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Women with polycystic ovary syndrome (PCOS), commonly have profound skeletal
muscle insulin resistance which can worsen other clinical features. The heterogeneity of
the condition has made it challenging to identify the precise mechanisms that cause this
insulin resistance. A possible explanation for the underlying insulin resistance may be the
dysregulation of Transforming Growth Factor-beta (TGFb) signalling. TGFb signalling
contributes to the remodelling of reproductive and hepatic tissues in women with
PCOS. Given the systemic nature of TGFb signalling and its role in skeletal muscle
homeostasis, it may be possible that these adverse effects extend to other peripheral
tissues. We aimed to determine if TGFb1 could negatively regulate glucose uptake and
insulin signalling in skeletal muscle of women with PCOS. We show that both myotubes
from women with PCOS and healthy women displayed an increase in glucose uptake,
independent of changes in insulin signalling, following short term (16 hr) TGFb1 treatment.
This increase occurred despite pro-fibrotic signalling increasing via SMAD3 and
connective tissue growth factor in both groups following treatment with TGFb1.
Collectively, our findings show that short-term treatment with TGFb1 does not appear
to influence insulin signalling or promote insulin resistance in myotubes. These findings
suggest that aberrant TGFb signalling is unlikely to directly contribute to skeletal muscle
insulin resistance in women with PCOS in the short term but does not rule out indirect or
longer-term effects.

Keywords: Extracellular matrix, fibrosis, insulin resistance, skeletal muscle, endocrinology, cytokines
Abbreviations: CTGF, Connective Tissue Growth Factor; ECM, extracellular matrix; PCOS, Polycystic Ovary syndrome;
TGFb, Transforming Growth factor-beta; [2-3 H]DG, [2-3H]deoxy-D-glucose.
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INTRODUCTION

Polycystic ovary syndrome (PCOS) is a common endocrine
condition that affects 8-13% of women of reproductive age,
with health implications throughout the lifespan (1, 2). The
condition can be characterised by androgen excess, ovulatory
dysfunction and polycystic ovaries (3), with a combination of at
least two of these features required to meet the diagnostic criteria
(4). Traditionally, PCOS has been considered a reproductive
condition based upon the diagnostic criteria; however, insulin
resistance appears to be a key feature and a driver of the
symptoms of PCOS, with approximately 38-80% of women
with PCOS being insulin resistant when measured by
euglycaemic–hyperinsulinaemic clamp (5, 6). The insulin
resistance and subsequent hyperinsulinaemia appear to
contribute to hyperandrogenism, ovulatory dysfunction and
subfertility, highlighting the importance of understanding the
mechanisms by which insulin resistance develops in women
with PCOS.

Several insulin signalling defects have been observed in vivo
and in vitro in skeletal muscle of women with PCOS. Distinctly
in PCOS, there appear to be intrinsic defects in the post-binding
insulin receptor signalling, present in the absence of obesity or
reduced glucose tolerance (7–10). Contrary, other studies were
not able to identify any defects in skeletal muscle insulin
signalling during euglycaemic-hyperinsulinaemic clamps or
insulin stimulation in myotubes despite the given population
of overweight and lean women with PCOS having severe insulin
resistance (11–14). Taken together, this suggests that
environmental factors found in the circulation may play a
more significant role than intrinsic defects in the development
of PCOS-specific insulin resistance.

Given the heterogeneity of PCOS, multiple circulating factors
could lead to the development of insulin resistance. A possible
candidate involved in the development of metabolic
abnormalities in women with PCOS is transforming growth
factor-beta (TGFb) ligands. It has been identified that several
of the TGFb ligands play a role in the pathophysiology of PCOS.
These TGFb ligands are responsible for alterations in ovarian
hormones and morphology, with the thickening of the ovarian
capsule and stroma caused by an increase in collagen deposition
and fibrotic tissue related to a dysregulation of TGFb superfamily
ligands (15–17). The sustained activation of SMAD2/3 signalling
by TGFb1 leads to an increase in collagen production and
fibrotic factors, causing extracellular matrix (ECM)
remodelling (18, 19). In particular, TGFb1 can upregulate the
pro-fibrotic cytokine connective tissue growth factor (CTGF/
CCN2) in skeletal muscle cells and tissue (20, 21),. And
subsequently, promote production of collagen and other
fibrotic proteins such as fibronectin and alpha-SMA (22–24).

TGFb ligands, including TGFb1, are elevated in the serum of
women with PCOS (25–28). This evidence presents the
possibility that TGFb1 exerts effects beyond the reproductive
tissues and contributes to other pathophysiological features in
women with PCOS. However, the interaction between TGFb
signalling, ECM and insulin resistance is not fully understood.
Dysregulation of ECM remodelling via elevated TGFb ligands
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and inflammation results in excess collagen deposition, which
may create a physical barrier that could impair the uptake of
glucose and the binding of insulin to the receptor, contributing to
the development of insulin resistance (29–32). In line with these
findings, gene expression of key components of the TGFb
signalling pathway is altered in the skeletal muscle of women
with PCOS (33–35). An increase in glucose and insulin can
promote the translocation of intracellular TGFb receptors to the
cell surface in a variety of cell types (36, 37). This occurs via the
activation of Akt and is regulated by subsequent activation of
AS160 to enhance TGFb responsiveness (36). This translocation
of TGFb receptors causes an amplification of TGFb signalling
through SMAD activation (38). The interaction between insulin
and TGFb signalling may be particularly pertinent in relation to
women with PCOS, given that many have hyperinsulinemia.

