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Background: Hyperglycemia and obesity are associated with a worse prognosis in
subjects with COVID-19 independently. Their interaction as well as the potential
modulating effects of additional confounding factors is poorly known. Therefore, we
aimed to identify and evaluate confounding factors affecting the prognostic value of
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obesity and hyperglycemia in relation to mortality and admission to the intensive care unit
(ICU) due to COVID-19.

Methods: Consecutive patients admitted in two Hospitals from Italy (Bologna and Rome)
and three from Spain (Barcelona and Girona) as well as subjects from Primary Health Care
centers. Mortality from COVID-19 and risk for ICU admission were evaluated using logistic
regression analyses and machine learning (ML) algorithms.

Results: As expected, among 3,065 consecutive patients, both obesity and
hyperglycemia were independent predictors of ICU admission. A ML variable selection
strategy confirmed these results and identified hyperglycemia, blood hemoglobin and
serum bilirubin associated with increased mortality risk. In subjects with blood hemoglobin
levels above the median, hyperglycemic and morbidly obese subjects had increased
mortality risk than normoglycemic individuals or non-obese subjects. However, no
differences were observed among individuals with hemoglobin levels below the median.
This was particularly evident in men: those with severe hyperglycemia and hemoglobin
concentrations above the median had 30 times increased mortality risk compared with
men without hyperglycemia. Importantly, the protective effect of female sex was lost in
subjects with increased hemoglobin levels.

Conclusions: Blood hemoglobin substantially modulates the influence of hyperglycemia
on increased mortality risk in patients with COVID-19. Monitoring hemoglobin
concentrations seem of utmost importance in the clinical settings to help clinicians in
the identification of patients at increased death risk.
Keywords: COVID-19, hemoglobin, hyperglycemia, obesity, epidemiology, mortality, machine learning
1 INTRODUCTION

Since the first reports from China at the beginning of the
COVID-19 pandemic, age, male sex, obesity, type 2 diabetes
mellitus (T2D), arterial hypertension (AHT) and cardiovascular
disease have been identified as established risk factors for a poor
prognosis in patients with SARS-CoV-2 infection (1). Initial
multivariate analysis confirmed that individuals with BMI > 40
kg/m2 had 2.5 (1.8-3.4) (odds ratio and 95% confidence interval)
times more risk for hospital admission, and those with grade II
obesity had 7.36 (1.6-33) times more requirement of invasive
mechanical ventilation, compared with normal-weight COVID-
19 patients (1–3).

Different systematic reviews have substantiated that subjects
with obesity are at higher risk for hospitalization, ICU admission
and mortality (4, 5). However, these studies did not mention the
detailed comorbidities of patients with obesity, which may
confound the role of obesity as an independent risk factor in
COVID-19 (6). For instance, in a community-based cohort
study, both obesity and central obesity had an upward linear
trend with the COVID-19 hospitalization that was attenuated
after adjustment for confounding factors. For example, HbA1c
and HDL cholesterol attenuated the association by 33% and 46%,
respectively (7). In addition, the different results across the
studies can be simply justified by the fact that many of them
n.org 2
did not analyze laboratory parameters, but just the demographic
characteristics of patients.

On the other hand, the prevalence of diabetes among patients
with COVID-19 varied from 6% to more than 22% in subjects
with mild disease or severe forms, respectively, and raised to
more than 30% among subjects requiring ICU admission (1, 8).
In a retrospective, multi-centered study of 7,337 cases in
HubeiT2D patients required more medical interventions, had a
significantly higher mortality (7.8% versus 2.7%; adjusted hazard
ratio (HR), 1.49), and multiple organ injury than non-diabetic
individuals. Patients with well-controlled blood glucose
concentration (glycemic variability within 3.9 to 10 mmol/L)
had markedly lower mortality compared to individuals with
poorly controlled blood glucose (upper limit of glycemic
variability exceeding 10.0 mmol/L) (adjusted HR=0.14) during
hospitalization. However, the results were not adjusted by the
potential confounding effects of adiposity (9). Other studies have
found diverging effects of impaired fasting glucose and T2D
diagnosis on COVID-19 prognosis (10). Hyperglycemia in the
acute phase also predicted worse outcomes in hospitalized
patients with COVID-19. For instance, a study of 184
hospitalized patients showed that severe COVID-19 occurred
in the presence of both impaired glucose metabolism and obesity
(11). However, most of the studies reporting an association
between hyperglycemia and a poorer prognosis did not take
November 2021 | Volume 12 | Article 741248
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into account the confounding effects of obesity status, whereas
studies assessing obesity status on COVID-19 did not include
comorbidities such as diabetes (12–16).

