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Individuals with hepatic steatosis often display several metabolic abnormalities including
insulin resistance and muscle atrophy. Previously, we found that hepatic steatosis results
in an altered hepatokine secretion profile, thereby inducing skeletal muscle insulin
resistance via inter-organ crosstalk. In this study, we aimed to investigate whether the
altered secretion profile in the state of hepatic steatosis also induces skeletal muscle
atrophy via effects on muscle protein turnover. To investigate this, eight-week-old male
C57BL/6J mice were fed a chow (4.5% fat) or a high-fat diet (HFD; 45% fat) for 12 weeks
to induce hepatic steatosis, after which the livers were excised and cut into ~200-µm
slices. Slices were cultured to collect secretion products (conditioned medium; CM).
Differentiated L6-GLUT4mycmyotubes were incubated with chow or HFD CM tomeasure
glucose uptake. Differentiated C2C12 myotubes were incubated with chow or HFD CM to
measure protein synthesis and breakdown, and gene expression via RNA sequencing.
Furthermore, proteomics analysis was performed in chow and HFD CM. It was found that
HFD CM caused insulin resistance in L6-GLUT4myc myotubes compared with chow CM,
as indicated by a blunted insulin-stimulated increase in glucose uptake. Furthermore,
protein breakdown was increased in C2C12 cells incubated with HFD CM, while there
was no effect on protein synthesis. RNA profiling of C2C12 cells indicated that 197 genes
were differentially expressed after incubation with HFD CM, compared with chow CM, and
pathway analysis showed that pathways related to anatomical structure and function were
enriched. Proteomics analysis of the CM showed that 32 proteins were differentially
expressed in HFD CM compared with chow CM. Pathway enrichment analysis indicated
that these proteins had important functions with respect to insulin-like growth factor
transport and uptake, and affect post-translational processes, including protein folding,
protein secretion and protein phosphorylation. In conclusion, the results of this study
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support the hypothesis that secretion products from the liver contribute to the
development of muscle atrophy in individuals with hepatic steatosis.
Keywords: hepatic steatosis, NAFLD, inter-organ crosstalk, muscle atrophy, sarcopenia, insulin
resistance, metabolism
INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD) is the most common
form of chronic liver disease and encompasses a histological
spectrum of liver diseases. It starts with hepatic steatosis and can
progress to non-alcoholic steatohepatitis (NASH), cirrhosis, and
hepatocellular cancer. Hepatic steatosis is a key feature of
NAFLD and is diagnosed when more than 5% of the total liver
weight consists of fat. Hepatic steatosis is highly prevalent and is
found in ~25% of all adults (1, 2), in up to ~70% of adults who
are overweight, and in >90% of the individuals who are morbidly
obese (3–5), indicating a close link with excess body weight.

Hepatic steatosis has previously been considered benign,
although this dogma has been challenged in recent years.
Hepatic steatosis is linked to metabolic abnormalities, including
hypertriglyceridemia, type 2 diabetes, and cardiometabolic
diseases. Furthermore, the liver has been recognized as an
endocrine organ that secretes hepatokines to influence
metabolism locally and in distant tissues via inter-organ
crosstalk, and we previously found that hepatic steatosis changes
the protein secretion pattern of hepatocytes, resulting in insulin
resistance in skeletal muscle cells (6).

In the past decade, there has been a growing interest in the
relationship between NAFLD and sarcopenia (7). Sarcopenia is
the loss of muscle mass and muscle strength that is inherent to
aging. In healthy individuals, muscle mass decreases at an annual
rate of 1% to 2% after the age of 50 (8), which means that an
average male person of 80 kg with 35 kg of muscle mass would
lose 350 to 700 g per year, the equivalent of 7 to 14 kg over 20
years. In individuals with NAFLD, the prevalence of sarcopenia
is strongly increased and correlates with the severity of steatosis
and fibrosis (9, 10). Specifically, the prevalence of sarcopenia in
subjects without NAFLD, with hepatic steatosis, and with NASH
was found to be 8.7%, 17.9%, and 35.0%, respectively (11).
Additionally, in individuals with advanced NAFLD, NASH was
associated with a 6-fold increased risk of developing sarcopenia
(12), and the loss of muscle mass was associated with decreased
survival, increased length of hospitalization, and increased
mortality (13). Due to the cross-sectional nature of these
studies, the exact relationship between NAFLD and sarcopenia
in terms of cause and consequence remains obscure, however,
and it is not known if sarcopenia contributes to NAFLD or vice
versa. It has been suggested for the first time in two Korean
studies that sarcopenia could be involved in the etiology of
NAFLD (14, 15). In a large Korean cohort of 9,565 individuals,
multivariate regression analysis showed that the skeletal muscle
to visceral fat ratio was inversely correlated to hepatic steatosis,
and it was suggested that a higher skeletal muscle mass may have
a beneficial effect in preventing NAFLD (15). In the ‘Korean
Sarcopenic Obesity Study’, in 452 apparently healthy adults it has
n.org 2
been shown that individuals with low muscle mass had an
increased risk of NAFLD, even after adjusting for confounding
factors, including insulin resistance and inflammation (14). Since
the publication of these two studies, the majority of studies have
suggested that sarcopenia is a risk factor for the development of
NAFLD. A recent meta-analysis including 19 studies reported
that patients with sarcopenia have an increased risk of
developing hepatic steatosis, as well as advanced NAFLD
stages, including NASH and fibrosis (9). Importantly though,
the studies in this meta-analysis also cannot differentiate between
cause and consequence. It is thus possible that NAFLD leads to
muscle loss, rather than the other way around. In support of this
hypothesis, it has been found in patients who underwent a liver
transplantation that sarcopenia did not progress, but was
arrested and frequently improved (16). This was observed in
the absence of confounding conditions such as recurrent
allograft liver disease or post-transplant complications (16).
Given our previous finding that hepatic steatosis contributes to
the development of insulin resistance in skeletal muscle via inter-
organ crosstalk (6), we hypothesized that hepatic steatosis and its
related secretome contribute to the development of sarcopenia
via effects on muscle protein metabolism.

