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Graves’ orbitopathy (GO) is a complex and poorly understood disease in which extensive
remodeling of orbital tissue is dominated by adipogenesis and hyaluronan production. The
resulting proptosis is disfiguring and underpins the majority of GO signs and symptoms.
While there is strong evidence for the thyrotropin receptor (TSHR) being a thyroid/orbit
shared autoantigen, the insulin-like growth factor 1 receptor (IGF1R) is also likely to play a
key role in the disease. The pathogenesis of GO has been investigated extensively in the
last decade with further understanding of some aspects of the disease. This is mainly
derived by using in vitro and ex vivo analysis of the orbital tissues. Here, we have
summarized the features of GO pathogenesis involving target autoantigens and their
signaling pathways.
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INTRODUCTION

Graves’ orbitopathy (GO) or thyroid eye disease is the most common overt thyroidal manifestation
of Graves’ disease (GD) with substantial morbidity and socioeconomic impact (1–4). Extensive
orbital tissue remodelling in GO is mainly shown as adipose tissue expansion and tissue edema via
increased adipogenesis and hyaluronan production, respectively. These pathogenetic processes
produce disfiguring proptosis and underpin all GO signs and symptoms. There is a close clinical and
temporal association between GD and GO suggesting an autoimmune response to common
antigen/s in the orbit and thyroid gland. The thyrotropin receptor (TSHR) is expressed in orbital
adipose tissue (OAT) (5–8) and virtually all patients with hyperthyroid GO have thyroid stimulating
antibodies (TSAB). Therefore, the TSHR is the most logical candidate (9), which is further
supported by the existence of TSHR-induced GO in an animal model (10). The incidence of GO
is estimated to be 16/100,000 in females and 2.9/100,000 in males (11). On the other hand, the
prevalence estimate is about 10/10,000 (12). A recent meta-analysis reported that current GD
patients have a milder phenotype than in the past; as a consequence, a smaller proportion display
Abbreviations:GO, Graves’ orbitopathy; TSAB, thyroid stimulating antibodies; TSHR, thyrotropin receptor; IGF1, insulin like
growth factor 1; IBMX, 3-isobutyl-1-methylxanthine; PPARg, peroxisome proliferator-activated receptors gamma; PI3 kinase
Phosphoinositide-3- kinase; MAP, mitogen-activated protein kinase; FOXO, Forkhead Box O1; C/EBP-d, CCAAT-enhancer-
binding proteins Delta; cAMP, Cyclic adenosine monophosphate; PKA, protein kinase A; GCRP, G protein coupled receptors;
FRET, fluorescence resonance energy transfer; CREB, cAMP responsive element binding protein; TG, thyroglobulin; TPO,
thyroid peroxidase; NIS, sodium iodide symporter (NIS), TTF, thyroid transcription factors; PKC, Protein kinase C; PLC
phospholipase C; DAG, di-acyl-glycerol; NFAT, Nuclear factor of activated T-cells; HA, hyaluronic acid; GAG,
glycosaminoglycan; SNP, single nucleotide polymorphism.
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GO symptoms (13). As with other autoimmune conditions there
is female preponderance towards the condition with 6:1 female
to male ratio, although in GO the ratio is less skewed than in GD.
In addition, most patients with GO have reduced quality of life
(QOL) (14) and suffer long-term psychological distress due to
the disfiguring appearance of the proptosis, also known as
exophthalmos (15). Available treatments for GO are
unsatisfactory and more research is needed to address the
pathophysiology of the disease which may lead to early pre-
clinical diagnosis promoting preventative/early interventions.
This in turn will improve long-term morbidity and
socioeconomic impact.
ADIPOGENESIS

Adipogenesis is a process in which preadipocytes differentiate into
mature adipocytes to form adipose tissues. Our current
understanding of adipogenesis has been largely derived by using
the murine 3T3L1 cell line. This cell line can spontaneously
differentiate into adipocytes when maintained in a high
concentration of fetal calf serum for several weeks but the
process can be accelerated by employing adipogenic cocktails
including insulin, steroid and 3- isobutyl-1-methylxanthine
(IBMX) (16). Further components of the differentiation
cocktails may also include proliferation-activated receptor
gamma (PPARg) agonists such as pioglitazone and
indomethacin (17). Insulin, in common with insulin-like growth
factor-1 (IGF-1) activates PI3 kinase (18) and MAP (mitogen-
activated protein kinase) (19) pathways. Phosphorylation of
protein kinase B (PKB/Akt) in turn phosphorylates forkhead
box protein O1 (FOXO1) causing it to exit from the nucleus
leading to increased transcription of adipogenic genes (20).
Steroids induce the expression of the early adipogenic gene,
CCAAT enhancer binding protein delta (C/EBP-d). This
transcription factor contributes to an increase in PPAR-g
expression and production of prostacyclin leading to elevated
intracellular cAMP. IBMX is a nonselective phosphodiesterase
inhibitor whose presence further elevates levels of intracellular
cAMP and protein kinase A (PKA). IBMX is thus required for
transcriptional activation of the master regulator of
adipogenesis, PPARg.