Besides considering the joint role of obesity and diabetes in
modifying COVID-19 outcomes, it is vital to identify those
factors that modulate the impact of both obesity and
hyperglycemia on COVID-19 prognosis. For example, the
levels of albumin, hemoglobin, the mean platelet volume, and
inflammatory markers (monocyte to eosinophil or neutrophil to
lymphocyte ratios) are prognostic markers in patients with
COVID-19 (17–19). In particular, anemia has been shown to
be an independent predictor of mortality in COVID-19 patients
(20–22). Therefore, we hypothesized that the inclusion of
inflammatory and hematological markers would modulate the
associations of obesity and hyperglycemia with death and ICU
admission. We first aimed to evaluate the joint role of obesity and
diabetes in modifying COVID-19 outcomes. Then, we applied a
machine learning algorithm to identify additional confounding
factors with potential impact on modulating the obesity and
hyperglycemia prognostic values.
2 MATERIALS AND METHODS

2.1 Outcomes
The primary outcomes were all-cause mortality due to COVID-19
and admission to an ICU. For ICU and mortality risk, only
hospital-admitted patients were evaluated. Consecutive
unselected patients who were admitted to the hospital and
diagnosed with pneumonia by SARS-CoV-2 were included. In
Primary Health care centers, all consecutive patients fulfilling
inclusion criteria were also analyzed. Secondary outcomes
included clinical routine variables such as age, sex, glucose, BMI,
SBP and creatinine. Finally, tertiary outcomes included
hemoglobin, bilirubin, platelet counts, sodium levels, and hs-CRP.

2.2 Inclusion Criteria of the Different
Hospitals and Centers
A description of the study design and the inclusion criteria can
be found in Figure 1. We had available data from patients of five
different hospitals and participants from one primary care center
with a diagnosis of COVID-19 (n=5,345). From these patient,
n=3,065 had available data on both the primary and secondary
outcomes. In addition, a subset of these patients (n=1,114) had
also available data about the tertiary outcomes, including
hemoglobin (n=1445), platelet counts, sodium levels, bilirubin
or hs-CRP.

2.2.1 Catholic University Hospital of Rome
All patients admitted to the hospital between March 1st and May
1st, 2020 were included. Inclusion criteria for admission at the
Fondazione Policlinico Gemelli IRCCS in Rome, Italy, were
diagnosis of pneumonia from SARS-CoV-2, confirmed by two
consecutive real-time reverse-transcriptase polymerase-chain-
reaction (RT-PCR) assays of both nasal and pharyngeal swab
specimens and computed tomography (CT) scan.
Frontiers in Endocrinology | www.frontiersin.org 3
2.2.2 Hospital of Bologna
Consecutive patients admitted to the hospital between March 1
and April 20, 2020were included. The last follow-up date was April
27, 2020. Inclusion criteria: patients who had a confirmed
COVID-19 diagnosis using a positive RT-PCR (Reverse
transcription polymerase chain reaction) test on nasopharyngeal
swabs and available BMI.

2.2.3 Bellvitge University Hospital
Patients consecutively admitted to Bellvitge University Hospital
with laboratory-confirmed COVID-19 infection by RT-PCR
assay for SARS-CoV-2 between March and May, 2020 were
included. The inclusion criteria were the presence of sore throat,
congestion, cough, dyspnoea, new loss of taste and/or smell, as
well as uni- or bilateral interstitial infiltrates on chest X-ray, and
availability of anthropometric data.

2.2.4 Hospital Clıńic, Barcelona
All patients admitted with COVID-19 for ≥48 hours between 28
February and 22 April 2020 were included. All patients had a
diagnosis of COVID-19 confirmed by real-time reverse
transcription PCR (RT-PCR) testing performed on nasopharyngeal
throat swab specimens, and/or by fulfilling clinical diagnostic criteria
provided during the pandemic peak for SARS-CoV-2. These criteria
comprised the presence of any of the following respiratory
symptoms: sore throat, congestion, cough, dyspnoea, new loss of
taste and/or smell as well as uni- or bilateral interstitial infiltrates on
chest X-ray, and, have available anthropometric data registered up to
one year before admission.

2.2.5 Hospital of Girona
Consecutive adult patients hospitalized between March 14, and
June 30, 2020 with confirmed COVID-19 pneumonia defined as
a positive result on real-time reverse-transcriptase polymerase-
chain-reaction (RT-PCR) of nasal or pharyngeal swab specimens
assays and also by a chest-X- ray or lung CT showing interstitial
alterations and/or consolidation were included. The criterion for
patients’ admission to ICU was the failure to conventional
oxygen therapy delivered through a non-rebreathing mask
requiring a most intensive form of ventilatory support.

2.2.6 Girona Primary Care participants
All the individuals with confirmed COVID-19 (defined as having
a positive RT-PCR test for SARS-CoV-2 virus) and attended in
the general practices in Girona patients in whom management
did not require oxygen therapy or hospital admission.

