cytb, Fe-S, Cytc1) catalyses the electrons
transfer process from QH2 to cytochrome c. Complex IV
(Cytochrome oxidase, CuA, Cyta, Cyta3, CuB) transfers the
electrons of the respiratory substrate directly to molecular oxygen
through the cytochrome system, and finally generatesH2O, and the
ROS obtained here can be used as a cell signalling molecule or
oxidative stress factor. The antioxidant pathways that neutralise
ROS are outlined in Figure 1.

During the mitochondrial respiratory transport chain, the
activation of nicotinamide adenine dinucleotide phosphate
oxidase (NOX), xanthine oxidase (XO) generated the
superoxide radical anion (O−

2 ). The superoxide radical anion
has two destinations. It can be converted into hydrogen peroxide
(H2O2) by superoxide dismutase (SOD), or interact with nitric
oxide (NO·) to produce peroxynitrite (ONOO-) with the help of
the endothelial nitric oxide NO synthase (eNOS). The catalase
(CAT) and/or glutathione peroxidase (GPX) enzymes maintain
the stability of the physiological concentration of hydrogen
peroxide. The reaction of excess hydrogen peroxide generates
hydroxyl radicals with redox metals can generate hydroxyl
radicals. The H2O2 removal and redox regulation are
FIGURE 1 | Oxidant and Antioxidant Enzymes System.
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dominated by peroxiredoxins (PRX). Peroxiredoxins in the
figure are represented by green.
ANTIOXIDANT PROPERTIES OF
EXOSOMES IN VARIOUS SYSTEMS

Exosomes contain various types of lipids, proteins, mRNA and
microRNA, etc., which enable the exosomes to as carriers of
various signal transduction pathways in cells (67). Exosomes
have been found to have therapeutic effects in multiple disorders.
In this section, we summarize the anti-oxidative stress activity of
exosomes in different systems and the mechanism of their
antioxidant function (Figure 2 and Table 1).

Nervous System
As life expectancy increases, ageing-related diseases, such as
neurodegenerative diseases have further increased. PD is one of
the fastest-growing ageing-related neurological diseases in
developed countries (80). Brain tissues from the PD patients
exhibit reduced levels of oxidoreductase, CAT, SOD, and other
antioxidants (81–83). Due to the blood-brain barrier, the
commonly used antioxidant catalase cannot be delivered to the
brain (84). Application of the emerging nano-delivery systems,
have drawbacks like the toxicity of nanomaterials and quick drug
Frontiers in Endocrinology | www.frontiersin.org 4
removal by the mononuclear phagocyte system (85). Exosomes
are thought to have the ability to cross the blood-brain barrier
and can avoid clearance by the immune system due to the
membrane layer (26, 27).

Two different studies have investigated the application of
catalase encapsulated by exosomes in PD. Kojima et al.
constructed human MSC-derived exosomes containing catalase
mRNA (45). They used 6-hydroxydopamine (6-OHDA) to
produce cytotoxic levels of ROS and damage to neurons. The
results showed that the exosomes they designed could rescue
neurotoxicity and reduce inflammation. The expression of
neuro-inflammation-related factors in the brain such as glial
fibrillary acidic protein (GFAP) (86), allograft inflammatory
factor 1 (Iba1) (87), tumour necrosis factor a (TNFa) (88),
and CD11b (26), were attenuated by the exosomes. Haney et al.
conducted a similar study. The exosomes derived from mouse
macrophages consisting of catalase directly incorporated into the
exosomes (26). The exosomal formulations of catalase they
produced could be located within the neurons and microglia,
confirming that exosomes can cross the blood-brain barrier. At
the same time, the exosomal preparation significantly reduces
inflammation in the brain and improved the survival of neurons.

In addition to catalase delivery, studies have also reported that
anti-inflammatory drugs delivered by exosomes can play a role in
oxidative stress regulation (27). Zhuang et al. used exosomes
from EL-4 cells (mouse lymphoma cell line) for curcumin
FIGURE 2 | Exosomes therapies via antioxidant effects. Exosomes can eliminate free radicals in cells and donate mitochondrial-related proteins, directly or indirectly
up-regulate the antioxidant capacity of cells and improve cell bioenergetics. These mechanisms reduce oxidative stress, which show promising antioxidant properties
of exosomes.
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TABLE 1 | Antioxidant activity of exosomes in disease models.