TGFb signalling via SMAD-Akt-mTOR pathway may be
responsible for insulin resistance in women with PCOS (33,
39). This is due to SMAD signalling, causing perturbations in
Akt and mTOR signalling (40, 41). The interaction of TGFb1
with MTORC1 (mTOR and raptor) and MTORC2 (mTOR and
rictor), has been explored in other cell types and conditions
focusing on pulmonary fibrosis (42–45). These studies show that
TGFb1 activation of SMAD3 leads to an increase in collagen
synthesis via mTOR signalling. This excess collagen synthesis is
coupled with metabolic disturbances and an increase in
glycolysis. In support of the metabolic role of TGFb1
signalling, SMAD3 knockout mice are protected from diet-
induced obesity and diabetes (46, 47). Whether or not these
effects would occur in the skeletal muscle remains to
be determined.

Hyperglycaemia and hyperinsulinemia, two significant
features of PCOS pathophysiology, can lead to rapid
translocation of intracellular TGFb receptors 1 and 2 to the
cell surface in various cell types (36, 37, 48). This translocation of
TGFb receptors causes an amplification of TGFb signalling
through SMAD activation (38), leading to an increase in cell
migration (36, 49). This process is capable of stimulating
oxidative stress and adverse ECM remodelling. Collectively,
this presents the possibility that aberrant TGFb signalling
could induce insulin resistance via direct dysregulation of
insulin signalling or by negatively regulating the function and
composition of the skeletal muscle ECM. Therefore, this study
aimed to determine the role of TGFb1 in metabolic dysfunction
and to generate a greater understanding of the aetiology
of PCOS.
MATERIALS AND METHODS

Participants
Seven overweight women with PCOS and seven lean healthy
women participated in the study. Participants’ clinical
characteristics are shown in Table 1. PCOS was diagnosed
using the Rotterdam Criteria (4), with the diagnosis being
confirmed by an endocrinologist. Rotterdam criteria required
confirmation of two of the following: (i) oligo- or anovulation;
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https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


McIlvenna et al. TGFb1, Insulin Signalling and PCOS
(ii) clinical (hirsutism and acne) and/or biochemical
hyperandrogenism; (iii) polycystic ovaries on ultrasound and
the exclusion of other causes of hyperandrogenism. The healthy
control group consisted of women without any features of PCOS.
All women were Caucasian, premenopausal and aged between
18-45 yr. The exclusion criteria for both groups included
menopause, pregnancy, smoking, type 1 or type 2 diabetes
mellitus, uncontrolled hypertension (> 160/100 mm/Hg),
cardiac ischemia, established cardiovascular disease, renal
impairment and malignancy, and use of medications that
interfere with endpoints (e.g., oral contraception, insulin-
sensitisers, anti-androgens, progestins, anti-hypertensives, and
lipid-lowering agents). Ethical approval was obtained from the
Victoria University Human Research Ethics Committee
(Reference - HRE17-232). All participants provided written
informed consent prior to participation in the study.

In Vivo Data Collection
Participants reported to the lab following an overnight fast,
resting blood samples were collected, and a euglycaemic–
hyperinsulinaemic clamp was performed to determine insulin
sensitivity following methods as previously described (50, 51).
Analysis of fasted blood samples for insulin (Human Insulin-
Specific RIA, HI-14K, Millipore) and AMH (Ultra-Sensitive
AMH/MIS ELISA, AL-105, Anash Labs) was carried out at
Frontiers in Endocrinology | www.frontiersin.org 3
Victoria University, with other measures being carried out by
an accredited pathology lab at Monash pathology, Australia. For
further details regarding blood sample collection and analysis see
(52):. Lean mass and fat mass were estimated by a whole-body
dual-energy X-ray absorptiometry (DXA) scan (GE Lunar
Prodigy, GE Lunar Corp, Madison WI, USA; operating system
version 9).

Cell Culture
Following an overnight fast, a muscle biopsy was obtained from
the vastus lateralis of each participant using the modified
Bergstrom technique with suction (53, 54). Following
collection, approximately 40-50 mg of muscle was minced into
small pieces (< 1-2 mm3) and enzymatically disassociated with
0.05% Trypsin-EDTA (Gibco, Thermo-fisher, Melbourne,
Australia) on an orbital shaker for 20 min at room
temperature. This process was repeated twice with a total end
volume of 45 ml of cell suspension. Five ml of fetal bovine serum
(Gibco, Thermo-fisher, Melbourne, Australia) was then added to
inactivate the trypsin. The cell suspension was filtered through
100 µm cell strainer (Falcon, Thermo-fisher, Melbourne,
Australia) to remove any undigested tissue and then
centrifuged for 10 min at 1500 rpm. Cells were resuspended in
a-MEM (Gibco, Thermo-fisher, Melbourne, Australia)
containing 5.5 mM glucose, supplemented with 10% fetal
TABLE 1 | Clinical Characteristics.