2.3 Study Variables
The data gathered for all cohorts were obtained from the
electronic clinical health records, registered previously to the
COVID19 diagnosis (in primary health care centers) or during
hospital admission. Patient confidentiality was protected by
assigning an anonymous identification code, anonymously
discharged, and included the following: age, sex, systolic and
diastolic blood pressure, body mass index, vascular risk factors
(diabetes mellitus, hypertension, obesity, hypercholesterolemia,
smoking) and laboratory tests (blood hemoglobin, serum
November 2021 | Volume 12 | Article 741248
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bilirubin, total cholesterol, LDL-cholesterol, HDL-cholesterol,
triglycerides, creatinine, and fasting glucose, among others). In
all cases, glycemia and other analytes were measured using
routine laboratory analyses in fasting conditions within 24
hours of hospital admission. All patients were followed until
discharge or until death.

2.4 Ethics Committee’ Approvals
The protocol was approved by the Ethical Committee of the
Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic
University, Rome, Italy with Approval Number: 0014355/20.
Before enrolment, each subject gave informed consent.
ClinicalTrials.gov ID: NCT04324684. The protocol was also
independently approved by the ethics committee of the
Hospital of Bologna, Hospital of Bellvitge, Hospital Clıńic,
Hospital of Girona and the Primary Care Ethics Committee.

2.5 Statistical Analysis
We examined the associations among potential prognostic
variables and the main outcomes using multivariate logistic
regression models. We used the glm function in R with a
binomial family, a logit link function, and the Wald test to
estimate the p-values of the model parameters. Odds ratios were
then obtained as the exponentials of the parameters estimates
and 95% confidence intervals (CI) were computed using the
“confint” function from the MASS package. Age was categorized
in three groups [<50 (50,70), and >70 years], SBP was
dichotomized [(0,130), ≥130 mmHg], obesity was categorized
according to the BMI [underweight, <18.5; normal range,
(18.5,25); overweight, (25,30); obese class I, (30,35), obese class
II, (35,40), obese class III, ≥40 kg/m2] and glycemia status at
hospital admission (generally in the first 24 hours after overnight
fasting) or in fasting conditions in primary health care centers. It
was categorized based on fasting blood glucose levels
[hypog lycemia , <70 ; norma l , ( 70 , 100) ; modera t e
Frontiers in Endocrinology | www.frontiersin.org 4
hyperglycemia, (100,126); severe hyperglycemia, (126,200);
extreme hyperglycemia, ≥200]. Creatinine was categorized as
below or above 1.3 mg/dl. For the subset of patients with
complete data on all clinical variables (n=1,114), we further
analyzed the data dichotomizing iron-related parameters
(hemoglobin and bilirubin) based on the median for each
gender and building logistic regression models for each group
and gender. The performance of these models in classifying
patients (predictive ability) was evaluated using the area under
the receiver operating characteristics (AUCROC) curve. In
addition, we further validated the classification prediction
accuracy of these models by external validation. A total of
n=1,445 patients had available data on age, sex, SBP, BMI,
glucose and hemoglobin levels. Therefore, we used the n=331
samples not used in training the models as a test set and
predicted the main outcome (death or survival) in this test set
using the models for both low and high hemoglobin levels. We
used a probability threshold of 0.5 to classify samples in one
group (death) or another (survival) and we assessed the model
accuracy as the proportion of samples that had been
correctly classified.

2.6 Machine Learning
In addition to using multivariate logistic regression models, we
also applied a machine learning algorithm (Boruta) to the subset
of samples with complete (primary, secondary and tertiary
outcomes) clinical data (n=1,114) to identify the most relevant
clinical variables related to both death and ICU admission. The
Boruta algorithm is a wrapper algorithm that performs feature
selection based on the learning performance of the model. It has
been recently proposed as one of the two best-performing
variable selection methods making use of random forests (23).
It performs variables selection in four steps: a) Randomization.
To create a duplicate copy of the original features randomly
permutate across the observations (the so-called shadow
FIGURE 1 | Flow chart of study design and inclusion criteria.
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features) to remove their correlation with the response; b) Model
building. To add the shadow feature to the original predictor
feature data set, built a RF with the extended data set, and
compute the normalized permutation importance (Z) scores for
each predictor and shadow feature; c) Statistical testing. To find
the maximum normalized importance among the shadow
attributes (MZSA) and compare it with each original predictor
feature using a Bonferroni corrected two-tailed binomial test.
Predictor features with significantly higher, significantly lower,
or non-significantly different Z scores than expected at random
compared to the MZSA are deemed important, unimportant, or
tentative, respectively. d) Iteration. Unimportant and shadow
features are removed and the previous steps are repeated until
the status of all features is decided or a predefined number of
iterations has been performed.