Application Model Exosomes used Effect of exosome treatment Antioxidant
mechanisms

Reference

Neural system 6-OHDA induced Parkinson’s
disease model

Catalase exosomes Anti-inflammation, significant neuroprotective
effects

ROS↓ (26)

Neural system LPS-induced brain
inflammation

Anti-inflammation drugs
exosomes

Anti-inflammation effects ROS↓ (27)

Neural system Alcohol chronically consuming
rats model

MSC-derived exosomes Reverse alcohol-induced hippocampal oxidative
stress

GLT1↑ (44)

Liver system CCl4-induced liver injury (mice) Human umbilical cord MSC-
derived exosomes

Inhibit oxidative stress-induced apoptosis ERK1/2
phosphorylation↑

Bcl2↑
SOD↑
ROS↓

(49)

Liver system CCl4-induced liver injury (mice) Human umbilical cord MSC-
derived exosomes

Reduce oxidative stress, inhibited apoptosis and
fibrosis

ROS↓
caspase 3↓

(68)

Liver system CCl4-induced liver injury and
ischemic/reperfusion liver injury
(mice)

MSC-derived exosomes Reduce oxidative stress on the injury-induced
liver cells, repair and recover the injured liver
tissue

ROS↓ (69)

Liver system H2O2 treated human
immortalized hepatocytes

HPC-derived exosomes Prevent oxidative induced cell death of
hepatocyte

NRF2↑
GCL↑
ROS↓

(70)

Digestive
system

Experimental Colitis (rats) BMSC-derived exosomes Attenuate colon Inflammation, oxidative stress
and apoptosis

SOD↑
ROS↓

caspase-3,
caspase-8 and
caspase-9↓

(51)

Cardiovascular
system

Unilateral hind-limb ischemia
(mice)

Coronary serum exosomes
derived from patients with
myocardial ischemia

Promote angiogenesis, promoted ischemic injury
repair

miR-939-5p↓
VEGF↑
iNOS↓

(50)

Cardiovascular
system

Chronic heart failure induced
by left coronary artery ligation
(rats)

MSC-derived exosomes Modify myocardial dysfunction NRF2↑
ROS↓

(71)

Cardiovascular
system

Injury model induced
endothelial cells

ACE2 induced endothelial
progenitor cells exosomes

Protect endothelial cells from injury and
apoptosis

ROS↓
NOX2↓

(53)

Cardiovascular
system

H2O2 treated cardiac
microvascular endothelial cells
(mice)

Hypoxia-pretreated
cardiomyocytes exosomes

Reduce the apoptosis and oxidation state of
cardiac vascular endothelial cells

CircHIPK3↑
miR-29a induce

IGF-1↑

(72)

Cardiovascular
system

5/6 NTP induced vascular
calcification and ageing mice

VSMC-derived exosomes Attenuate vascular calcification and ageing MiR‐204↑
miR‐211↑
BMP2↑

(73)

Musculoskeletal
System

Intervertebral disc degeneration
(rabbits)

MSC-derived exosomes Prevent the progression of degenerative changes Mitochondrial
function↑
ROS↓
NLRP3

inflammasome↓

(46)

Musculoskeletal
System

Osteoarthritis (mice) MSC-derived exosomes Reduce the level of ROS in degenerative
chondrocytes, restore mitochondrial dysfunction

Mitochondrial
function↑
ROS↓

Inflammation↓

(74)

Musculoskeletal
System

Osteoarthritis (mice) MSC-derived exosomes Decrease mtDNA damage, increase ATP
synthesis, facilitate cartilage regeneration

Mitochondrial
function↑
ROS↓

Inflammation↓

(75)

Musculoskeletal
System

Chondrocytes obtained from
patients diagnosed with
advanced OA

Human adipose tissue-derived
MSC exosomes

Anti-inflammatory properties in degenerated
chondrocytes

iNOS↓ (48)

Musculoskeletal
System

Radiation-induced bone loss
(mice)

BMSC-derived exosomes Restore recipient BMSC function, alleviate
radiation-induced bone loss

Wnt/b-catenin↑
SOD1↑
SOD2↑
ROS↓

(47)

Endocrine
system

Untreated diabetic control
wounds

ADSC-derived exosomes Facilitate faster wound closure, enhance collagen
deposition, increase neo-vascularization,
decrease oxidative stress

ROS↓ (42)

(Continued)
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encapsulation and used it to treat lipopolysaccharide (LPS)-
induced brain inflammation model. The results showed that by
intranasal administration, engineered exosomes can significantly
inhibit the number of inflammatory microglia.