Adipogenesis contributes to OAT expansion because a
fibroblast has an approximate diameter of 30 microns, whereas
the diameter of a mature adipocyte is approximately 150
microns, i.e. 5 times larger. The increased adipogenesis has
been demonstrated by using in vitro cultures of human
fibroblasts and analysis of ex vivo samples from patients with
GO (21). By using both in vitro lineage specific differentiation
protocols and flow cytometry, studies have indicated that orbital
fibroblasts (OF) possess mesenchymal stem cell (MSC)
properties including positivity for Thy-1 (CD90) which is a
marker of MSC (22–25). In the orbit, Thy-1 negative OF can
be induced to differentiate when cultured in appropriate
adipogenic medium whereas Thy-1 positive cells are more
likely to undergo differentiation to myofibroblasts and cause
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fibrosis (23, 24). The orbital fibroblast is also able to undergo
neurogenesis, myogenesis, osteogenesis and chondrogenesis in
vitro, indicating their pluripotency (22, 25).
EXTRA-CELLULAR MATRIX

Several extracellular matrix (ECM) components are overproduced
in GO including collagens and glycosaminoglycans (GAGs). The
excess ECM accumulation in OAT and extraocular muscle (EOM)
lead to oedema with consequent proptosis and diplopia
respectively (26). The main GAG produced in GO is hyaluronic
acid, which is generated by three synthase enzymes (HAS1, HAS2
and HAS3) and broken down by hyaluronidases. Activation of
cAMP-protein kinase A signaling via the TSHR, increases cAMP
response element binding protein (CREB) at CREB binding sites
in the promoters of HAS1 and HAS2 genes, thereby enhancing
hyaluronan production (27).
TSHR INTRACELLULAR PATHWAYS

Several studies, including from our group, have shown that
activation of the TSHR in OF leads to an increase in
hyaluronan production and adipogenesis (20, 28). TSHR
expression has been shown to increase during adipogenesis (5).
We demonstrated that ‘neutral’ TSHR antibodies were capable of
binding but had no effect on traditional TSHR signaling
pathways (described below) (29). Indeed, TSHR signaling may
be far more complex than initially thought (30). Little is known
about the effects of TSHR activation at various stages during
differentiation. The downstream cascade triggered by TSHR will
depend on the types and abundance of guanine-nucleotide
binding proteins (G proteins) available in the cell (31). G
protein coupled receptors (GPCR) can exist as monomers or
oligomers. Oligomerization is the term used to describe dimeric,
tetrameric, or higher-order complexes between GPCR
monomers. The activation of different GPCR complexes will
have major influence on subsequent G protein signaling
pathways. The evidence that TSHR may exist in an oligomeric
state was initially provided by studies using antibodies (32) and
more recently by fluorescence resonance energy transfer (FRET)
technology (33). Interestingly, the presence of dimerization
influences TSHR behavior. Unstimulated TSHRs have been
shown to form oligomers that return to the monomer state
with TSH (34). TSHR autoantibodies with stimulating properties
are (TSAB) proposed to favor formation of TSHR dimers, whilst
TSHR blocking antibodies, are unable to bring about this
conformational change. After TSH binding, a constitutively
oligomeric TSHR dissociates into active monomers (or dimers
when TSAB bind). Subsequently the monomers or dimers are
recruited to the lipid rafts and interact with G proteins, thereby
initiating the signaling cascade. In the case of TSH, the signal is
rapid and brief because of faster movement of monomers into the
lipid rafts, in contrast to the slow motion of the dimers.
Multivalent blocking TSHR antibodies may cross-link the
November 2021 | Volume 12 | Article 739994
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oligomers, thus preventing them from dissociating and impeding
their entry into lipid rafts (35). In cells with low levels of TSHR
expression, homo-heterodimer formation is less likely. This may
change during adipogenesis, as TSHR expression increases, and
may lead to activation of different signaling cascades from that
predominating in orbital fibroblasts.