We run the Boruta algorithmwith 1000 iterations, a confidence
level cut-off of 0.005 for the Bonferroni adjusted p-values, 2000
trees to grow the forest (ntree), and several features randomly
sampled at each split given by the square root of the number of
features (the mtry recommended for discriminant analysis).
3 RESULTS

Out of 5,345 patients included in the database with available data
on the primary outcomes, 3,065 had all data available for the
secondary outcomes for further analyses (Table 1). Within
subjects admitted to the hospital, both obesity and
hyperglycemia were independent predictors of admission in
the ICU (Figure 2A). Hence, while subjects with obesity were
2-3 times more likely to be admitted to the ICU compared to
normal weight individuals, subjects with hyperglycemia were
3.5-5 times more likely to enter the ICU than normoglycemic
individuals. In line with the death incidence, men were about
63% more likely to be admitted to the ICU than women.

Results from multivariate logistic regression analysis among
prognostic variables and the incidence of mortality from
COVID-19 are shown in Figure 2B. We identified age as the
main independent predictor of mortality, with subjects over 70
years having a 29 times higher likelihood of presenting death due
Frontiers in Endocrinology | www.frontiersin.org 5
to COVID-19 than subjects younger than 50. Sex, SBP, glucose
and creatinine were also independent predictors of death. Hence,
men were about 64% more likely to present death due to
COVID-19 than women. A unit increase in the standard
deviation of plasma creatinine levels was associated with a 26%
increase in mortality due to COVID-19. Remarkably, while
subjects with glycemia>100 (moderate hyperglycemia) and
>126 mg/dl (severe hyperglycemia) had 3.5 and 5.5 times
higher mortality risk than normoglycemic subjects, no
differences were found in COVID-19 mortality by weight
categories. Only underweight, BMI < 18.5 kg/m2, was
associated with a higher mortality risk. We also considered the
potential interaction between some of the predictor variables in
the models. However, we did not find any significant interaction
between age and sex (P=0.274), age and SBP (P=0.710), age and
BMI (P=0.131), age and glucose (P=0.774), glucose and SBP
(P=0.567), glucose and BMI (P=0.599), or BMI and
SBP (P=0.309).

These results were replicated considering only patients
admitted to the hospital in each country independently
(Supplementary Figures 1A, B for mortality and ICU in Spain
and Supplementary Figures 3C, D for mortality and ICU in
Italy, respectively). The addition of previously known T2D to the
models did not significantly change any of the previous results.

Finally, when the results were compared between patients
recruited in primary care and those admitted to hospitals, there
were no appreciable differences in the magnitude of
the associations.

3.1 Machine Learning Results
We further analyzed the data applying a machine learning
variable selection strategy based on multiple random forest as
implemented in the Boruta algorithm (24) to identify the most
important outcome predictive variables. In line with the previous
analysis, age was the strongest predictor of both mortality
(Figure 3A) and ICU admission (Figure 3B). Notably, BMI
discriminated those subjects admitted to the ICU from subjects
who did not need admission, but was unable to discriminate
between individuals who died due to COVID-19 from those who
survived, thereby corroborating the results from the logistic
regression models. In the case of hospital patients, we were
TABLE 1 | Characteristics of the patients included in each Institution.

Bellvitge (N=376) Bologna (N=420) Clinic (N=382) Trueta (N=101) NIKE (N=157) Primary Care
(N=1629)

Total (N=3065)

Death 88 (23.4%) 83 (19.8%) 60 (15.7%) 9 (8.9%) 26 (16.6%) 0 (0.0%) 266 (8.7%)
ICU 48 (12.8%) 51 (12.1%) 154 (40.3%) 20 (19.8%) 17 (10.8%) 0 (0.0%) 290 (9.5%)
Age (years) 68.0 (56.0,76.0) 68.0 (55.0,80.0) 64.0 (54.0,73.0) 62.0 (48.0,73.0) 65.0 (54.0,76.0) 61.9 (43.8,84.6) 65.0 (49.4,80.0)
Sex 151 (40.2%) 160 (38.1%) 148 (38.7%) 44 (43.6%) 59 (37.6%) 1103 (67.7%) 1665 (54.3%)
Creatinine (mg/
dL)

0.9 (0.7, 1.2) 0.9 (0.8, 1.1) 0.9 (0.8, 1.1) 0.7 (0.6, 1.0) 0.9 (0.8, 1.2) 0.8 (0.7, 1.0) 0.8 (0.7, 1.0)

Glucose (mg/dL) 113.5
(100.9,140.6)

111.0 (99.0,132.2) 110.0 (97.0,131.8) 117.0
(105.0,140.0)

110.0 (98.0,128.0) 90.0 (81.0,101.0) 99.1 (86.5,119.0)

BMI (kg/m2) 28.9 (26.0, 31.6) 25.1 (23.0,28.4) 27.8 (24.9,31.2) 31.2 (27.0, 38.0) 25.4 (24.1,27.3) 26.2 (23.0,29.9) 26.7 (23.7,30.3)
SBP (mmHg) 130.5 (117.0,