Apart from the drug encapsulation, exosomes can play an
anti-oxidative stress role by themselves in neurodegenerative
diseases. Ezquer et al. used ethanol to induce excessive oxidative
stress and neuro-inflammation in rats (9). According to previous
reports, alcohol can inhibit the levels of glutamate transporter 1
(GLT1), leading to an increase in the number of inflammatory
microglia. Intranasal administration of MSC-derived exosomes
significantly increased the expression of GLT1 and rescued the
brain oxidative stress damage caused by alcohol.

Digestive System
Increased oxidant stress is recognized as a key factor in most
chronic liver diseases, such as viral hepatitis, liver fibrosis, non-
alcoholic fatty liver disease, and alcoholic liver disease (89). The
progression of hepatocarcinogenesis is often accompanied by the
imbalance of intracellular oxidative stress (90). More and more
researchers currently use antioxidants as therapeutic agents (91–
94). Indeed, there is increasing evidence showing that the
therapeutic effects of MSCs are driven by the release of
exosomes (16). Moreover, several studies have demonstrated
that human MSC may induce tumour growth, whereas MSC-
derived exosomes are biologically safe (95).

Several studies have investigated the application of exosomes
in liver diseases. Yan et al. isolated human umbilical cord MSC-
derived exosomes (hucMSC-Ex) to rescue acute liver injury and
liver fibrosis induced by CCl4 and H2O2 (49). They found that
hucMSC-Ex relieve CCl4 and H2O2 induced liver injury both in
vitro and in vivo, which might be related to the delivery of
glutathione peroxidase 1 (GPX1) to eliminate excess ROS and
Frontiers in Endocrinology | www.frontiersin.org 6
inhibition of oxidative stress-induced apoptosis via upregulation
of extracellular-regulated kinase 1/2 (ERK1/2) and B-cell
lymphoma-2 (Bcl-2) and downregulation of the inhibitor
kappa B kinase b (IKKb)/nuclear transcription factor kappa B
(NF-kB)/caspase-9/caspase-3 pathway. Knockout of GPX1 in
hucMSCs abolished the antioxidant and anti-apoptotic
capabilities of HucMSC-Ex and weakened its hepatoprotective
effects in vitro and in vivo. Jiang et al. performed a similar study
(68), where a commonly used hepatoprotective agent (bifendate)
was compared to exosomes to evaluate the antioxidant effect of
exosomes in liver injury. Interestingly, HucMSC-Exs exhibit a
stronger antioxidant effect in the pathological process of liver
tumours induced by CCl4. Damania et al. showed that MSC-
derived exosomes reduced oxidative stress in in vitro liver injury
models (69).

Hyung et al. confirmed that human hepatic progenitor cell
(CdH)-derived exosomes (EXO-hCdHs) significantly reduce the
oxidative stress response and delay hepatocyte cell death (70).
The data showed that EXO-hCdHs inhibited oxidation-induced
cell death in hepatocytes. Consistently, EXO-hCdHs activated
nuclear factor erythroid 2-related factor 2 (NRF2) expression
and induced downstream regulators. NRF2 is an emerging
cellular antioxidant regulator, which can induce the expression
of antioxidant-related genes to further regulate cellular oxidative
stress (96) and protect against an imbalance of ROS (97).

In addition, exosomes attenuated the severity of colitis (51).
The therapeutic effect of BMSC-derived exosomes in colitis is
related to the suppression of oxidative disturbance, which is
manifested by decreased activities of myeloperoxidase and
malondialdehyde (MDA), as well as increased levels of SOD
and glutathione. These studies indicate that exosomes are
promising candidates for the treatment of oxidative stress-
related digestive system diseases.
TABLE 1 | Continued

Application Model Exosomes used Effect of exosome treatment Antioxidant
mechanisms

Reference

Endocrine
system

Obese mice Adipocyte exosomes Attenuate adipose inflammation, decease
macrophage number, prevent and treat obesity

aKG↑
STAT3/NF-kB↓

(43)