Healthy Women (n = 7) Women with PCOS (n = 7)

General characteristics
Age 26 ± 2 30 ± 2
Weight (kg) 65 ± 5b 99 ± 7
BMI (kg/m2) 22.1 ± 1.0b 36.7 ± 2.5
Lean mass (%) 68 ± 2b 49 ± 2
Fat mass (%) 30 ± 2b 49 ± 3
PCOS Phenotype N/A A = 3

B = 2
C = 0
D = 2

Fasting blood measurements
Free Testosterone (pmol/L) 13.54 ± 2.44a 36.9 ± 5.45
Total Testosterone (nmol/L) 0.92 ± 0.12a 1.48 ± 0.14
Insulin (µIU/mL) 9.9 ± 0.9a 15.6 ± 2.4
Glucose (mM) 4.4 ± 0.1 4.7 ± 0.1
HBA1C (%) 5.13 ± 0.05 5.19 ± 0.19
SHBG (nmol/L) 54.1 ± 10.0 30.7 ± 8.0
Dihydrotestosterone (nmol/L) 0.33 ± 0.07 0.33 ± 0.01
Estradiol (pmol/L) 179.9 ± 76.1 284.9 ± 62.0
Androstenedione (nmol/L) 3.22 ± 0.34a 5.14 ± 0.58
ALT (IU/L) 21.0 ± 4.6 45.9 ± 12.4
AST (IU/L) 22.1 ± 2.2 26.6 ± 3.9
Cholesterol (mmol/L) 3.90 ± 0.27a 5.13 ± 0.36
Triglycerides (mmol/L) 0.6 ± 0.1a 1.4 ± 0.1
HDL (mmol/L) 1.57 ± 0.14a 2.85 ± 0.48
LDL (mmol/L) 2.0 ± 0.2 2.7 ± 0.1
Euglycaemic-hyperinsulinaemic clamp
GIR (mg/lbmkg/min) 16.36 ± 1.9b 6.75 ± 1.1
Insulin sensitivity index 14.97 ± 1.7a 7.0 ± 1.0
October 2021 |
Data presented as mean (± SEM). PCOS phenotypes defined according to the Rotterdam Criteria, with the following features present in each phenotype as follows: A =
Hyperandrogenism, ovulatory dysfunction and polycystic ovarian morphology. B = Hyperandrogenism and ovulatory dysfunction. C = Hyperandrogenism and polycystic ovarian
morphology D = Ovulatory dysfunction and polycystic ovarian morphology. SHBG, Sex hormone-binding globulin; AST, aspartate aminotransferase; ALT, alanine aminotransferase; HDL,
high-density lipoproteins; lbmkg, lean body mass in kilograms; LDL, low-density lipoproteins; GIR, Glucose infusion rate. Insulin sensitivity index calculated using the following formula:
(Glucose infusion rate/lean body mass)/Steady state insulin)*100. aP < 0.05 vs. PCOS. bP < 0.001 vs. PCOS.
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bovine serum, 0.5% penicillin-streptomycin (Sigma Aldrich, St
Lewis, MO, USA) and 0.5% amphotericin B (Sigma Aldrich, St
Lewis, MO, USA), plated into a T25 flask (Greiner Bio-one,
Frickenhausen, Germany) previously coated with ECM gel
(Geltrex™ LDEV-Free Reduced Growth Factor Basement
Membrane Matrix, Thermo-fisher, Melbourne, Australia) and
cultured at 37°C in 5% CO2. Growth medium was changed after
24 h and then every second day thereafter. For further details of
methods used, see Cornall etal. (55).

After reaching 70-80% confluence, satellite cells were purified
following the method by Agley etal. (56). Magnetic activated cell
sorting (MACS) with anti-CD56 microbeads (MACS #130-050-
401, Miltenyi Biotec, Bergisch Gladbach, Germany) and MS
column (MACS, #130-091-632, Miltenyi Biotec, Bergisch
Gladbach, Germany) were used in order to separate a fraction
of enriched myogenic cells (CD56+). This enriched fraction of
satellite cells was then plated into ECM-coated T75 flasks. After
reaching 80-90% confluence, myoblasts were plated for
experiments (passage 4) into 6-well plates for protein
expression studies and 12-well plates for glucose uptake
experiments. Growth medium was changed every second day
until cells reached 80-90% confluence, then differentiation was
started. Differentiation medium (normal-glucose a-MEM
supplemented with, 2% horse serum, 0.5% penicillin-
streptomycin and 0.5% amphotericin B) was added to the cells
and changed every day for five days. Differentiated myotubes
were then exposed for 16 h to TGFb1 (1 ng/ml and 5 ng/ml)
(Transforming Growth Factor-b1 human, T7039, Sigma Aldrich,
St Lewis, MO, USA), following treatment with TGFb1 myotubes
were treated with or without insulin (100 nM) (ActRapid,
Human Insulin, NovoNordisk Bagsvaerd, Denmark) for
30 min. An untreated control condition with no TGFb1
treatment was also included. Treatments and control
conditions were prepared in serum-free low glucose media (a-
MEM with 0.1% BSA, 0.5% penicillin-streptomycin and 0.5%
amphotericin B).