To investigate this, male C57BL/6J mice were fed a chow or a
high-fat diet (HFD) to induce hepatic steatosis, after which the
livers were sliced and cultured. Secretion products were collected
and transferred to differentiated myotubes for 24 h to measure
muscle protein synthesis and protein breakdown rates.
Interestingly, our results show that the secretion products of a
fatty liver do not affect protein synthesis in differentiated
myotubes, but increase muscle protein breakdown rates. In line
with this, using RNA sequencing, we found that pathways related
to muscle morphology and function were strongly enriched in
the myotubes incubated with the HFD liver secretome. These
findings support our hypothesis that hepatic steatosis contributes
to the development of sarcopenia in individuals with NAFLD via
inter-organ crosstalk.
MATERIALS AND METHODS

Animal Studies
All experimental and surgical procedures were approved by the
Animal Ethics Committee of Maastricht University (DEC-2017-
002). Sixteen male C57BL/6J mice were purchased at 8 weeks of
age and randomly assigned to an ad libitum chow diet (4.5% fat)
or HFD (45% fat, ssniff®) for 12 weeks to induce hepatic
steatosis. Mice had access to water at all times and were
housed under controlled temperature (21°C) and lighting
(12h:12h light-dark cycle). Body weight was measured weekly.
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On each experimental day, two mice were anaesthetized and the
liver was perfused via the hepatic portal vein with University of
Wisconsin (UW) solution to free the liver from blood. The liver
was excised and placed in ice-cold UW solution to preserve the
organ for tissue slicing. The left epididymal fat pad of the mouse
was excised as an additional indicator of adiposity.

Precision-Cut Liver Slices
Precision-cut liver slices (PCLS) were collected in accordance
with a protocol by de Graaf et al., originally designed for rat livers
(17), with some minor modifications. Briefly, the mouse liver was
placed in a petri dish and covered with fresh, ice-cold UW
solution. A 5-mm biopsy punch was used to create liver tissue
cores, which were then transferred to fresh, ice-cold UW
solution. Remaining liver tissue was snap-frozen in liquid
nitrogen and stored for further analyses. The liver cores were
placed in a Krumdieck tissue slicer, filled with ice-cold Krebs
buffer. The Krebs buffer was previously oxygenated with
carbogen (95% O2 and 5% CO2), pH adjusted to 7.42, and
sterilized by filtration with a 0.45-µm pore filter. The
Krumdieck tissue slicer was used to cut liver slices of
approximately 5 mg wet weight, which corresponds to a
thickness of approximately 200 µm. Only slices with a round
shape, a uniform thickness, and smooth edges were selected and
transferred to ice-cold UW solution. It has previously been
shown that liver slices remain viable for up to 96 h (17).

Collection of Conditioned Medium
12-wells plates containing 1.3 mL/well Williams’ Medium E +
GlutaMAX, with 2.5 mg/mL D-glucose, and 50 µg/mL
gentamicin were placed on a shaker at 90 RPM inside a cell
incubator that was set to 37°C, 80% O2, 5% CO2. Each individual
slice was transferred to a single well for a pre-incubation of
approximately 2.5 h to allow the restoration of ATP content and
the removal of cell debris. The slices were washed twice with
warm PBS, after which they were incubated for 24 h in 1.3 mL/
well EX-CELL® 325 protein-free, serum-free medium. The
conditioned medium (CM) was collected, centrifuged for 3
min at 4°C and 100 g, and the supernatant was taken and
stored at -80°C. Fresh medium was added for a second
incubation period of 24 h, followed by the same collection steps.

Triacylglycerol Assay
Liver tissue that was left over after creation of the liver cores was
snap frozen and used to measure lipid content. The lipids in the
liver slices were extracted overnight in chloroform:methanol
(2:1). Triacylglycerol (TAG) content was determined by
enzymatic colorimetric assay (GPO-PAP reagent, Roche
Diagnostics) and expressed as µmol TAG/mg liver tissue.

Cell Culture
C2C12 and L6-GLUT4myc myoblasts were cultured in low-
glucose Dulbecco ’s Modified Eagle Medium (DMEM;
ThermoFisher Scientific) with 10% fetal bovine serum (FBS)
and 1% penicillin-streptomycin at 37°C, 21% O2, 5% CO2. To
induce differentiation, cells were plated onto 12-wells (for
protein synthesis and breakdown assays) or 24-wells culture
Frontiers in Endocrinology | www.frontiersin.org 3
plates (for glucose uptake and gene expression assays) that
were coated with 2% (v/v) Growth Factor Reduced Matrigel®

(BD Biosciences, Bedford, MA) and incubated in high-glucose
DMEM with 2% FBS and 1% penicillin-streptomycin. DMEM
was replaced every other day.

Glucose Uptake
For the glucose uptake assay, L6-GLUT4myc cells were
differentiated for 5 days, washed with warm PBS, and
incubated for 24 h with chow CM or HFD CM to which 2%
FBS was added. CM was then aspirated and cells were washed
with warm PBS. Cells were pre-incubated for 10 min in no-
glucose DMEM containing 0.1% bovine serum albumin and 10
µM 2-deoxy-D-glucose either with or without 10 nM insulin.
After 10 min, medium was aspirated and the cells were incubated
for 10 min in the same medium either with or without insulin,
and with an additional 1 µCi/mL 2-[1,2-3H(N)]-deoxy-D-
glucose (PerkinElmer, NET328A001MC). Medium was
aspirated, cells were washed three times with cold PBS, and 1
M NaOH containing 0.1% Triton X-100 was added. The cells
were scraped and transferred to vials containing Ultima Gold
scintillation liquid. The level of radioactivity was measured by
liquid scintillation counting (PerkinElmer liquid scintillation
counter). (n = 7/6 biological replicates per group and 3
technical replicates.)

Protein Synthesis and Breakdown
To measure protein synthesis, C2C12 cells were differentiated for
5 days. They were then washed with warm PBS and incubated
with CM, supplemented with 2% FBS, for 16 h. After 16 h, 0.3
mM L-phenylalanine and 0.1 µCi/mL L-[14C(U)]-phenylalanine
(PerkinElmer, NEC284E050UC) were added, and cells were
incubated for an additional 8 h. The dilution of the CM by L-
phenylalanine was 5%. Medium was then aspirated, cells were
washed three times with cold PBS, and incubated with 1 M
perchloric acid for 1 h at 4°C. Cells were washed twice with
perchloric acid and once with PBS, after which 1 M NaOH
containing 0.1% sodium dodecyl sulfate was added. Cells were
left overnight at 37°C and scraped the following morning. The
samples were added to vials containing Ultima Gold scintillation
liquid. The level of radioactivity was measured by liquid
scintillation counting, and corrected for protein content. (n =
7/6 biological replicates and 4 technical replicates). For
Supplementary Figure 1, protein synthesis was performed
after 3 days of differentiation with a variety of control
conditions. Protein synthesis was measured after incubation
with differentiation medium (DM) in the unstimulated
condition or with the addition of 100 nM insulin or 10 nM
insulin-like growth factor-1 (IGF-1). Protein synthesis was also
measured after incubation with CM in the absence or presence of
100 nM insulin.