TSHR is known to activate mainly the guanine-nucleotide
protein alpha stimulation (Gs)-cAMP pathway. In addition,
TSHR may activate several other G protein subtypes, as
detailed below (36, 37), non G protein pathways such as b-
arrestin-1 (38) and other signalling pathways (39, 40). When
TSH binds to its receptor, GTP replaces GDP in the
heterotrimeric G protein, which dissociates into Gsa and Gbg
subunits with the former activating all isoforms of adenylate
cyclase (41). This enzyme increases levels of cAMP in the cell and
activates PKA, also known as cAMP-dependent protein kinase.
The activated PKA phosphorylates multiple downstream target
proteins one of which is cAMP responsive element binding
protein (CREB). CREB then binds to its receptors on the
promoter region of the DNA exerting various gene
transcription processes including expression of thyroglobulin
(TG), thyroid peroxidase (TPO), sodium iodide symporter
(NIS), the thyroid transcription factors TTF1/NKx2.1, TTF2/
FoxE1, and PAX (42, 43). Every intermediary in the pathway
described above may additionally interact with different
molecules belonging to other pathways.

In human thyrocytes and rat FRTL-5, guanidine binding
protein alpha a/alpha 11 (Gaq/a11) coupling has been shown
to stimulate Protein kinase C (PKC) pathways by generating
phospholipase C (PLCb). The PKC pathways has been associated
with hyaluronan generation in GO (44). Activation of PKC
pathways requires supraphysiological TSH concentrations
although not all research agrees with this finding (45). PLC
catalyses hydrolysis of phosphatidylinositol in cell membranes
yielding di-acyl-glycerol (DAG) and inositol tri phosphate (IP3)
as second messengers. DAG directly stimulates PKC. IP3
increases cytosolic Ca+2 levels which act through a number of
effectors including PKC itself (46) and Nuclear Factor of
Activated T-cells (NFAT) transcription factor protein.
NFAT plays an important role in cytokine gene transcription
regulation (47). Calcium via calmodulin –a calcium sensor
protein - activates the serine/threonine phosphatase
calcineurin (inhibited by cyclosporin and FK506). This in turn
rapidly dephosphorylates NFAT proteins, resulting in a
conformational change that exposes a nuclear localization
signal leading to NFAT nuclear import (48). TSHR may also
couple to guanine nucleotide binding protein alpha inhibition
(Gai1), which inhibits adenylyl cyclase and decreases cAMP
levels. The accompanying Gbg dimers may induce multitudes of
other pathways, including adenylyl cyclase, PI3K/Akt (PKB)-
FOXO and PLC cascades (49–51). Others have reported that
TSHR activation of OF signals via p70s6 kinase (52). The finding
may explain our lack of success when using gain-of-function
mutants of the TSHR, which signal predominantly via Gsa, to
stimulate adipogenesis (28) and concurs with the study from van
Ziejl et al. who investigated TSH/TSAB induced hyaluronan
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production (53). It contrasts with the studies of Neumann and
colleagues, who report increased M22-mediated cAMP, even at
baseline. However, these authors maintain their OF in a
semi-adipogenic medium which likely increases TSHR
expression (54).

Our previous work has demonstrated that adipogenesis and
HA production, are linked in the orbit. HA accumulation
increases in the orbit during adipogenesis but not in other fat
depots (55). In this study, adipogenesis in orbital preadipocytes
was accompanied by HA accumulation and significantly
increased HAS2 transcripts (but not HAS 1 and 3). In contrast,
adipogenic differentiation in subcutaneous preadipocyte-
fibroblasts significantly decreased secreted HA and HAS2
transcript levels. IGF-I alone did not increase HAS2 levels, but
inhibition of PKB/Akt increased orbitalHAS2 transcripts but not
subcutaneous preadipocytes. Furthermore, our study suggested
that mTORC1 negative feedback in IGF1–PI3K–Akt signalling is
absent in OF but present in subcutaneous adipose tissue (55).
The difference might be explained by the fact that human OF
originate from neural crest, while subcutaneous adipose tissue is
of mesodermal origin. In addition, our most recent studies
demonstrated a depot specific fatty acid-uptake driven
adipogenesis with unique gene signatures in OAT. These result
in hyperplastic-type expansion of adipocytes in GO (56, 57).
Taken together, these findings suggest a very distinctive
mechanism underlying the orbital adipogenesis process.
INSULIN LIKE GROWTH FACTOR -1
RECEPTOR SIGNALLING