Glucose Uptake
A radioactivity-based assay utilising [2-3H]deoxy-D-glucose
([2-3H]DG) (PerkinElmer, NET238C001MC, Waltham, MA,
USA) was used to measure glucose uptake (57). Myotubes
were pre-incubated overnight (16 hours) in serum-free media
with or without the previously described treatments of TGFb1,
Cells were washed three-times and pre-incubated with Krebs
buffer (10 mM HEPES, 2.5 mM NaH2PO4, 150 mM NaCl, 5 mM
KCl, 1.2 mM CaCl2, 1.2 mM MgSO4, 0.1% BSA) with and
without insulin (100 nM) for 30 minutes. The pre-incubation
with Krebs buffer was used to deplete pre-existing glucose. A
condition with 50 mM of Cytochalasin B was included as a
negative control to determine non-specific glucose uptake
through diffusion. To assess glucose uptake, 10 mM of 2-deoxy-
D-glucose containing 1 mCi/mL/well ([2-3H]DG) was added for
15 min at 37°C. The use of modified radiolabelled glucose means
the glucose cannot be metabolized and accumulates in the cell.
This allows glucose uptake to be quantified by the radioactivity
detected from the labelled glucose within the cell. The cells were
then rinsed four times with cold PBS and lysed in 500 ml of 0.1 M
Frontiers in Endocrinology | www.frontiersin.org 4
NaOH. Four hundred microlitres of the lysate were then
transferred to scintillation vials, and 100 µl was retained for
subsequent total protein quantification. Glucose uptake was
determined using a liquid scintillation counter (Tri-Carb 2910
TR, Perkin-Elmer, IL, USA), with the unit of measurement in
picomoles of [2-3H]DG taken up per min per mg of total protein.

Western Blotting
Cell lysates were prepared using ice-cold RIPA buffer (Product
No.89900, ThermoFisher Sci Waltham, MA, USA) with the
addition of a phosphatase and protease inhibitor cocktail at
1:100 (Halt™ Phosphatase Inhibitor Cocktail Product
No.78440, ThermoFisher Sci, Melbourne, Australia) (55). The
total protein concentration for each sample was determined
using Red 660 protein assay (cat no. 786-676, G-Biosciences, St
Louis, Missouri, USA) with SDS Neutralizer (cat no. 786-673, G-
Biosciences, St Louis, Missouri, USA). A total of 50 µg of each
sample was electrophoresed on 10% Criterion™ TGX Stain-
Free™ protein gels (Bio-rad, #5678034, Gladesville, NSW,
Australia) for 90 min at 200 V. Following separation by gel
electrophoresis, and proteins were then transferred to a
nitrocellulose membrane (Bio-rad, #1704271, Gladesville,
NSW, Australia). The transfer was performed using Trans-
Blot® Turbo™ Transfer System (Bio-rad, #1704150,
Gladesville, NSW, Australia) using the following protocol:
2.5 A, 25 V, for 7 min. The membrane was then imaged for
total protein using the stain-free protocol on ChemiDoc™ XRS+
System (Bio-rad #1708265, Gladesville, NSW, Australia). All
membranes were blocked for 1 h in 5% skim milk in Tris-
buffered saline (TBS) plus 0.1% Tween 20 (TBS-T). Membranes
were then washed for 3 x 5 min in TBS-T, then incubated
overnight on a rocking platform at 4°C in primary antibody
solution containing selected antibody (Table 2). The next day,
membranes were washed for 3 x 5 min in TBS-T then incubated
in appropriate secondary horseradish peroxidase-conjugated
antibody (1:10,000) for 90 min. Proteins were visualised by
ultra-sensitive enhanced chemiluminescence (SuperSignal™

West Femto Maximum Sensitivity Substrate, Thermo
Scientific, #34094, Melbourne, Australia). Images of
membranes for total protein and target proteins were analysed
using Bio-rad Image Lab 6.0.1 (Bio-rad, Gladesville, NSW,
Australia) to determine band density. The band density data
were normalised to total protein content for each lane and to the
internal standard loaded in each gel using the stain-free method
(58, 59).

Statistical Analysis
All analyses were carried out using SPSS (Version 26, IBM), and
figures were created using GraphPad Prism Version 8 (GraphPad
Software Inc., San Diego, USA). All data are reported as mean ±
standard error of the mean (SEM) unless stated otherwise, and
statistical significance was declared when P < 0.05. Clinical
characteristics of groups were compared with two-tailed
unpaired Student’s t-test. Statistical analysis for glucose uptake
and protein expression were determined by two-way repeated
measures ANOVA with Fisher’s least significant difference
multiple comparisons post-hoc. To detect any outliers in the
October 2021 | Volume 12 | Article 732338
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data, studentised residuals were assessed. The distributions of the
data were tested using the Shapiro-Wilk test when data were not
normally distributed; a log transformation was applied.
RESULTS

Clinical Characteristics
Women with PCOS had greater body weight, BMI, fat mass and
less lean mass than healthy women (P < 0.001) (Table 1).
Consistently, women with PCOS displayed features of
hyperandrogenism with greater levels of free and total
testosterone and androstenedione compared to healthy women
(P < 0.05) (Table 1), reflective of the main features of PCOS.
There were no differences between the groups for the other
reproductive hormones measured: SHBG, dihydrotestosterone,
and estradiol (P > 0.05). Women with PCOS displayed profound
insulin resistance with higher levels of fasting insulin and a ~50%
reduction in insulin sensitivity as measured by euglycaemic–
hyperinsulinaemic clamp (P < 0.05) (Table 1). Both groups had
normal glucose levels and markers of liver health: ALT and AST
(P > 0.05) (Table 1). While women with PCOS displayed
elevated levels of cholesterol, triglycerides, HDL, these
remained within reference ranges (P < 0.05) (Table 1).