Skin H2O2-stimulated keratinocytes
or UV-irradiated mice skin

MSC-derived exosomes Inhibit oxidative injury, promote antioxidant
activity, alleviate oxidative responsiveness

NRF2↑
SOD↑
ROS↓

(76)

Tumor MCF7-injected tumor (mice) Camel milk exosomes Decrease breast tumor progression, induce
antioxidant status

SOD↑
ROS↓

(77)

Immune system CTX induce immuno-toxicity
(mice)

Camel milk exosomes Ameliorate immunosuppression and oxidative
stress

SOD↑
ROS↓

(54)

Urinary system Testicular ischemia-reperfusion
injury (rats)

BMSC-derived exosomes Protect against testicular ischemia-reperfusion
injury and apoptosis

SOD↑
ROS↓

caspase 3↓

(78)

Urinary system Murine hind limb ischemia
model

Melatonin-treated MSC-derived
exosomes

Improve functional recovery and vessel repair,
protect mitochondrial function

miR-4516↑ (79)
November 202
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Circulatory System
Atherosclerosis, hypertension, and macrovascular disease, blood
vessel damage are common in individuals of advanced age (98).
Many researchers have demonstrated that excessive oxidative
stress can cause endothelial/vascular dysfunction (99). Therefore,
reducing oxidative stress is a very important therapeutic strategy
for improving vascular function and treating cardiovascular
diseases in the elderly.

In the case of hypoxia/reoxygenation (H/R)-induced injury,
senescent endothelial cells have a higher rate of apoptosis,
excessive ROS, insufficient nitric oxide (NO), upregulated
nicotinamide adenine dinucleotide phosphate oxidase 2
(NOX2), downregulate angiotensin-converting enzyme 2
(ACE2) and eNOS, and compromised tube formation ability.
The endothelial progenitor cells triggered by ACE2 can protect
endothelial cells through the release of exosomes (53). This effect
may be due to the presence of miR-18a, which subsequently
downregulates the NOX2/ROS pathway.

Ribeiro-Rodrigues et al. found that the exosomes of
cardiomyocytes under ischemic conditions can promote the
formation of cardiovascular blood vessels (100). In another
similar study, Li et al. collected coronary artery serum
exosomes from patients with myocardial ischemia and found
that this type of exosomes could promote endothelial cell
proliferation and migration, and tube formation (50). They
also found that exosomes induced by such ischemic conditions
had low levels of miR-939-5p. As miR-939-5p has the ability to
downregulate the inducible nitric oxide synthase (iNOS) and NO
(related to endothelial cell proliferation and tube formation),
ischemia-induced exosomes have the ability to promote blood
vessel formation.

Exosomes obtained from cardiomyocytes subjected to
hypoxia or inflammation have been found to show anti-
oxidative stress function. Wang et al. isolated exosomes from
the cardiomyocytes preconditioned using hypoxia and it was
found that the exosomes obtained after this treatment had a
stronger repair capability and significantly upregulated
circHIPK3 than in the exosomes derived from unconditioned
cells (72). Previous studies have confirmed that the circRNAs can
be transferred to target cells via exosomes (52). It was also shown
that exosomes rich in circHIPK3 can reduce levels of apoptosis
and oxidative stress in cardiac vascular endothelial cells (shown
by the decrease in MDA levels and increased SOD activity),
upregulate the anti-apoptotic protein Bcl-2, and downregulate
the pro-apoptotic proteins Bax and cleaved caspase-3.

In another study (71), the authors used TNFa to stimulate
cardiomyocytes and isolated the subsequently produced
exosomes. The exosomes obtained in this way are rich in a
variety of miRNAs (microRNA-27a, microRNA-28a, and
microRNA-34a). The results show that such miRNA-rich
exosomes can cause an imbalance in the NRF2/antioxidant
response element (ARE) signalling pathway. As the NRF2/ARE
signalling pathway plays an important role in preventing
oxidative damage to the cardiomyocytes (101), the authors
believe that this type of exosome is related to the oxidative
stress of cardiomyocytes.
Frontiers in Endocrinology | www.frontiersin.org 7
In addition to the changes in exosomes caused by hypoxia,
ischemia, and inflammation, the body’s hormone levels can also
regulate the cardiovascular system through exosomes. Melatonin
is a type of indole neuroendocrine hormone necessary for
maintaining physiological functions (102). Previous studies
have shown that melatonin improves the cardiovascular system
through the direct downregulation of excessive ROS and indirect
antioxidant activity. A study by Feng et al. found that melatonin
could stimulate vascular smooth muscle cells to release exosomes
containing miR-204/miR-211, which might be able to target
bone morphogenetic protein 2 (BMP2), thereby reducing
vascular calcification and ageing (73).