For the protein breakdown assay, C2C12 cells were incubated
for 24 h in DM containing 0.2 µCi/mL L-[14C(U)]-
phenylalanine. After 24 h, the medium was aspirated and cells
were washed two times with DMEM. Cells were then incubated
for 2 h in DM containing 0.3 mM non-radioactive L-
phenylalanine. Medium was aspirated and cells were washed
October 2021 | Volume 12 | Article 733625
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again two times with DMEM. Cells were then incubated for 24 h
with either chow or HFD CM containing 0.3 mM non-
radioactive L-phenylalanine and 1% FBS. After 24 h, medium
was collected, to which 1 M perchloric acid was added to allow
precipitation on ice for 1 h. The medium was then centrifuged at
13,000 RPM for 5 min. Supernatant was taken and added to vials
containing Ultima Gold scintillation liquid for counting. The
level of radioactivity was corrected for protein content. (n = 7/6
biological replicates per group and 3 technical replicates.)

RT Q-PCR
C2C12 cells were incubated for 24 h with chow or HFD CM
containing 2% FBS. After 24 h, medium was aspirated and cells
were washed two times with PBS. TRIzol reagent (Life
Technologies) was added and plates were frozen until RNA
isolation. Reverse transcription was performed on 300 ng total
RNA (iScript cDNA Synthesis Kit, Bio-Rad). Gene products were
determined by quantitative real-time PCR (CFX384 Touch Real-
Time PCR Detection System, Bio-Rad) using iQ SYBR Green
Supermix (Bio-Rad) for the following genes: Murf1, Atrogin1,
mtor, 4ebp1, Il6, Cxcl1, Cxcl2, Bnip3, Lc3b, Ikba, Redd1, Mcp1,
Icam1 (Table 1). The relative quantification was calculated using
the DDCt method, with Rplp0 as the housekeeping gene. Values
were normalized to the chow condition. (n = 6/7 biological
replicates per group and 3 technical replicates).

RNA Sequencing
RNA sequencing was performed at Maastricht University.
Sequencing libraries were prepared from 500 ng of total RNA
using the NEXTFLEX Rapid Directional RNA-Seq kit v2.0 with
NEXTFLEX Poly(a) beads and unique dual indices. The libraries
were sequenced in 100 bp paired-end on an SP flow cell (200
cycles) of the Illumina NovaSeq 6000, at an average of 72.4
million clusters passing filter per samples (min:51.4 M, max:88.7
M). The obtained raw data was first trimmed using fastp and the
remaining reads were mapped to the Ensembl mouse genome
(release 100) using STAR (version 2.7.3a) (18) and transcripts
quantified using RSEM (v.1.3.1) (19) using default settings. The
resulting raw read counts were normalized and processed using
the R package DESeq2 (20) using default settings. Lowly
expressed genes, defined as gene with more than 75% of the
Frontiers in Endocrinology | www.frontiersin.org 4
samples of any given condition not sequenced (i.e. 0 reads), were
not considered in downstream analyses. An absolute fold change
of >1.2 and an adjusted p-value of <0.05 was required for a gene
to be considered significantly differentially expressed between
conditions. Abnormal samples were filtered out according to the
result of principal component analysis. The raw data is available
in the European Nucleotide Archive (ENA) under the accession
identifier ERP130473.

Functional Enrichment Analysis
The Kyoto Encyclopedia of Genes and Genomes (KEGG)
database and Gene Ontology (GO) category database were
applied for functional annotation of differentially expressed
genes. Enrichment analysis of KEGG and GO categories was
performed using ConsensusPathDB (mpg.de) (20-05-2021).

Protein Identification Using LC-MS/MS
Proteomics analysis was performed in HFD and chow CM. After
acetone precipitation, a total of 10 µg protein in 25 µL 50 mM
ammonium bicarbonate (ABC) with 5 M urea was used. 2.5 µL of
dithiothreitol (DTT) solution (20 mM final) was added and
incubated at room temperature for 45 min. The proteins were
alkylated by adding 3 µL of indole-3-acetic acid (IAA) solution
(40 mM final). The reaction took place at room temperature for
45 min in the dark. The alkylation was stopped by adding 5 µL of
DTT solution (to consume any unreacted IAA) and incubated at
room temperature for 45 min. For the digestion, 1 µg trypsin/
LysC was added to the protein and incubated at 37°C for 2 h.
100 µL of 50 mM ABC was added to lower the urea
concentration, and samples were further incubated at 37°C for
18 h. The digestion mix was centrifuged at 2,500 g for 5 min and
the supernatant was collected for liquid chromatography with
tandem mass spectrometry (LC-MS/MS) analysis. A nanoflow
high-performance liquid chromatography instrument (Dionex
UltiMate 3000) was coupled online to a Q Exactive (Thermo
Scientific) with a nano-electrospray Flex ion source (Proxeon).
5 µL of the digest was loaded onto a C18-reversed phase column
(Thermo Scientific, Acclaim PepMap C18 column, 75 µm inner
diameter × 15 cm, 2 µm particle size). The peptides were
separated with a 90 min linear gradient of 4-68% buffer B
(80% acetonitrile and 0.08% formic acid) at a flow rate of 300
TABLE 1 | Primers used for quantitative real-time PCR.

Gene Forward primer (5’ ➔ 3’) Reverse primer (5’ ➔ 3’)

Rplp0 GGACCCGAGAAGACCTCCTT GCACATCACTCAGAATTTCAATGG
Mtor TCCTGCGCAAGATGCTCATC TGTGCTCCAGCTCTGTCAGGA
4ebp1 CGGAAGATAAGCGGGCAG CAGTGTCTGCCTGGTATGAG
Murf1 CTTCCTCTCAAGTGCCAAGCA GTGTTCTAAGTCCAGAGTAAAGTAGTCCAT
Redd1 TCGGCGCTTCACTACTGACC CCTAACACCCACCCCATTCC
Atrogin1 CAGCAGCTGAATAGCATCCAGAT TCTGCATGATGTTCAGTTGTAAGC
Bnip3 AGGTTTTCCTTCCATCTCTGTTACTG TGTGTGAACAGAAGTCAGATCCAAA
Lc3b GAGCAGCACCCCACCAAGAT CGTGGTCAGGCACCAGGAA
Cxcl1 TCGTCTTTCATATTGTATGGTCAACACG TGCCCTACCAACTAGACACAAAATGTC
Cxcl2 CCCTGGTTCAGAAAATCATCCAAA TTTGGTTCTTCCGTTGAGGGAC
Il6 ACAAGTCGGAGGCTTAATTACACAT AATCAGAATTGCCATTGCACAA
Ikba GCTACCCGAGAGCGAGGAT GCCTCCAAACACACAGTCATCA
Mcp1 CCTGCTGTTCACAGTTGCC ATTGGGATCATCTTGCTGGT
October 2021 | Volume 12 | Article 733625
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nL/min. MS data was acquired using a data-dependent top-10
method, dynamically choosing the most abundant precursor ions
from the survey scan (280-1400 m/z) in positive ion mode.
Survey scans were acquired at a resolution of 70,000 and a
maximum injection time of 120 ms. Dynamic exclusion duration
was 30 s. Isolation of precursors was performed with a 1.8 m/z
window and a maximum injection time of 200 ms. Resolution for
HCD spectra was set to 30,000 and the Normalized Collision
Energy was 32 eV. The under-fill ratio was defined as 1.0%. The
instrument was run with peptide recognition mode enabled, but
with exclusion of singly charged and charge states of more
than five.