SMAD Signalling
There were no differences in pSMAD3/SMAD3 between groups
(P > 0.05, Figure 1A). There was a main effect of treatment for
pSMAD3/SMAD3 (P < 0.001, Figure 1B). Following treatment
with TGFb1 (1 ng/ml and 5 ng/ml) with and without insulin,
there was an increase in pSMAD3/SMAD3 in myotubes from
Frontiers in Endocrinology | www.frontiersin.org 5
both healthy women and women with PCOS (1 ng/ml ± insulin:
P < 0.001, 5 ng/ml ± insulin: P < 0.001, Figure 1B). We
confirmed that TGFb1 did not alter the expression of SMAD 4
in either group (P > 0.05, Figure 1C) and did not activate
pSMAD1/5/9/SMAD5 signalling (P > 0.05, Figure 1B)
associated with an anti-fibrotic response, contrary to the action
of SMAD3 signalling.

Glucose Uptake
In order to establish the effects of TGFb1 on insulin sensitivity
and glucose transport we performed a glucose uptake assay using
[2-3H]DG. Both groups displayed similar responses for basal and
insulin-stimulated glucose uptake in the untreated condition
(P > 0.05, Figure 2). There was a significant effect of TGFb1
treatment with and without insulin in both groups (P < 0.01,
Figure 2). In particular, a significant increase in glucose uptake
was observed following treatment with 1 ng/ml of TGFb1 with
and without insulin in the myotubes from healthy women (P <
0.001, Figure 2) and 5 ng/ml of TGFb1 with and without insulin
in myotubes from women with PCOS (P < 0.005) (Figure 2). In
addition, we observed that Cytochalasin B inhibited glucose
uptake by ~97%, confirming that the vast majority of the
glucose uptake in the myotubes was indeed occurring through
the glucose transporters.

Insulin Signalling
We did not observe any differences in the proximal insulin
receptor signalling, pIRS-1/IRS-1, between groups (P > 0.05,
Figure 3A) or following treatment with TGFb1 (P > 0.05,
Figure 3A). Similarly, there were no differences in PI3K p85/
PI3K p110 expression between groups (P > 0.05, Figure 3B) or
TABLE 2 | Antibody list.

Antibody Company Concentration

Phospho-Smad3 (Ser423/425) (C25A9) (9520S) Cell Signalling 1:1000
Smad3 (C67H9) (9523S) Cell Signalling 1:1000
Phospho-Smad1 (Ser463/465)/Smad5 (Ser463/465)/Smad9 (Ser465/467) (D5B10) (13820S) Cell Signalling 1:1000
Smad5 (D4G2) (12534S) Cell Signalling 1:1000
Smad4 (D3M6U) (38454S) Cell Signalling 1:1000
IRS1 (Phospho s312) (ab4865) Abcam 1:1000
IRS-1 (D23G12) (3407S) Cell Signalling 1:1000
Phospho-Akt (Ser473) (D9E) (4060) Cell Signalling 1:2000
Akt (pan) (C67E7) Cell Signalling 1:1000
PI3 Kinase p85-alpha (6G10) (13666S) Cell Signalling 1:1000
PI3 Kinase p110-alpha (C73F8) (4249S) Cell Signalling 1:1000
phospho-AS160 (Thr642) (4288) Cell Signalling 1:1000
AS160 (C69A7) (2670) Cell Signalling 1:1000
CTGF (D8Z8U) (86641) Cell Signalling 1:1000
Glucose transporter 4 (ab654) Abcam 1:4000
Glucose Transporter GLUT1 [SPM498] (ab40084) Abcam 1:2000
Collagen III antibody [EPR17673] (ab184993) Abcam 1:1000
Anti-Collagen I antibody (ab34710) Abcam 1:1000
Phospho-mTOR (Ser2448) (2971S) Cell Signalling 1:1000
mTOR (2972S) Cell Signalling 1:1000
Phospho-Raptor (Ser792) (2083S) Cell Signalling 1:1000
Raptor (24C12) (2280S) Cell Signalling 1:1000
Phospho-Rictor (Thr1135) (D30A3) (3806S) Cell Signalling 1:1000
Rictor (53A2) (2114S) Cell Signalling 1:1000
Secondary Anti-rabbit IgG, HRP-linked Antibody (7074S) Cell Signalling 1:10000
Secondary Pierce Anti-Mouse IgG (Goat) - HRP-Labelled (31430) Thermofisher 1:10000
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following treatment (P > 0.05, Figure 3B). Despite not detecting
any differences in pAkt/Akt between groups (P > 0.05,
Figure 3C), there was a main effect of treatment (P < 0.001).
An increase in the expression of pAkt/Akt was observed in
myotubes from healthy women and women with PCOS
following treatment with insulin (healthy: P < 0.01, PCOS: P <
0.001, Figure 3C). In addition, pAkt/Akt was also increased in
both groups following the treatment with TGFb1 1 ng/ml with
Frontiers in Endocrinology | www.frontiersin.org 6
insulin (healthy: P < 0.01, PCOS: P < 0.001, Figure 3B) and
TGFb1 5 ng/ml with insulin (healthy: P < 0.05, PCOS: P <
0.001, Figure 3B).

mTOR Signalling
In order to determine if upregulated SMAD signalling interferes
with mTOR signalling, we assessed the phosphorylation of
mTOR and its complexes. No group differences were identified
A