43.0)
125.0

(111.5,135.0)
124.0

(112.0,140.0)
131.0 (119.0,

144.0)
125.0

(115.0,140.0)
127.0 (116.0,136.0) 127.0 (115.0,

38.0)
DBP (mmHg) 72.0 (64.0, 81.0) 70.0 (70.0, 80.0) 72.0 (65.0, 81.0) 74.0 (65.0, 85.0) 79.0 (70.0, 85.0) 74.0 (67.0, 80.0) 73.0 (66.0, 80.0)
No
vember 2021 | Volume 1
2 | Article 741248

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Mayneris-Perxachs et al. Hyperglycemia, Obesity, and Outcomes of COVID-19
able to include additional variables to the machine learning
algorithms. From the total of 1,446 admitted to the hospital,
1,114 also had measurements of plasma C-Reactive Protein
(CRP), bilirubin, sodium, platelet, and hemoglobin levels. Once
again, age was the most differentiating variable in the case of
death (Figure 3C) and ICU (Figure 3D) admission outcomes,
whereas BMI was only able to discriminate among ICU patients
(Figure 3D). It is worth noting that bilirubin, CRP, and
Frontiers in Endocrinology | www.frontiersin.org 6
creatinine had a strong association with death, but only
bilirubin and CRP were also associated with ICU admission.
Hyperglycemia was independently associated with a
poorer prognosis.

The machine learning strategy identified two iron-related
parameters (hemoglobin and bilirubin) as significant predictors
of death. Therefore, we built new multivariate logistic regression
models including hemoglobin and bilirubin dichotomized based
A

B

FIGURE 2 | Incidence odds ratio of (A) admission to the ICU and (B) mortality from COVID-19 by potential prognostic variables. Data are presented as odds ratio
(OR) and 95% confidence intervals (CI). The reference groups (OR=1) for each variable are shown as “-”.: The odds ratios shown are adjusted through a logistic
regression model which includes all variables listed. Data are also represented as a forest plot.
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on their median values. As both parameters are strongly
dependent on gender, separate analyses were also performed
for men and women. We found that hemoglobin and bilirubin
were not predictors of mortality in women. However,
hemoglobin had a significant prognosis effect in the case of
men (Figure 4). Men having hemoglobin values above the
median were less likely to die due to COVID-19 than men
with concentrations below the median. Remarkably, glucose was
a strong predictor of mortality in men with hemoglobin or
bilirubin values above the median, but not in those with
concentrations below the median (Supplementary Figure 2).
Therefore, men with moderate or severe hyperglycemia that also
had blood hemoglobin concentrations over the median had
about 17 and 30 times increased mortality risk compared to
men without hyperglycemia, respectively (Supplementary
Figure 2B), whereas there were no significant differences in
mortal i ty among men with low hemoglobin values
(Supplementary Figure 2A). Similarly, morbidly obese men
also had a higher mortality risk than normo-weight individuals
only in those individuals with hemoglobin levels above the
median (Supplementary Figure 2). Likewise, glucose
concentration was not a prognosis predictor of mortality in
men with bilirubin values below the median (Supplementary
Figure 2C), but had a strong impact in men with bilirubin
concentrations above the median (Supplementary Figure 2D).
Women with hyperglycemia and increased blood hemoglobin
Frontiers in Endocrinology | www.frontiersin.org 7
also had a trend towards mortality risk compared with women
without hyperglycemia (OR=3.17, P=0.096).

Considering that, apart from age, glucose was the strongest
mortality predictor in our logistic regression models and the
strong impact of hemoglobin on glucose modulating effects on
prognosis, we built two final predictive models using the subset
of patients with information about all clinical variables (n=1,114,
one for hemoglobin concentrations below- and another one for
above the median; cut-off =13.6 g/dL) (Figure 5). In the model
for hemoglobin values above the median, glucose was a
significant predictor of COVID-19 mortality (Figure 5A),
whereas in the hemoglobin model for concentrations below the
median, glucose concentrations had no prognostic value
(Figure 5B). Notably, in subjects with hemoglobin levels above
the median, women had the same likelihood of COVID-19
mortality than men. Thus, female sex was not a protective
factor in individuals with hemoglobin concentrations above the
median. Again, morbidly obese patients had a higher mortality
risk than non-obese subjects only when hemoglobin
concentrations were above the median. These mortality
prediction models had an AUCROC of 81.6% and 83.3%,
respectively (Figures 5C, D). We also checked for potential
interactions between some predictors in these models and
found no significant interactions. For the model with
hemoglobin levels below the median, we did not find any
interaction between age and sex (P=0.262), age and SBP
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FIGURE 3 | Mortality and ICU admission prognostic variables identified from machine learning. Boxplots of the normalized permutation importance obtained from
the Boruta algorithm for the potential prognostic variables associated to the (A) mortality from COVID-19 in all subjects (n=3065), (B) admission to the ICU in all
subjects (n=3065), (C) mortality from COVID-19 in hospital patients (n=1114), and (D) admission to the ICU in hospital patients (n=1114).
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(P=0.286), age and BMI (P=0.880), age and glucose (P=0.740),
glucose and SBP (P=0.413), glucose and BMI (P=0.722), or BMI
and SBP (P=0.942). Similarly, no interactions were found for the
model with hemoglobin levels above the median for age and sex
(P=0.155), age and SBP (P=0.268), age and BMI (P=0.822), age
and glucose (P=0.433, glucose and SBP (P=0.825), glucose and
BMI (P=0.876), or BMI and SBP (P=0.076).