While there is strong evidence supporting the role of TSHR in
GO, IGF1R is also likely to play a key role in the disease progress.
The IGF1R was first proposed by Weightman and colleagues
who demonstrated high affinity IGF1 binding sites in OF (58).
More recently extensive work from Terry Smith and his
colleagues has confirmed this finding and further showed that
TSHR and IGF1R co-localize to orbital cell membranes (59). The
same group has further reported a wide range of IGF1R mediated
effects in OF including increases in proliferation, GAG
production and cytokine production (60, 61). Our own study
demonstrated that activation of TSHR and IGR1R has additive
effect on HAS2 transcripts/HA production (62). Krieger et al.
found that M22 stimulation of HA secretion by OF involves cross
talk between IGF-1R and TSHR. The relationship relies on TSHR
activation per se rather than direct activation of IGF-1R which
leads to synergistic stimulation of HA secretion (63). TSH
induced ERK phosphorylation can be blocked by an IGF-1R-
blocking monoclonal antibody suggesting that IGF-1R might
mediate some TSH-provoked signalling. Further studies have
highlighted the importance of down stream factors of IGF1–
PI3K signalling and revealed that FOXOs, may mediate both
TSHR and IGF1R signalling pathways in GO (64). The notion is
further supported by recent successful trial of teprotumumab-
monoclonal antibody which blocks IGF1R - in reducing
proptosis in patients with GO (65, 66). Whilst effective medical
November 2021 | Volume 12 | Article 739994
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treatment for GO is welcome, some concerns have been raised
about these trials including the lack of orbital imaging and the
fact that despite QOL scores being improved in the
teprotumumab group, all patients scores remained low (67).
Furthermore, the activation of Fibroblast Growth factor (FGF)
and its receptor has been shown to increase the expression of
Insulin like growth factor-2 (IGF-2) in mesenchymal stem cells
via IGF-2 and IGF1-R (68). The FGF signalling pathway has also
been shown to play a role in OAT expansion in GO (69). Our
most recent study used RNA-seq analysis to demonstrate that
FGFs, FGFR2, IGF-2 and IGF1-R were highly expressed in OAT
compared with white adipose tissue, supporting the
aforementioned successful trial of IGF1R inhibition in GO (56).
TSHR VARIANTS

To add to the complexity of the molecular events associated with
GO, several TSHR variants have been described which lack the
transmembrane domain. If the variants are expressed as protein,
they would yield soluble receptor products which could serve as
Frontiers in Endocrinology | www.frontiersin.org 4
TSH/TRAB binding proteins or even as autoantigens. Early
northern blot analysis of thyroid tissue identified the expected
full-length transcript plus 2 additional transcripts at 1.3 and 1.6
kb (70); the transcripts were also detected in OF (71). Of interest,
the exon 1-8 variant is similar in structure to the TSHR A subunit
which is generated following cleavage of the full-length receptor
(72, 73). Furthermore, induced murine models of GD and GO
are more effective when immunizing with the A subunit than
with the complete TSHR (74, 75). We have reported that the 1.3
variant is expressed as a protein and can affect TSHR activation
(76). Thus, these variants could have impact on the pathogenesis
of GO by inducing further production of TSAB or protect against
GO by ‘neutralizing’ TSAB, respectively.
DISCUSSION

TSHR and IGF1 signaling are important in orbital tissues
(summarized in Figure 1) but more complex than generally
thought. Although these signals are mainly activated through G
protein signalling pathways, other cascades may also be involved.
FIGURE 1 | Cartoon summarizing orbital fibroblast signaling cascades in Graves’ orbitopathy (GO) and how they affect pathogenetic mechanisms (adipogenesis and
hyaluronan production). TSHR/TRAB and IGFR/IGF are shown in red with arrows indicating the possible crosstalk between the pathways in GO. thyrotropin receptor
(TSHR, serpentine structure); TSHR auto-antibodies (TRAB); Insulin-like growth factor 1 receptor (IGF-1R) and IGF1; protein kinase A (PKA); protein kinase B (PKB/
Akt); protein kinase C (PKC); phosphoinositide 3-kinase (PI3K); forkhead box protein O (FOXO); hyaluronan production (HA).
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As our understanding expands, additional extracellular or
intracellular factors, which regulate signaling, may be
identified. The abundance of the receptors may also dictate
which pathways are activated. The recent success of TSHR
extracellular domain crystallization is likely to catapult these
areas of research and may lead to further alternative treatment
strategies for GO (77).

As discussed above, a human monoclonal anti-IGF-1R-
blocking antibody, Teprotumumab has been approved by FDA
for treatment of patients with GO specifically in reducing
proptosis and has recently been reported to be highly effective
in active GO (65). The potential for treatments based on TSHR
antagonism, which have been demonstrated to be effective in
vitro, is keenly anticipated either with blocking antibodies or
Frontiers in Endocrinology | www.frontiersin.org 5
small molecule antagonists which in theory could inhibit both
TSHR and IGF-1R related and/or unrelated pathways (78). The
beneficial effects on GD and GO following administration of a
monoclonal TSHR blocking antibody (TBAB) in a patient with
thyroid cancer has recently been described (79). Furthermore,
manipulating the two pathways concomitantly may provide even
more effective treatment for GO and merits investigation.
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