B

C

FIGURE 1 | TGFb Signalling. (A) SMAD3 phosphorylation relative to total SMAD3 expression, (B) SMAD1/5/8 phosphorylation relative to total SMAD1/5 expression,
and (C) Total SMAD4 expression, following 16 h with no treatment or with TGFb1 (1 ng/ml or 5 ng/ml) in a basal or insulin (100 nM) stimulated state. Data are
reported as Mean ± SEM. AU, arbitrary units (defined as band density values). *significantly different from untreated control of the respective group (P < 0.05).
Phospho (P) and Total (T). Healthy: N = 5 participants (clear bars), PCOS: N= 5 participants (filled bars).
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for pmTOR/mTOR (P > 0.05, Figure 4A), pRaptor/Raptor (P >
0.05, Figure 4B) or pRictor/Rictor (P > 0.05, Figure 4C).
Following treatment with TGFb1, there was a main effect of
treatment for pmTOR/mTOR (P < 0.05, Figure 4A), pRaptor/
Raptor (P < 0.05, Figure 4B) and pRictor/Rictor (P < 0.01,
Figure 4C) but post-hoc analysis revealed no differences between
TGFb1 doses (P > 0.05).

Glucose Transport
In order to determine if any intrinsic defects were present in
glucose transport or were induced by TGFb1, we assessed
GLUT1 and GLUT4 content and phosphorylation of
AS160Thr162. We found no differences in GLUT4 (P > 0.05,
Figure 5A), pAS160/AS160 (P > 0.05, Figure 5B) or GLUT1 (P >
0.05, Figure 5C) between groups or TGFb1 doses.

Extracellular Matrix
To examine whether TGFb1 could contribute indirectly to
insulin resistance by the accumulation of the ECM, we assessed
pro-fibrotic factor CTGF and collagen1a1; 1a2 and 3a1 which
account for a large percentage of the ECM. We identified a main
effect of group in the basal expression of CTGF (P < 0.05,
Figure 5A), but post-hoc analysis revealed no differences
between groups (P > 0.05, Figure 6A). Following treatment,
there was an increase in basal expression of CTGF following
TGFb1 1 ng/ml treatment in both myotubes from healthy
women (P < 0.05, Figure 6A) and from women with PCOS
(P < 0.05, Figure 6A). There were no differences in Collagen1a1;
1a2 and 3a1 between groups (P > 0.05, Figures 6B, C) or TGFb1
doses (P > 0.05, Figures 6B, C).
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DISCUSSION

In this study, we aimed to determine whether TGFb1 is in part
responsible for the development of insulin resistance and/or
aberrant insulin signalling, previously observed in the skeletal
muscle and myotubes of women with PCOS. From the clinical
characteristics, women with PCOS display profound insulin
resistance and hyperandrogenism in comparison to healthy
women. This was demonstrated via elevated fasting insulin and
free testosterone coupled with a reduced insulin sensitivity as
measured by euglycaemic–hyperinsulinaemic clamp. These
findings are consistent with previous work from our lab and
others (5, 6, 60). At baseline, myotubes from women with PCOS
and healthy women displayed similar levels of glucose uptake
and expression of insulin signalling proteins. The lack of
differences observed between groups in glucose uptake and
insulin signalling in the untreated myotubes, suggests that
myotubes from women with PCOS do not retain their
metabolic donor characteristics. This is in line with previous
glucose uptake, glycogen synthesis and mitochondrial function
studies showing no differences between myotubes from women
with PCOS and matched controls (8, 12, 13). Therefore, our
study supports the view that an intrinsic defect in skeletal muscle
is unlikely to be responsible for in vivo insulin resistance in
women with PCOS. Myotubes established from women who are
severely obese (BMI >40 kg/m2) have been demonstrated to have
an altered glucose metabolism, displaying increased reliance on
glycolysis compared to myotubes from women who are lean (61,
62), with these metabolic defects in myotubes being reversed
following gastric bypass surgery (63). Signalling defects such as a
FIGURE 2 | Glucose uptake. [2-3H] deoxy-D-glucose uptake in myotubes from women with and without PCOS. Differentiated myotubes were treated with TGFb1 (1 ng/
ml or 5 ng/ml) or untreated as a control condition for 16 hours, and this was followed by 30 min incubation with or without insulin (100 nM) to allow for the assessment of
basal and insulin stimulated glucose uptake. A condition with 50 µM Cytochalasin B (Cyto-B) was used to determine the contribution of non-transporter mediated glucose
uptake. Data are reported as Mean ± SEM. *significantly different from untreated control of the respective group (P < 0.05). #significantly different from Cyto-B and Cyto-B
+ insulin. Healthy: N = 7 participants (clear bars), PCOS: N= 7 participants (filled bars).
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reduction in insulin-stimulated phosphorylation of AKT and
increase in basal and insulin-stimulated phosphorylation of IRS-
1ser312 have also been observed in myotubes derived from obese
individuals (64, 65). In the case of our results, we did not see a
clear effect of obesity on glucose metabolism or insulin signalling,
reinforcing that skeletal muscle insulin resistance in women with
PCOS is not a result of an intrinsic defect.