We finally performed an external validation of these models
using a test set of n=331 not used in training the final models. These
patients had available data on hemoglobin levels but not on other
parameters included in the machine learning analyses such as
bilirubin, hs-CRP, sodium or platelets. In the case of the model
for low hemoglobin, we obtained a classification prediction accuracy
of 78%, whereas the prediction accuracy for the high hemoglobin
model was 81%. The corresponding confusion matrices are shown
in Tables 2 and 3. We also checked whether the results of these
models could be affected by potential confounding factors known to
alter the hemoglobin levels (smoking, COPD or dehydration based
on hematocrit) or influencing liver steatosis (measured by alanine
aminotransferase, ALT). The inclusion of these variables in the final
models did not change the results (Supplementary Figures 3 and
4). Thus, in subjects with hemoglobin levels above the median,
hyperglycemia was a strong independent predictor of mortality
associated with COVID-19, while female sex lost its protective effect.
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Conversely, in subjects with hemoglobin levels below the median,
women were less likely to die because of COVID-19 but
hyperglycemia had no prognostic value.

In order to present the final models in a useful and user-
friendly format for the clinical practice, we implemented the
models as an interactive web application using html/CSS and
Java Script at http://isvgirona.net/sarscov2/20201110/. The
clinician only has to introduce the patient’s age, sex, SBP, BMI,
glucose, and hemoglobin values and it internally categorizes the
variables and uses the model corresponding to hemoglobin
concentrations below or above the median to predict the
probability of mortality.
4 DISCUSSION

The results from this multi-center study offive different hospitals
and Primary Health Care centers from Italy and Spainconfirm
previous observations that both elevated blood glucose levels and
higher BMI are associated with worse COVID-19 related
outcomes. However, most of these studies have not taken into
account the interaction of both parameters at the same time.
Thus, several studies assessing obesity effects did not include
comorbidities, such as diabetes, while studies that found
FIGURE 4 | Incidence odds ratio of mortality from COVID-19 in men including iron-related parameters as prognostic variables. Data are presented as odds ratio (OR)
and 95% confidence intervals (CI). The reference groups (OR=1) for each variable are shown as “-”.: The odds ratios shown are adjusted through a logistic regression
model which includes all variables listed. Data are also represented as a forest plot. Hemoglobin and bilirubin were dichotomized based on the median values.
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associations with hyperglycemia did not consider obesity as a
confounding factor (12–16). A recent review about prediction
models for the diagnosis and prognosis of COVID-19 identified
23 models for the estimation of mortality risk (25). Several of
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these models included comorbidities. However, only one of these
23 models considered the joint role of obesity and diabetes in
modifying COVID-19 outcomes (26). Thus, Bello-Chavolla et al.
found that, in a Mexican population, early-onset diabetes
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FIGURE 5 | Incidence odds ratio of mortality from COVID-19 for the final models (n=1,114) according to the median hemoglobin concentrations (13.6 g/dL). (A) In
individuals with hemoglobin levels below the median, (B) In individuals with hemoglobin levels above the median, (C) Receiver operating characteristic curve for the
logistic regression model in individuals with hemoglobin levels below the median, (D) Receiver operating characteristic curve for the logistic regression model in
individuals with hemoglobin levels above the median. Data are presented as odds ratio (OR) and 95% confidence intervals (CI). The reference groups (OR=1) for
each variable are shown as “-”.: The odds ratios shown are adjusted through a logistic regression model which includes all variables listed. Data are also represented
as a forest plot. AUC, area under the curve.
TABLE 2 | Confusion matrix for the model with hemoglobin levels below the median (<13.6 mg/dL).

Actual class Total

Death Survival

Predicted
class

Death TP=122 FP=30 152 PPV=80%
Survival FN=7 TN=9 16 NPV=56%
Total 129 39 168

TPR=94% TNR=23% Accuracy
78%
Novemb
er 2021 | Volume 12 | Arti
TP, true positive; FP, false positive; FN, false negative; TN, true negative; PPV, Positive Predictive Value Precision; TPR, True Positive Rate Sensitivity; TNR, True Negative Rate, Specificity;
NPV, Negative Predictive Value.
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increased the risk of COVID-19-related mortality, while obesity
mediated 50% of the effects of diabetes on COVID-19 lethality
and conferred an increased risk for ICU admission. Here, we
have found that, when both obesity and hyperglycemia are
considered together, although subjects with obesity and
hyperglycemia had an increased likelihood of admission to the
ICU, only the latter was an independent predictor of
mortality.Notably, these results were replicated indepenently in
two different countries. We also observed that both extremes of
BMI were associated with a poorer prognosis. This is in line with
a recent population study in England in which BMI had a U
shape relation to mortality in patients with type 1 and type 2
diabetes (27).