Database Search and Quantification
The MS data was searched using the Proteome Discoverer 2.2
Sequest HT search engine (Thermo Scientific), against the
UniProt mouse database. The false discovery rate was set to
0.01 for proteins and peptides, which had to have a minimum
length of 6 amino acids. The precursor mass tolerance was set at
10 ppm and the fragment tolerance at 0.02 Da. One miss-
cleavage was tolerated, and oxidation of methionine was set as
a dynamic modification. Carbamidomethylation of cysteines was
set as fixed modification. Label-free quantification was
conducted using the Minora Feature Detector node in the
processing step and the Feature Mapper node combined with
the Precursor Ions Quantifier node in the consensus step with
default settings within Proteome Discoverer 2.2. The mass
spectrometry proteomics data has been deposited to the
ProteomeXchange Consortium via the PRIDE partner
repository with the dataset identifier PXD027332.

Statistical Analyses
Data is expressed as means ± SE and depicted as fold change
compared to baseline of chow animals in bar charts. Mouse 13
(HFD) was not used for perfusion and liver slicing, due to a
logistical problem. Due to an infection in the CM, mouse 1
(chow), and mouse 15 (HFD) were excluded from all analyses.
The D’Agostino-Pearson test confirmed normal distribution of
Frontiers in Endocrinology | www.frontiersin.org 5
the data. Statistical analyses were performed by using unpaired
Student’s t-tests or two-wayANOVA. (Note that inSupplementary
Figure 1, IGF-1 is added to show the effect of a stimulus other than
insulin, but has not been included in the statistical analysis.)
Pearson’s correlation coefficient was used to evaluate the strength
and direction of association between variables. All statistical
analyses were performed with GraphPad Prism version 5.00 for
Windows (GraphPad Software, Inc., San Diego, CA, USA).
Statistical significance was set at p<0.05.
RESULTS

Body Mass, Epididymal Fat Mass and
Liver Fat
An overview of the experimental design is depicted in Figure 1.
Body mass was not different at the start of the diet and increased
progressively in both groups over the duration of the experiment
(Figure 2A). The increase in body mass was more pronounced in
HFD mice compared with chow mice (diet effect p=0.02;
Figure 2A). After 12 weeks, there was a modest but significant
difference in body weight between both groups (28.9 ± 0.6 and
33.5 ± 1.2 g in the chow and HFD group, respectively; p<0.05)
(Figure 2B). Epididymal fat mass was 3.3-fold higher in HFD
mice compared with chow mice (Figure 2C). Liver TAG was
11.24 µmol/mg liver tissue (corresponding to 1.0% liver fat) in
chow mice and 56.17 µmol/mg liver tissue (corresponding to
5.0% liver fat) in HFD mice (Figure 2D).

Glucose Uptake in L6-GLUT4myc
Myotubes After Exposure to CM
Glucose uptake in L6-GLUT4myc myotubes was not different
between chow and HFD CM in the basal state. Insulin-
stimulated glucose uptake increased by 46% in myotubes
exposed to chow CM but only by 18% in myotubes exposed to
HFD CM (Figure 3A), demonstrating impaired insulin
sensitivity in the myotubes incubated with HFD CM
(interaction effect p<0.05).
FIGURE 1 | Overview of the study design. C57BL/6J mice were fed a chow or high-fat diet (HFD) for 12 weeks. Livers were perfused, excised and sliced into
precision-cut liver slices. Liver slices were incubated in protein-free medium for 24 h, and CM was collected for experiments.
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Protein Synthesis and Breakdown in
C2C12 Myotubes After Exposure to CM
C2C12 cells differentiated for 3 days and incubated with DM show
an increase in protein synthesis rates when stimulated with insulin
and IGF-1 of 57% and 52%, respectively, compared with the
unstimulated condition. Furthermore, C2C12 cells incubated with
chowCMandHFDCMshow an increase in protein synthesis rates
of 62% and 67%, respectively, in the insulin-stimulated condition,
compared with no stimulation. No differences in protein synthesis
rates were found between chow and HFD CM in the basal
condition, or in the stimulated condition (Supplementary
Figure 1). Also after 5 days of differentiation, protein synthesis
rates did not differ between chow and HFD CM (Figure 3B;
p=0.11). Protein breakdown rates were increased by 27% in HFD
CMcomparedwith chowCM(Figure 3C).As shown inFigure 3D,
cells were fully differentiated into myotubes by day 5.

Correlative Analysis
Given our hypothesis that hepatic steatosis causes muscle insulin
resistance and muscle protein loss, and to investigate a possible
Frontiers in Endocrinology | www.frontiersin.org 6
link between insulin resistance and muscle protein synthesis and
breakdown rates, correlative analysis was performed. Liver TAG
tended to be negatively correlated with delta glucose uptake,
which was calculated by the difference between basal glucose and
insulin-stimulated glucose uptake (r= -0.54, p=0.055;
Figure 4A). Liver TAG was positively correlated with protein
breakdown rates (r=0.65, p=0.015), but did not correlate with
protein synthesis rates (Figures 4B, C). Protein breakdown rates
also correlated negatively with delta glucose uptake (r= -0.56,
p=0.04); there was no correlation between protein synthesis rates
and delta glucose uptake (Figures 4D, E).

Gene Expression in C2C12 Myotubes After
Exposure to CM
Transcriptome profiling was performed on C2C12 cells
incubated with either HFD or chow CM. Principal component
analysis indicated that both groups were well separated into
distinct clusters, with the exception of one outlier (see
Figure 5A; scores for principal component 1 versus 2 shown).
In total, 12,585 expressed genes were detected, of which only 21
A B C D

FIGURE 2 | Body mass characteristics in chow and HFD mice. C57BL/6J mice were fed a chow (n=7) or high-fat diet (HFD) (n=6) for 12 weeks. (A, B) Body mass.
(C) Epididymal fat mass. (D) Liver fat. *P < 0.05 versus chow.
A B C D