Based upon its role in the pathophysiology of PCOS and
preliminary evidence (16, 33–35), we attempted to establish if
Frontiers in Endocrinology | www.frontiersin.org 8
TGFb1 is a circulating factor that could contribute to the
development of skeletal muscle insulin resistance. Contrary to
our hypothesis, treatment with TGFb1 resulted in an increase in
glucose uptake in myotubes from women with PCOS and healthy
women. This increase occurred following a lower dose (1 ng/ml)
in the myotubes from healthy women and following the higher
dose (5 ng/ml) in the myotubes from women with PCOS. This
difference presents the possibility that myotubes from PCOS are
desensitised to the effects of TGFb1 as they are chronically
A

B

C

FIGURE 3 | Insulin signalling. (A) IRS-1 phosphorylation relative to total IRS-1 expression. (B) Total protein expression PI3K-p85/PI3K p110 ratio. (C) AKT
phosphorylation relative to total AKT expression, following 16 h with no treatment or with TGFb1 (1 ng/ml or 5 ng/ml) and 30 min insulin stimulation (0 nM or 100
nM). Data are reported as Mean ± SEM. AU, arbitrary units (defined as band density values). *significantly different from untreated control of the respective group
(P < 0.05). Phospho (P) and Total (T). Healthy: N = 5 participants (clear bars), PCOS: N= 5 participants (filled bars).
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exposed to higher levels and may require a more potent stimulus
to respond. It could be hypothesised that the myotubes from the
women with PCOS exhibit a memory effect to in vivo exposure to
TGFb1, similar effects have been shown for another cytokine:
TNFa (66). Although TGFb1 has been suggested to induce
glycolysis and increase expression of GLUT1 via SMAD2/3 in
other cell types (42, 45, 67), the increase in glucose uptake
occurred independently of changes in protein expression of
glucose transporters: GLUT1 and GLUT4. Similar responses in
Frontiers in Endocrinology | www.frontiersin.org 9
myotubes and other cell types have been shown following
stimulation with cytokines or hormones, where an increase in
glucose uptake via GLUT1/4 translocation occurs independently
of changes in protein expression (68–70). This could explain the
increase in glucose uptake with no changes in protein abundance
of glucose transporters observed in our study, as we have not
specifically assessed changes in translocation rates. We
recommend future studies to assess the effects of TGFb1 on
glucose transporter translocation to understand how TGFb1 can
A

B

C

FIGURE 4 | mTOR signalling. (A) mTOR phosphorylation relative to total mTOR expression. (B) Raptor phosphorylation relative to total Raptor expression.
(C) Rictor phosphorylation relative to total Rictor expression, following 16 h with no treatment or with TGFb1 (1 ng/ml or 5 ng/ml) and 30 min insulin stimulation (0
nM or 100 nM). Data are reported as Mean ± SEM. AU, arbitrary units (defined as band density values). Phospho (P) and Total (T). Healthy: N = 5 participants (clear
bars), PCOS: N= 5 participants (filled bars).
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increase glucose uptake rather than measuring GLUT protein
expression alone.

We also observed that TGFb1 increased phosphorylation of
SMAD3 and did not significantly activate SMAD1/5/9, as
expected. Insulin can prompt rapid translocation of
intracellular TGFb receptors 1 and 2 to the cell surface in
various cell types (36, 37). This occurs via the activation of Akt
and is regulated by subsequent activation of AS160 to enhance
Frontiers in Endocrinology | www.frontiersin.org 10
TGFb responsiveness (36). This translocation of TGFb receptors
causes an amplification of TGFb signalling through SMAD
activation (38), presenting the possibility of insulin enhancing
TGFb signalling. However, in our study, we did not see any
additive effect of insulin on SMAD signalling or interaction that
could influence insulin signalling. Previous results from C2C12
myotubes suggest that TGFb1 treatment results in increased
phosphorylation of SMAD3, which in turn can suppress insulin-
A

B

C

FIGURE 5 | Glucose Transport. (A) Total GLUT4 expression. (B) AS160 phosphorylation relative to total AS160 expression, (C) Total GLUT1 expression, following
16 h with no treatment or with TGFb1 (1 ng/ml or 5 ng/ml) and 30 min insulin stimulation (0 nM or 100 nM). Data are reported as Mean ± SEM. AU, arbitrary units
(defined as band density values). Phospho (P) and Total (T). Healthy: N = 4-5 participants (clear bars), PCOS: N= 4-5 participants (filled bars).
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stimulated phosphorylation of AKT and AS160, as well as reduce
expression of GLUT4 (71, 72). To date, only one other study
using human myotubes has assessed the metabolic signalling
following treatment with 1 ng/ml TGFb1 (73), which
demonstrated a decrease in gene expression of mitochondrial
regulators and slight suppression of insulin stimulated AKT
phosphorylation (73). The precise reasons behind the
differences in results is not clear. This could be related to sex-
specific effects, however, the authors (73) did not report the
Frontiers in Endocrinology | www.frontiersin.org 11
participant characteristics from which skeletal muscle cell lines
were established.

In contrast to these results, our study showed that TGFb1
increased glucose uptake but had no significant inhibitory effect
on insulin signalling proteins despite increasing phosphorylation
of SMAD3. The contrasting response with our results with
human primary myotubes, and studies from C2C12 myotubes,
may be explained by differences in structure (e.g. differences in
gene expression of myosin heavy chains and ECM), metabolic
A

B

C

FIGURE 6 | Extracellular matrix. (A) Total Connective tissue growth factor (CTGF/CCN2) expression (B) Total collagen 1a1 and 1a2 (C) Total collagen 3a1.
*significantly different from untreated control of the respective group (P < 0.05). Total (T). Data reported as Mean ± SEM. AU, arbitrary units (defined as band density
values). Healthy: N = 5 participants (clear bars), PCOS: N= 5 participants (filled bars).
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behaviours (e.g. insulin responsiveness, basal glucose uptake, and
gene expression of glucose transporters) and donor variability
(74). Another critical difference between our study and previous
studies is the length of time the TGFb1 treatment was applied to
the cells. We opted for 16 hours of treatment, whereas others
opted for a shorter transient treatment from 30 minutes to
3hours (71, 72).