Modern machine learning methods, such as random forest,
are promising computational approaches for feature selection in
predictive modeling that are increasingly applied to clinical
problems. Machine Learning tree-based algorithms are
particularly well-suited to this aim. In contrast to classical
linear model-based statistical methods, they are fully non-
parametric model-free methods that can capture complex
dependency patterns within the datasets affecting the
phenotype. They provide variable importance measures that
can be used to identify relevant features. In addition, they are
invariant to monotonic transformations, have a good
performance in non-linear datasets and can auto-correct
dependencies among variables, thereby rendering them as
particularly suitable to deal with complex datasets. Notably,
tree-based variable selection methods have shown to perform
better than classic regression-based methods in large,
multicenter datasets (28). Therefore, we also performed
machine learning analyses including clinical parameters such
as plasma CRP, creatinine, platelets levels, and iron-related
parameters (hemoglobin and bilirubin).

The most frequently used variables in mortality risk models
included comorbidities, age, sex, lymphocyte counts, CRP and
creatinine (25). Renal impairment (9, 16, 27, 29), plasma CRP
concentration (9, 27, 29) and blood platelet count have been
previously reported to be associated with a poorer prognosis in
patients with COVID-19 and we here confirm their independent
associations in a Machine Learning model. Both hemoglobin and
bilirubin were also associated with COVID-19 mortality. In a
recent meta-analysis that identified more than 30 risk factors
associated with a higher risk of severe COVID-19, lower levels of
hemoglobin but increased serum ferritin, among others, were
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associated with severe COVID-19 (29). These results were
confirmed in an independent meta-analysis (30). Compared to
moderate cases, severe COVID-19 cases had lower hemoglobin
[weighted mean difference (WMD), - 4.08 g/L (95% CI - 5.12; -
3.05)] and higher ferritin [WMD, - 473.25 ng/mL (95% CI
382.52; 563.98)]. A significant difference in mean ferritin levels
of 606.37 ng/mL (95% CI 461.86; 750.88) was found between
survivors and non-survivors, but not in hemoglobin levels (30).
Similarly, low levels of hemoglobin have been recently shown to
be predictive factors for the diagnosis and prediction of patients
with COVID-19 (17, 18). Hemoglobin levels have also shown to
predict the severity of COVID-19, with a gradual decrease with
disease progression (19). In addition, anemia has been associated
with severe COVID-19 (21)and has also been identified as a
single independent predictor of mortality in COVID-19 patients
(20, 22). Finally, in a recent meta-analysis of 83 studies, total
bilirubin (mean difference 2.08 mmol/L, 95% CI 1.36-2.80 mmol/
L; P<0.001) was also observed to be increased in patients with
severe compared to non-severe COVID-19 patients (31). In
agreement with these previous results, we also found that
hemoglobin levels below the median were associated with a
higher risk of mortality due to COVID-19 in men. However,
we did not find significant differences in women.

Intriguingly, we found that the glucose predictive value for
COVID-19 mortality was strongly modulated by hemoglobin
levels. Despite anemia is considered to be an independent
predictor of mortality due to COVID-19 (20)and hemoglobin
was negatively associated with COVID-19 mortality in men in
our study, we found that high hemoglobin levels had a strong
impact on modulating the prognostic value of hyperglycemia in
relation to COVID-19 mortality. Hence, men with moderate and
severe hyperglycemia had a strikingly increased mortality risk
due to COVID-19 compared to normoglycemic individuals only
when they also had increased hemoglobin levels. Women with
moderate and severe hyperglycemia and increased hemoglobin
concentrations also showed a trend towards a higher mortality
risk compared to women with normal glucose concentrations. As
the number of women with hemoglobin levels above the median
was substantially smaller than that of men, it is likely that
increasing the number of women would also result in
significant associations. In any case, when both men and
women were included, we also found that glucose was a
significant predictor of COVID-19 mortality in subjects with
increased hemoglobin levels. Remarkably, gender had no effect
TABLE 3 | Confusion matrix for the model with hemoglobin levels above the median (>13.6 mg/dL).

Actual class Total

Death Survival

Predicted
class

Death TP=120 FP=16 136 PPV=88%
Survival FN=15 TN=11 26 NPV=42%
Total 135 27 162

TPR=89% TNR=41% Accuracy
81%
Novemb
er 2021 | Volume 12 | Arti
TP, true positive; FP, false positive; FN, false negative; TN, true negative; PPV, Positive Predictive Value Precision; TPR, True Positive Rate Sensitivity; TNR, True Negative Rate, Specificity;
NPV, Negative Predictive Value.
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on mortality in these subjects. Thus, women were not more
protected from COVID-19 mortality than men when
hemoglobin concentrations were above the median. Our
results, are in line with a recent study including 9,467
hospitalized COVID-19 patients showing that patients with
hemoglobin ≥ 16 g/dL had significantly higher adjusted in-
hospital mortality compared to patients with hemoglobin
between 12 and 14 g/dL [OR (95% CI): 1.62 (1.15-2.27),
P=0.005]. As SARS-CoV-2 infection increases coagulopathy
(32), high hemoglobin levels may be associated with and
hypercoagulable state leading to systemic thrombosis.