FIGURE 3 | Insulin sensitivity and protein turnover in differentiated myotubes incubated with DM, chow CM or HFD CM. (A) 2-deoxyglucose (DG) uptake in L6-
GLUT4myc myotubes without (basal) or with 10 nM insulin. n=7/6 biological replicates per group and 3 technical replicates. (B) Protein synthesis: L-[14C(U)]-
phenylalanine incorporation in C2C12 cells incubated with chow or HFD CM. n=7/6 biological replicates and 4 technical replicates. (C) Protein breakdown L-[14C(U)]-
phenylalanine release from pre-loaded C2C12 cells. n=7/6 biological replicates and 3 technical replicates. (D) C2C12 myotubes differentiated for 5 days.
#P < 0.05 versus basal, *P < 0.05 versus chow.
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genes were differentially expressed between groups (adjusted p <
0.05). After exclusion of the outlier, 197 genes were found to be
differentially expressed, of which 46 (23.4%) were upregulated
and 151 (76.6%) were downregulated (a heat map is presented in
Figure 5B). These 197 geneswere used for further analysis. To gain
Frontiers in Endocrinology | www.frontiersin.org 7
insight into the biological function of the differentially expressed
genes, pathway enrichment analysis was performed. Pathways
defined by WikiPathways, Reactome, and KEGG were included
in the analysis. Only pathways with a minimum overlap of 4 genes
between our dataset and a respective pathway were considered.
A B C

D E

FIGURE 4 | Pearson's correlation graphs to evaluate the strength and direction of asssociation between variables. Correlation between (A) liver fat and delta
glucose uptake, (B) liver fat and protein synthesis, (C) liver fat and protein breakdown, (D) protein synthesis and delta glucose uptake, and (E) protein breakdown
and delta glucose uptake. n = 7 chow and 6 HFD.
A B

FIGURE 5 | Gene sequencing data analysis. (A) Principal component analaysis (PCA) demonstrating gene clustering by group (diet) with the exception of one outlier
(encircled). (B) Comparative heat map analysis of all 197 differentially expressed genes in C2C12 cells incubated with HFD CM (n=6) compared with C2C12 cells
incubated with chow CM (n=6) after exclusion of the outlier. Red indicates higher expression, and blue indicates lower expression. Expression values are normalized
per row, using Z-score transform.
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Therewere12significantly enrichedpathways, including ‘PI3K-Akt
signaling pathway’, ‘Signaling by PDGF’, ‘ECM-receptor
interaction’, ‘Prostaglandin Synthesis and Regulation’, ‘focal
adhesion-PI3K-Akt-mTOR-signaling pathway’, ‘spinal cord
injury’, ‘focal adhesion - Mus musculus’, ‘focal adhesion’,
‘Regulation of Insulin-like Growth Factor (IGF) transport and
uptake by Insulin-like Growth Factor Binding Proteins’, and
Frontiers in Endocrinology | www.frontiersin.org 8
‘arachidonic acid metabolism’. The pathways identified by
pathway analysis are ranked by p-value and presented in Table 2.
Links between relevant pathways are visualized in Figure 6.
Exploration of the list of differentially expressed genes showed
that multiple genes play a role in multiple enriched pathways,
confirming the close link between pathways (Table 3). Gene
ontology enrichment analysis was also performed, and showed
TABLE 2 | Top enriched pathways-based sets of differentially expressed genes.

Pathway name Pathway
source

Set size Candidates
contained

p-value q-value

PI3K-Akt signaling pathway - Mus musculus (mouse) KEGG 358 13 (3.6%) 6.3 e-05 0.004
Signaling by PDGF Reactome 52 5 (9.6%) 0.0002 0.004
ECM-receptor interaction - Mus musculus (mouse) KEGG 83 6 (7.2%) 0.0002 0.004
Prostaglandin Synthesis and Regulation WikiPathways 31 4 (12.9%) 0.0003 0.004
Human papillomavirus infection - Mus musculus (mouse) KEGG 370 12 (3.3%) 0.0003 0.004
Focal Adhesion-PI3K-Akt-mTOR-signaling pathway WikiPathways 322 11 (3.4%) 0.0004 0.004
Spinal Cord Injury WikiPathways 101 6 (5.9%) 0.0005 0.005
Amoebiasis - Mus musculus (mouse) KEGG 106 6 (5.7%) 0.0006 0.005
Focal adhesion - Mus musculus (mouse) KEGG 199 8 (4.0%) 0.0009 0.006
Focal Adhesion WikiPathways 182 7 (3.8%) 0.0024 0.016
Regulation of Insulin-like Growth Factor (IGF) transport and uptake
by Insulin-like Growth Factor Binding Proteins (IGFBPs)

Reactome 141 6 (4.3%) 0.0029 0.018

Arachidonic acid metabolism Reactome 79 4 (5.1%) 0.0083 0.046
Octobe
r 2021 | Volume 12 |
FIGURE 6 | Visualization of pathway enrichment analysis of differentially expressed genes, indicating links between pathways. Each node represents a separate concept
whose member list size (i.e., number of genes contained) and P-value are encoded as node size and node color, respectively. Two nodes are connected by an edge if
they share more than 1 member. The edge width reflects the relative overlap between the nodes, while the edge color encodes the number of shared genes.
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that the differentially expressed genes were mostly involved in
‘system development’, ‘anatomical structure development’,
‘multicellular organism development’, ‘regulation of anatomical
structure morphogenesis’, ‘animal organ development’,
‘vasculature development’, ‘anatomical structure morphogenesis’,
‘cardiovascular system development’, ‘blood vessel development’,
and ‘cellular developmental process’ (Table 4).

PCR Analysis
Expression of genes with important roles in protein synthesis,
protein breakdown, and inflammation were examined via PCR.
There were no differences in the expression of mtor, 4ebp1,
Murf1, Atrogin1, Bnip3, Lc3b, Cxcl1, Ikba, and Mcp1 in C2C12
cells treated with HFD CM compared with chow CM. In
contrast, Redd1, Cxcl2, and Il6 expression were increased in
C2C12 cells treated with HFD CM compared with chow CM, by
2.4-fold, 2.2-fold, and 1.3-fold, respectively (Figure 7).