One of the mechanisms by which TGFb1 and associated
signalling has been proposed to contribute to the development of
insulin resistance is by ECM remodelling. This occurs by increased
collagen deposition in the endomysium, epimysium and basement
membrane, creating a physical barrier (29, 32, 72, 75, 76). We
observednochanges in collagens types I and III following treatment
with TGFb1, although we did observe an increase in pro-fibrotic
CTGF in myotubes from both groups with a dose of 1 ng/ml. The
lack of changes in collagensmay be a time-course issue, as observed
with changes in the expression of collagens and laminin b1
following muscle-damaging exercise or electrical stimulation
being absent after 2 days but present after 27-30 days (77, 78).
Similarly, changes in skeletal muscle collagens (I and III) and ECM
structure were absent three months after gastric bypass in
individuals with type 2 diabetes, but present after 9 months (72).
Most of the studies have investigated fibrosis/ECM remodelling in
skeletal muscle tissue, which includes various cell types; however, it
has been shown that myotubes and myofibers are capable of
producing collagens in the absence of fibroblasts (79). Indeed,
when mature myotubes treated with exogenous SPARC (a
protein that induces collagen production and influences ECM
assembly), they display an increase in collagen1a1 protein
expression (80). However, to date, there is a lack of studies
showing an increase in protein expression of collagens in skeletal
muscle myotubes, with the majority measuring gene expression
only. CTGF is overexpressed in skeletal muscle of individuals with
Duchennemuscular dystrophy (21) and has been shown to interact
with TGFb1 to produce an increase in the expression of ECM
proteins (20, 23).Furthermore, ithasbeendemonstrated thatCTGF
is required for TGFb1 to induce increases in pro-fibrotic genes in
C2C12 myotubes (22). This would suggest that the increase in
CTGF expression with TGFb1 we observed may be a precursor of
fibrosis, although it was not sufficient to cause any insulin signalling
dysregulation in the myotubes. Further studies are required to
investigate the impact of a longer-term TGFb1 exposure in
myotubes that may induce a sustained increased expression of
this fibrosis precursor and promote adverse ECM remodelling.

There are a number of limitations with the current study, the
use of western blotting to assess insulin and TGFb signalling only
allows a limited number of targets to be analysed. Therefore,
aspects of their signalling not analysed in this current study may
have provided further insight into the relationship between the
two signalling pathways. Furthermore, we only assessed insulin
signalling following 30 minutes of insulin stimulation, which
means that we may have missed differences in acute
phosphorylation events between groups or treatments as
previously demonstrated (81, 82). In addition, given the vast
number of phosphorylation sites for proteins involved in insulin
signalling, we cannot rule out an effect of the treatment or disease
Frontiers in Endocrinology | www.frontiersin.org 12
state on other sites that were not measured in our study. We also
selected a supraphysiological dose of insulin (100 nM), which
was based on the majority of previous primary myotube studies
from women with PCOS focusing on insulin resistance (8, 9, 13,
83). Whether lower doses of insulin treatment may have altered
the responses we observed is not clear. Furthermore, while a
sample size of seven participants per group is an acceptable
number for studies involving invasive muscle biopsies and the
derived human primary cell culture work, future large-scale
studies are needed to confirm our findings and clarify further
the role of TGFb1 in glucose metabolism and insulin signalling.
CONCLUSION

In conclusion, TGFb1 treatment in myotubes increased glucose
uptake, suggesting that short term increased serum TGFb1 or
localised TGFb signalling dysfunction are unlikely to induce
insulin resistance via defects in insulin signalling in the skeletal
muscle. However, TGFb1 treatment in myotubes derived from
women with or without PCOS also promoted the expression of
SMAD3 and CTGF. This may suggest that chronic exposure to
elevated levels ofTGFb1, suchas that present inwomenwithPCOS,
could induce a pro-fibrotic phenotype and ECM remodelling,
which may consequently impede insulin signal transduction.
Further in vivo studies are required to investigate the effect of
acute and chronic TGFb1 exposure on indirect insulin resistance
mechanisms, such as mitochondrial dysfunction (73, 84); and the
relationship between ECM composition and structure with insulin
resistance in skeletal muscle of women with PCOS.
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20. Vial C, Zúñiga LM, Cabello-Verrugio C, Cañón P, Fadic R, Brandan E.
Skeletal Muscle Cells Express the Profibrotic Cytokine Connective Tissue
Growth Factor (CTGF/CCN2), Which Induces Their Dedifferentiation. J Cell
Physiol (2008) 215:410–21. doi: 10.1002/jcp.21324

21. Sun G, Haginoya K, Wu Y, Chiba Y, Nakanishi T, Onuma A, et al. Connective
Tissue Growth Factor Is Overexpressed in Muscles of Human Muscular
Dystrophy. J Neurol Sci (2008) 267:48–56. doi: 10.1016/j.jns.2007.09.043

22. Hillege M, Galli Caro R, Offringa C, de Wit G, Jaspers R, Hoogaars W. TGF-b
Regulates Collagen Type I Expression in Myoblasts and Myotubes via Transient
Ctgf and Fgf-2 Expression. Cells (2020) 9:375. doi: 10.3390/cells9020375
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