Musculoskeletal System
Degenerative diseases of the musculoskeletal system, such as
IVDD, OA, and osteoporosis, have had a huge impact on society,
and the quality of life of middle-aged and elderly people suffering
from these diseases is significantly decreased (80).

Previous studies have shown that the onset of IVDD is closely
related to ROS and oxidative stress (103). The study by Xia et al.
investigated the effect of MSC-derived exosomes on oxidative
stress in degenerating intervertebral discs (46). Mitochondria are
the primary ROS-producing organelles and are also the source of
organelle damage caused by ROS (104). Excessive mitochondrial
ROS production can cause cells to lose homeostasis. Exosomes
play an important role in mitochondrial communication
between cells and can mediate information transmission
between cells (75, 105, 106). They found that exosomes could
inhibit the H2O2 induced cell apoptosis and the expression of
inflammatory factors (iNOS and interleukin-6). At the same
time, exosomes can reduce the production of intracellular ROS
and structural abnormalities in mitochondria. This anti-
oxidative stress effect may be due to the action of a variety of
mitochondria-related proteins in exosomes.

OA is the most common joint disease worldwide (107).
Similar to IVDD, many studies have confirmed that
inflammation is associated with oxidative stress damage in
arthritic chondrocytes which has been reviewed previously
(108). Interleukin-1b (IL-1b), a pro-inflammatory factor,
stimulates chondrocytes to produce iNOS and NO. Tofiño-
Vian et al. found that the use of exosomes derived from
adipose tissue-derived MSCs can reduce the levels of nitrite in
the medium and the mRNA expression of iNOS in OA
chondrocytes (48). Similar to the study of intervertebral discs,
Chen et al. investigated the effects of primary chondrocyte
exosomes and bone marrow MSC-derived exosomes on the
expression of ROS in degenerative chondrocytes in two studies
(74, 75). They found that these two types of exosomes can reduce
the structural abnormalities of mitochondria and the
intracellular ROS production, thereby having a therapeutic
effect on cartilage degeneration.

BMSC-derived exosomes have also shown good prospects in
bone loss-related diseases. Two studies have found that exosomes
can also delay osteoporosis by inhibiting osteoclast metabolism,
promote local angiogenesis to prevent femoral head necrosis
(109, 110). Zuo et al. found that bone loss caused by radiotherapy
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is accompanied by excessive oxidative stress, DNA damage, and
chromosomal aberrations. BMSC-derived exosomes can reduce
the oxidative stress damage of BMSCs caused by irradiation by
reducing ROS production, promoting the expression of
antioxidant proteins (such as catalase, SOD1, and SOD2) (47),
and accelerating DNA repair after radiation.

Other Systems
In addition to the diseases of the above-mentioned systems,
exosomes can also exert anti-cancer effects by regulating
abnormal oxidative stress metabolism in the tumour
microenvironment. Furthermore, a series of studies have applied
exosomes to urinary diseases and immune deficiency diseases
caused by oxidative stress.

Badawy et al. found that camel milk-derived exosomes
showed anticancer effects (77). The milk-derived exosomes
significantly increased the activities of antioxidant enzymes
(SOD, GPX, and CAT), and decreased the levels of the lipid
peroxidation marker MDA and the expression of the oxidative
stress marker iNOS in tumour tissues. Zhuang et al. have also
reported that a STAT3 inhibitor delivered by exosomes can
efficiently inhibit tumour growth (27).

The oxidative stress-related and immunosuppressive effects of
chemotherapeutic drugs are well established (111, 112). In an
ear l ier s tudy , Ibrahim et a l . have confirmed that
cyclophosphamide (CTX) decreased CAT, SOD, and GPX levels,
and induced immunosuppression in rats (54). However,
compared with CTX-treated animals, the camel milk exosomes
significantly reduced the level of lipid peroxidation marker MDA
and increased the activity of antioxidant enzymes SOD, GPX, and
CAT. In addition, camel milk exosomes can normalize
biochemical and immunological parameters.