Proteomics Analysis in Chow and HFD CM
Using LC-MS/MS, 1,045 unique proteins were found to be present
in the CM and using SignalP 5.0 and Deeploc 154 proteins were
identified as secreted proteins. Specifically, SignalP 5.0 detected the
presence of a signal peptide sequence in 152 proteins whereas
Deeploc recognized 90 secreted proteins by predicting an
extracellular location. Of these 154 proteins, 32 proteins were
found to be differentially expressed in HFD CM, with a fold
change >1.2 and an adjusted p-value <0.05 compared with chow
CM. Of these proteins, 30 proteins were downregulated and 2 were
upregulated.Togainbetter insight into thebiological functionof the
differentially expressed proteins, pathway analysis was performed.
Pathways defined by WikiPathways, Reactome, and KEGG were
included in the analysis. Only pathwayswith aminimumoverlap of
4 proteins between our dataset and a respective pathway were
considered. All enriched pathways were ‘regulation of Insulin-like
Growth Factor (IGF) transport and uptake by Insulin-like Growth
Factor Binding Proteins (IGFBPs)’, ‘Post-translational protein
phosphorylation’, ‘Phase I - Functionalization of compounds’,
‘biological oxidations’, ‘Protein processing in endoplasmic
reticulum - Mus musculus’, ‘Drug metabolism - other enzymes -
Mus musculus’, ‘Platelet degranulation’, ‘Response to elevated
platelet cytosolic Ca2+’, ‘platelet activation, signaling and
aggregation’, ‘post-translational modification’, ‘metabolism of
proteins’, ‘hemostasis’, ‘neutrophil degranulation’, and ‘immune
system’. The top 10 enriched gene ontology-based sets include
‘endoplasmic reticulum lumen’, ‘extracellular space’, ‘endoplasmic
reticulum’, ‘endoplasmic reticulum part’, ‘endomembrane system’,
‘protein folding’, ‘endoplasmic reticulum chaperone complex’,
‘protein disulfide isomerase activity ’ , ‘ intramolecular
oxidoreductase activity, transposing S-S bonds’, and ‘cell
redox homeostasis’.
DISCUSSION

In the past decade, an increasing amount of evidence suggests a
strong relationship between NAFLD and sarcopenia. The
Frontiers in Endocrinology | www.frontiersin.org 9
direction of the relationship, however, is not clear and the
majority of studies suggest that muscle loss increases the risk
of developing NAFLD (9). In this study, we evaluated whether
secretion products from fatty mouse livers affect protein
synthesis and breakdown rates in cultured myotubes. C57BL/6J
mice were fed standard chow or a HFD for 12 weeks, livers were
excised and sliced, and secretion products from cultured liver
slices were collected and placed on differentiated C2C12 or L6-
GLUT4myc cells. There were no differences in protein synthesis
rates, but there was an increased insulin resistance and increased
protein breakdown in myotubes incubated with HFD CM
compared with chow CM. Furthermore, pathway analysis of
C2C12 gene expression showed that multiple pathways related to
anatomical structure and function were enriched. These findings
support our hypothesis that the secretome of a fatty liver
contributes to the development of muscle loss in individuals
with NAFLD.

Mechanisms underlying the development of sarcopenia in the
context of inter-organ crosstalk are heavily understudied. It has
only been in the past 15 years that studies have slowly started to
emerge, suggesting a role for adipose tissue in the development of
muscle wasting. An early study in 2007 showed that C2C12 cells
exposed to saturated fatty acids (palmitate) and unsaturated fatty
acids (oleate) increased protein degradation by 25% and 18%,
respectively, and this degradation was ameliorated by
adiponectin (21). It was also found that C2C12 cells treated
with CM from differentiated human adipocytes not only
displayed impaired insulin signaling, but also significantly
reduced expression of myogenin (22), a protein that is required
for the recruitment of the transcription initiation machinery to
muscle-specific genes (23). In 2015, Pellegrinelli et al. placed the
secretome of human obese adipocytes on differentiated human
primary satellite cells and demonstrated a decreased expression
of contractile proteins in myotubes, consequently inducing
atrophy (24). The investigators also established that adipocytes
from visceral adipose tissue depots were more potent than
adipocytes from subcutaneous adipose tissue depots in
provoking deleterious effects in muscle cells (24). Very
recently, Okun et al. were the first to show a causal link
between altered liver function and decreased muscle mass (25).
Specifically, the authors found that the expression of alanine
aminotransferases was increased in the liver in mice with obesity
and diabetes, as well as in humans with type 2 diabetes, and
hepatocyte-selective silencing of alanine aminotransferase
enzymes in mice with obesity and diabetes retarded
hyperglycemia and reversed skeletal muscle atrophy through
restoration of skeletal muscle protein synthesis (25).

In our study, we found increased protein breakdown rates in
C2C12 cells incubated with HFD CM, and we observed a positive
correlation between the amount of liver fat and protein
breakdown rates in C2C12 cells. This is a remarkable
observation, as it supports our hypothesis that hepatic fat
accumulation is responsible for the increase in muscle protein
breakdown. Interestingly, myotubes incubated with HFD CM
also developed insulin resistance, and there was a significant
correlation between protein breakdown in C2C12 cells and delta
October 2021 | Volume 12 | Article 733625
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TABLE 3 | Differentially expressed genes in eight of the enriched pathways.
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Arachidonate 5-lipoxygenase ↓ 0.000 0.000
CD44 antigen ↓ 0.000 0.000
Platelet-derived growth factor, D
polypeptide

↓ 0.000 0.000 x

Aldo-keto reductase family 1, member
C14

↓ 0.000 0.000

Granzyme E ↓ 0.000 0.000
Apolipoprotein L 9b ↓ 0.000 0.000
Insulin-like growth factor binding protein 2 ↓ 0.000 0.001
Laminin, beta 3 ↓ 0.000 0.001 x
Myosin, light chain 12B, regulatory ↓ 0.000 0.006
Thrombospondin 2 ↓ 0.000 0.006 x
Integrin alpha 4 ↓ 0.000 0.009 x
Annexin A1 ↓ 0.000 0.009
Angiopoietin 4 ↓ 0.000 0.025
Thrombospondin 1 ↓ 0.000 0.025 x
cAMP responsive element binding protein
5

↓ 0.000 0.027 x

Platelet-derived growth factor, C
polypeptide

↓ 0.000 0.027 x

S100 calcium binding protein A6 (calcyclin) ↓ 0.000 0.030
Collagen, type IV, alpha 5 ↓ 0.001 0.035 x
Cysteine rich protein 61 ↓ 0.001 0.038
Chordin-like 1 ↓ 0.001 0.040
Cellular communication network factor 1 ↓ 0.001 0.044
protein phosphatase 2, regulatory subunit
B, beta

↓ 0.001 0.037 x

Prostaglandin-endoperoxide synthase 2 ↑ 0.000 0.000
Serum/glucocorticoid regulated kinase 1 ↑ 0.000 0.000 x
6-phosphofructo-2-kinase/fructose-
2,6biphosphatase 3

↑ 0.000 0.001

Phospholipase A2, group IVA (cytosolic,
ca-dependent)

↑ 0.000 0.014

Interleukin 6 ↑ 0.000 0.023 x
Interleukin 4 receptor, alpha ↑ 0.001 0.037 x
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glucose uptake in L6-GLUT4myc cells, indicating that those CM
samples that resulted in a high level of insulin resistance, also
induced high levels of protein breakdown. It may be possible that
the liver secretome is directly responsible for the decrease in insulin
sensitivity aswell as for the increase inprotein breakdown inC2C12
cells. Alternatively, it is possible that the liver secretome decreases
protein breakdown via a decrease in insulin sensitivity. Also in vivo
studies previously reported a positive correlation between insulin
sensitivity and lean body mass (26), and multiple papers reported
that insulin resistance accelerates muscle protein degradation (27,
28) and inhibits protein synthesis (29). Interesting findings
regarding the link between insulin sensitivity and muscle mass
were also reported byMitch et al. who created insulin-deficient rats
Frontiers in Endocrinology | www.frontiersin.org 11
by injection of streptozotocin. They found that muscle protein
degradation was increased by 75% (30), whereas treatment of these
rats with insulin for≥24 h reversedmuscle proteolysis and returned
mRNAs to control levels (31), suggesting a role for insulin in the
maintenance ofmuscle mass. Similar results were found in subjects
with type 1 diabetes, in which insulin therapy inhibited protein
breakdown (32). Thus, it seems that insulin and insulin sensitivity
play an important role in the maintenance of muscle mass.

Through RNA sequencing, 197 genes were found to be
significantly changed in C2C12 cells incubated with HFD CM,
comparedwith chowCM.Usingpathway analysis, the top enriched
pathway-based set was found to be ‘PI3-Akt signaling pathway’.
This is an interesting observation, as the PI3-Akt signaling pathway
is the major insulin-sensitive pathway resulting in glucose uptake.
In linewith thisfinding,we previously found that the secretomeof a
fatty liver indeed induced insulin resistance in muscle cells (6), and
insulinresistance is assumed toplay amajor role in thedevelopment
of muscle atrophy, as discussed earlier. The second pathway-based
set that was found to be enriched was ‘signaling by PDGF’, which is
also a remarkable finding. Platelet‐derived growth factors (PDGFs)
are a family of growth factors expressed in skeletal muscle, and
receptors for these proteins play important roles in muscle growth
and remodeling (33). Specifically, PDGF signaling is required for
fiber hypertrophy, extracellular matrix (ECM) production, and
angiogenesis that occurs during muscle growth (33). The third
pathway-based set that was enriched was ‘ECM-receptor
interaction - Mus musculus’. The skeletal muscle ECM plays an
important role inmusclefiber force transmission,maintenance, and
repair, and the ‘ECM-receptor interaction pathway’ includes
interactions within the ECM that lead to control of cellular
activities such as adhesion, migration, differentiation,
proliferation, and apoptosis. In case of injury or disease, the ECM
adapts dramatically resulting in clinical manifestations and altered
muscle function (34). Three other enriched pathways that are of
specific interest are related to focal adhesion (Figure 6). Focal
TABLE 4 | Top 20 enriched gene ontology-based sets of differentially expressed genes.

Gene ontology term Set size Candidates contained p-value q-value

GO:0048731 system development 4787 88 (1.8%) 2.72e-13 8.41e-11
GO:0048856 anatomical structure development 5856 99 (1.7%) 4.74e-13 5.2e-11
GO:0007275 multicellular organism development 5339 93 (1.7%) 8.59e-13 5.2e-11
GO:0022603 regulation of anatomical structure morphogenesis 1065 33 (3.1%) 4.07e-10 2.15e-07
GO:0048513 animal organ development 3602 66 (1.8%) 2.07e-09 3.2e-07
GO:0001944 vasculature development 746 25 (3.4%) 1.52e-08 3.84e-06
GO:0009653 anatomical structure morphogenesis 2701 54 (2.0%) 6.19e-09 2.5e-07
GO:0072358 cardiovascular system development 760 25 (3.3%) 2.19e-08 3.84e-06
GO:0001568 blood vessel development 715 24 (3.4%) 2.94e-08 1.82e-06
GO:0048869 cellular developmental process 4445 73 (1.6%) 2.35e-08 6.2e-07
GO:0071495 cellular response to endogenous stimulus 1289 34 (2.6%) 1.27e-08 1.31e-06
GO:0009888 tissue development 1952 43 (2.2%) 2.3e-08 1.77e-06
GO:0071495 cellular response to endogenous stimulus 1289 34 (2.6%) 2.57e-08 1.59e-06
GO:0070887 cellular response to chemical stimulus 2962 55 (1.9%) 4.51e-08 2.32e-06
GO:0009719 response to endogenous stimulus 1600 38 (2.4%) 2.56e-08 6.2e-07
GO:0050793 regulation of developmental process 2722 51 (1.9%) 1.55e-07 6e-06
GO:2000026 regulation of multicellular organismal development 2141 44 (2.1%) 1.11e-07 1.47e-05
GO:0010035 response to inorganic substance 583 21 (3.6%) 7.13e-08 3.15e-06
GO:0072359 circulatory system development 1143 29 (2.5%) 4.01e-07 4.22e-05
GO:0030154 cell differentiation 4246 67 (1.6%) 6.14e-07 1.96e-05
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FIGURE 7 | PCR analysis of genes with functions related to protein
synthesis, protein breakdown, and inflammation. Gene expression in
differentiated C2C12 cells, treated with chow or HFD CM, and expressed
relative to chow. n=7/6 biological replicates and 3 technical replicates.
*P < 0.05 versus chow.
e 733625

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Pasmans et al. Hepatic Steatosis Induces Muscle Atrophy
adhesions are large multi-protein structures that form mechanical
links between intracellular actinbundles and theECM, andproteins
associate and disassociate with it continually as signals are
transmitted to other parts of the cell (35). Interestingly, PI3K/Akt
and mTOR were indicated as two pathways affected by changes in
focal adhesion; pathways that arewell-knowntoplaykey roles in the
regulation of insulin sensitivity and muscle growth (36, 37).
‘Prostaglandin Synthesis and Regulation’ and ‘Arachidonic acid
metabolism’ are also relevant pathways that were enriched.
Prostaglandins are mainly synthesized from arachidonic acid and
are known to be major regulators of skeletal muscle protein
turnover and exercise training adaptations (38, 39). Altogether,
our results suggest that HFD CM leads toward a dysregulation of a
set of geneswith important roles in themaintenanceofmusclemass
and health.