The progression in chronic kidney disease often leads to loss of
kidney function, resulting in ineffective homeostasis. Yoon et al.
reported that exosomesderived frommelatonin-treatedMSCs (MT
exosomes) can significantly improve the pathophysiology of
chronic kidney disease (79). They demonstrated that the PrPc
protein (a highly conserved and ubiquitous glycoprotein) in
exosomes improves the immunomodulatory effect and up-
regulates antioxidant proteins in the cell (113, 114), thus
improving the regenerative potential of MSCs and attenuating
ischemia-induced oxidative stress.

Testicular ischemia-reperfusion injury (IRI) is the main
pathophysiological process of surgical reduction after testicular
torsion. A large number of oxygen free radicals and inflammatory
cytokines play an important role in the pathophysiological process
of IRI (115, 116). Zhang et al. found that the treatment of BMSC-
derived exosomes can increase the SOD activity of ischemia-
reperfusion-injured testicular tissue and decrease MDA content
(78). This preliminary study indicated that BMSC-derived
exosomes can reduce testicular IRI to protect spermatogenesis.

Diseases such as diabetes and obesity are metabolism-related
diseases, which are often accompanied by increased inflammation
and oxidative stress (117, 118). For example, in diabetic ulcers, the
number of ROS-releasing macrophages and neutrophils increases
(119, 120), often leading to wounds that cannot heal. A previous
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study reported that the amputation rate in diabetic patients was 10-
20 timeshigher than thatofnon-diabetic patients (121). Shiekhet al.
extracted exosomes derived from adipose-derived stem cells
(ADSCs) and combined them with a scaffold capable of releasing
oxygen (42). The composite structure of the scaffold can
significantly enhance the healing of diabetic wounds. At the same
time, their research showed that ADSC-derived exosomes can
reduce the effects of hyperglycaemia by reducing oxidative stress,
thereby increasing themetabolic activity of cells. Exosomes can not
only promote the healing of diabetic wounds, butWang et al. found
that exosomes can also reduce skin oxidative stress damage caused
by ultraviolet rays (76). In their study, MSC-derived exosomes
reduced ROS production, DNA damage, and mitochondrial
changes, in a process regulated by the NRF2 defence system.

Low-grade inflammation accompanied by obesity often
results in the infiltration of immune cells into adipose tissue
(122). The inflammation of adipose tissue leads to the
downregulation of a-ketoglutarate (aKG), which is a target for
melatonin inhibition of adipose inflammation. A study by Liu
et al. demonstrated that the melatonin increased the release of
adipose-derived exosomal aKG, which in turn attenuated signal
transduction and activation of transduction-3 (STAT3)/NF-kB
signalling pathway by its receptor, oxoglutarate receptor 1
(OXGR1), in adipocytes (43). Therefore, melatonin may have
the ability to prevent and treat systemic inflammatory diseases
caused by obesity through exosomes.
ROLE OF EXOSOMES IN INFLAMMATION
AND DEGENERATION

Under normal physiological conditions classically activated (M1)
macrophages secrete pro-inflammatory factors such as TNFa,
interleukin-6, and IL-1b, while alternatively activated (M2)
macrophages show an anti-inflammatory phenotype (123,
124). Additionally, regulatory T cells (Tregs) and type 2 T
helper (Th2) cells secrete anti-inflammatory factors (125).
These cells maintain the homeostasis of the immune
microenvironment. When cells are stimulated by harmful
factors such as toxic chemicals, heat, abnormal pressure,
tumours, ageing, or degeneration the cellular inflammatory
response triggers a series of reactions (126). The inflammation-
related cells secrete exosomes that contain pathogen-related and
injury-related molecules and pathogenic antigens (127). In
addition, the proteases and glycosidases in these exosomes also
cause tissue destruction. This indicates that exosomes play a key
role in the process of inflammation (127). Therefore, exosomes
are important targets for the treatment of inflammation-related
diseases in the future.

In addition to inflammation-related diseases, exosomes also
have treatment potential in the degenerative diseases. For
example, in PD, glial cell-derived exosomes can transmit
beneficial or harmful information to neurons through their
internal cargo (128). As exosomes can penetrate the blood-
brain barrier, the exosomes released by neuronal cells can be
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detected in serum or plasma. Since exosomal constituents can
provide information about their source cells, exosomes have the
potential to become a new type of disease diagnostic markers
(129). Moreover, researchers have revealed the relationship
between endothelial cell inflammation and brain degeneration
by analysing endothelium-derived exosomes isolated from
plasma (130).