Exploration of the list of differentially expressed genes showed
that multiple genes play a role in multiple enriched pathways,
confirming the close link between pathways (Table 4). Several of
those genes are well-known players involved in the regulation of
muscle morphology and muscle function, including
thrombospondin-1 (Thbs1) and thrombospondin-2 (Thbs2) (40–
43), annexin A1 (44–47), S100 calcium-binding protein A6
(calcyclin) (48), prostaglandin-endoperoxide synthase 2 (Ptgs2 or
COX2) (49–51), and phospholipase A2, group IVA (cytosolic,
calcium-dependent) (cPLA2) (52, 53). Previously, studies have
tried to identify a set of genes that are differentially expressed
with different causes of muscle loss, but this has appeared
challenging. Genome-wide expression profiling analysis was used
to identify themolecular changes that occur in twomousemodels of
muscle atrophy: hindlimb casting and Achilles tendon laceration.
Interestingly though, both disusemodels of skeletalmuscle atrophy
induced very distinct protein degradation profiles (54). Other
studies, however, successfully identified a set of genes that play a
role in the development ofmuscle wasting, which includeAtrogin1/
Mafbx and Murf1 (55). Interestingly, we could not detect any
changes in Atrogin1/Mafbx and Murf1, as measured by RNA
sequencing and PCR analysis. In agreement with this, it has
previously been described that in some conditions of muscle
wasting (e.g. sarcopenia), there are discrepancies between studies,
showing upregulation, downregulation, orno alteration inAtrogin-
1/MAFbx and MuRF-1 expression (56). Especially in studies with
COPD patients, a patient group that may be relatively similar to
NAFLD patients, 3 of the 4 studies found no change in MuRF-1.
Also in rats, in which a relatively modest dose of IL-6 was infused
locally,muscleatrophywas induced in the absenceofany changes in
Atrogin-1/MAFbx and MuRF-1 (57). Also other important
modulators of muscle protein synthesis and breakdown were not
changed in our study, includingmtor, 4ebp1, Bnip3, and Ikba. PCR
analysis did, however, (as well as RNA sequencing) reveal an
increased expression of Il6 and Redd1 of 2.4 and 1.3-fold,
respectively. IL-6 is a cytokine with both pro-inflammatory and
anti-inflammatory properties, and with a variety of functions
related to metabolism (58). Chronically increased IL-6 levels have
been linked tomitochondrial dysfunction (59), and sarcopenia (60).
Furthermore, IL-6 has been suggested to contribute to the
development of type 2 diabetes (61), and intervention studies
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identified IL-6 as a key regulator of muscle mass during cachexia
(57, 62). REDD1 is a known inhibitor of the Akt/mTOR signaling
pathway and studies founda role forREDD1 in the regulationof cell
growth, mitochondrial function, oxidative stress, and apoptosis,
leading to tissue damage (63). Notably, even though PCR and gene
sequencing analysis are of great use to provide an overview of the
pathways that are affected by a particular intervention, they do not
give any information on post-translational modifications and
phosphorylation states of individual proteins, while these latter
aspects are also important to take into account.

In our study, we used PCLS as model. De Graaf et al.
previously showed that PCLS represent a mini-model of the
liver and contain all cells of the tissue in their natural
environment, leaving intercellular and cell-matrix interactions
intact (17). PCLS are therefore highly appropriate for studying
multicellular processes, and represent a better physiological
model to study inter-organ crosstalk between liver and skeletal
muscle, compared with isolated hepatocytes. Pro-inflammatory
cytokines have previously been linked to the development of
muscle wasting in obese patients (64). To investigate whether
protein secretion from PCLS may be responsible for the change
in gene expression in C2C12 cells incubated with HFD CM
compared with chow CM, proteomics analysis was performed in
chow and HFD CM. It was previously found that diet-induced
steatosis alters the liver transcriptome and proteome profile in
mice and in humans (65–68), resulting in a different hepatokine
secretion profile compared to lean livers (6). In our current study,
we found that 32 proteins were differentially expressed inHFDCM
compared with chow CM. Of these proteins, 30 proteins were
downregulated and 2 were upregulated (Supplementary Table 1),
indicatingapronounceddownregulation.However,wedidnot seea
difference between the chow and HFD CM with respect to the
absolute amountofproteins secreted,which indicates that this isnot
explained by an overall downregulation of liver function and
secretion. Also, data is normalized for total protein content per
sample. Nevertheless, pathway analysis indicated that the
differentially expressed proteins had important functions with
respect to Insulin-like Growth Factor (IGF) transport and uptake,
thereby showing a linkwith insulin sensitivity andprotein turnover.
Other interesting pathways include ‘post-translational protein
phosphorylation’, ‘protein processing in endoplasmic reticulum’,
‘post-translational modification’, and ‘metabolism of proteins’.
These findings suggest that HFD CM not only affects gene
expression in skeletal muscle, but also affects post-translational
processes, including protein folding, protein secretion, and protein
phosphorylation. In line with this, gene ontology analysis found
indeed that processes in the endoplasmic reticulum and the
extracellular space were strongly enriched.

The concept of inter-organ crosstalk between liver and
skeletal muscle in the development of muscle atrophy is
relatively new. In the current study, we found evidence that
secretion products from a fatty liver negatively affect protein
breakdown. Nevertheless, despite evidence to support a role for
the liver in the development of muscle atrophy, it cannot be
excluded that low muscle mass also affects liver health. Similar to
the liver, skeletal muscle is an endocrine organ that secretes
October 2021 | Volume 12 | Article 733625
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myokines, and these may affect liver function via inter-organ
crosstalk. It has previously been shown that muscle-derived IL-6
plays a role in triggering glucose output from the liver during
exercise in humans (69). In addition, the myokine irisin has been
suggested to suppress the progression of hepatic fibrosis by
regulating hepatic stellate cell activation, proliferation,
migration, contractility, and hepatic stellate cell-mediated
production of inflammatory cytokines (70). Furthermore,
blocking myostatin was shown to increase muscle mass,
ameliorate liver insulin resistance, and decrease hepatic
steatosis in HFD mice (71). Thus, although direct evidence is
still scarce, it is plausible that decreased muscle health, oxidative
stress, and inflammation may lead to an increased secretion of
harmful myokines, which may contribute to NAFLD
progression. Further detailed mechanistic studies investigating
the link between NAFLD and sarcopenia are needed.

There are some other limitations in our study. One limitation
is that only male mice were included. It is known that pre-
menopausal female individuals are less prone to develop hepatic
steatosis and metabolic problems upon weight gain, compared
with males. This is likely due to different hormones, less visceral
fat, more gluteofemoral fat, less fat spillover, and thus less ectopic
fat accumulation (72, 73). This difference between males and
females has also been shown in mice (74, 75). To investigate the
link between early stage NAFLD and the development of muscle
atrophy, we wanted to use a model in which we could induce
liver steatosis and metabolic problems in a short amount of time;
hence, we chose male mice. Nevertheless, it would be of great
interest to look specifically at sex differences in relation to
adiposity, depot differences, liver fat, and muscle mass in
future research, particularly in humans.

It is also important to note that, apart from proteins, other
products may contribute to the effects observed. It is now well-
appreciated that tissues secrete proteins, lipids, metabolites, and
small non-coding RNAs which impact local functions in an
autocrine/paracrine manner, and also influence biological
processes in distant tissues. The effect of these secretory
products should be topic of future research.

In conclusion, this study provides evidence that secretion
products from a fatty liver lead to profound changes in skeletal
muscle gene expression, and increased muscle protein
breakdown rates. The study supports the hypothesis that
hepatic steatosis contributes to the development of muscle
atrophy in individuals with NAFLD.
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