Many studies have confirmed the ability of MSCs to inhibit
inflammation. AsMSCsmainly exert biological effects by secreting
exosomes, an increasing amount of research is focusedon exploring
the anti-inflammatory effect of MSC-derived exosomes. The study
of this mechanism has shown that MSC-derived exosomes can
inducepolarizationofmacrophages fromM1type toM2 type (131–
133), thereby changing the phenotype of macrophages from pro-
inflammatory to anti-inflammatory. Some investigators have also
found that MSC-derived exosomes can regulate the function of T
cells, inducing the transition from type 1 T helper (Th1) cells to Th2
cells (134). MSC-derived exosomes have also become a next-
generation treatment strategy for degenerative diseases such as
PD (135), OA (136), IVDD (137), and macular and retinal
degeneration (138). These abilities of MSC-derived exosomes are
mainly exerted by the constituent proteins, mRNA, and miRNA,
which attenuate chronic inflammation, reduce apoptosis and
stimulate proliferation (139).
FUTURE PERSPECTIVES

According to the presented literature review, it can be seen that
the anti-oxidative stress properties of exosomes have been
confirmed in multiple systems, which proves the potential of
exosomes as a therapeutic agent against oxidative stress.
However, before further application, the following hurdles
still need to be overcome. First, exosomes are highly
heterogeneous, showing a high degree of diversity in the size
of exosomes derived from different cell sources, the internal
biological components, and their effect on the function of the
recipient cells (28). Exosomes derived from the MSCs, a
common source of exosomes, exhibit huge differences in the
expression of MSC membrane markers and proteomic
characteristics even when derived from the same tissue (140).
The cell microenvironment and internal biology may also affect
the content of exosomes and their biomarkers (29–31, 52).
Based on an in-depth understanding of their heterogeneity, it is
necessary to accurately characterize the exosomes used in
different experiments.

Secondly, how exosomes affect the function of recipient cells
requires further study. At present, most studies have focused on
the components of exosomes (such as proteins, miRNAs, and
circRNAs) that exert antioxidant effects on recipient cells.
However, the behaviour of these components after entering the
cell needs further investigation. The location of these
components in the cell and whether they are degraded by
lysosomes is unknown. Existing studies have shown that
exosomes may be taken up by cells in different ways. For
example, human melanoma cells take up cargo in exosomes
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through membrane fusion (21), while in neurosecretory PC12
cells (derived from rat adrenal medullary tumours), exosomes
are more dependent on clathrin-dependent endocytosis for
uptake (19). How different types of exosomes enter the cell and
deliver cargos (i.e., membrane fusion, macropinocytosis,
phagocytosis, and clathrin-dependent endocytosis), and what
factors affect this process, need to be further investigated
(141, 142).

Thirdly, although it is assumed that exosomes can
functionally deliver their internal miRNA to target cells there
is still a lack of direct evidence for exosomes mediated miRNA
transfer. As lipoproteins are inevitably mixed with exosomes in
the current exosome extraction process and lipoproteins also
have the function of transferring miRNA (143), it is necessary to
purify exosomes to determine their efficiency of miRNA delivery.

Lastly, the current research on exosomes is limited to cellular
or animal models, and there are very few human studies.
Although the studies reviewed in this article demonstrate the
potential of exosomes to resist oxidative stress at the cellular and
organ levels, more clinical trials need to be conducted to test the
feasibility of this strategy.
CONCLUSION

The findings summarized here demonstrate that MSC-derived
exosomes and exosomal formulations show excellent antioxidant
properties. Growing evidence shows that exosomes can eliminate
excessive ROS in cells and deliver mitochondrial protective
proteins, thereby improving the antioxidant capacity of cells
and enhancing cell viability. Future research should focus on
elucidating the specific differences in the antioxidant
mechanisms of exosomes in different diseases. Similarly, the in
the future, research should be focused on targeted tissue
engineering of exosomes, such as increasing the content of
specific antioxidant enzymes or mitochondria related proteins
in exosomes to further enhance the efficacy of exosomes. The
MSC-derived exosome-based therapy has promising application
prospects in multiple systemic diseases.
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