A viral interaction with hemoglobin molecule, through ACE2,
CD147, CD26 and other receptors located on erythrocytes and/
or blood cell precursors, has been highlighted (33, 34). Certain
viral proteins could attack the 1-beta chain of hemoglobin to
dissociate iron, generating dysfunctional hemoglobin with
reduced oxygen transport capacity (35). SARSCoV-2 has been
suggested to invade host cells via CD147-spike protein
interaction (36). As there are about 3000 molecules of CD147
per erythrocyte, the entry of SARS-CoV-2 through this pathway
has been considered a possible basic pathogenic mechanism. In
fact, SARS-CoV was previously shown to interfere with
hemoglobin at erythrocyte and bone marrow level (34). In a
recent study, Lancman et al. found that from 38 hospitalized
COVID-19 patients, 80% had elevated plasma-free hemoglobin
levels (> 5 mg/dL), a marker of hemolysis. Viral spike protein
interaction with CD147 on red blood cells could be a potential
mechanism of this intravascular hemolysis.

Regarding the possible pathophysiology mediating all these
effects, hyperglycemia itself may up-regulate the expression of
ACE2, facilitating the entry of the virus into cells (37) leading to a
poorer prognosis. It could be possible that the co-existence of
hyperglycemia and increased hemoglobin levels amplify the
entry of SARS-CoV-2 in blood cells, facilitating its intracellular
replication. This could partly explain the strong impact of
glucose on COVID-19 mortality that we observed in men with
hemoglobin concentrations above the median. Importantly,
none of the 23 models published so far to predict COVID-19
mortality has included hemoglobin levels.

4.1 Strengths and Limitations
This study has several strengths. The findings in this multicenter
and diverse study in five different hospitals and the Primary
Health Care system have been homogenous. This allowed the
replication of the importance of hyperglycemia across the
different centers. This study also has potential limitations.
There is missingness for some variables, but this is randomly
distributed across the centers. Further, we may have missed
deaths that occurred outside the hospital. There is also a relative
over-representation of in-hospital patients (36% of all subjects)
while the number of subjects requiring hospitalization is far
lower when considering asymptomatic patients, so the finding
may be only applicable to the most severe patients. However,
even taking into account this limitation, the targeting of glycemia
and hemoglobin concentrations in these severe patients seems of
utmost importance.
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In summary, hemoglobin levels had a strong impact on
hyperglycemia and morbid obesity prognostic value. Only
morbidly obese subjects or subjects with hyperglycemia and
hemoglobin concentrations above the median were at
increased mortality risk. Considering the strong impact of
glucose and morbid obesity on COVID-19 mortality,
monitoring hemoglobin levels in subjects with hyperglycemia
is thus of utmost importance. Low hemoglobin levels have
already been identified as an independent predictor of
mortality due to COVID-19. In the present study, we add
additional valuable information regarding the role of
hemoglobin in COVID-19 and extend these findings to high
hemoglobin levels. We provide an online calculator that may
have utility in the clinical settings to help clinicians identify and
prioritize those patients at higher risk of death. To our
knowledge, this is the first study to analyze different
independent samples from different institutions from two
countries and to use machine learning tools for the analysis.
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Supplementary Figure 1 | Incidence odds ratio of mortality and ICU admission
from COVID-19 by potential prognostic variables in hospital patients by country.
(A) Mortality in Spain, (B) ICU admission in Spain, (C) Mortality in Italy, (D) ICU
admission in Italy. Data are presented as odds ratio (OR) and 95% confidence
intervals (CI). The reference groups (OR=1) for each variable are shown as “-”.The
odds ratios shown are adjusted through a logistic regression model which includes
all variables listed. Data are also represented as a forest plot.

Supplementary Figure 2 | Incidence odds ratio of mortality from COVID-19 by
potential prognostic variables in men according to iron-related parameters. (A)men
with hemoglobin concentrations below the median, (B) men with hemoglobin
concentrations above the median, (C) men with bilirubin concentrations below the
median, (D) men with bilirubin concentrations above the median. Data are
presented as odds ratio (OR) and 95% confidence intervals (CI). The reference
groups (OR=1) for each variable are shown as “-”.: The odds ratios shown are
adjusted through a logistic regression model which includes all variables listed. Data
are also represented as a forest plot. Iron parameters were dichotomized based on
the median.

Supplementary Figure 3 | Incidence odds ratio of mortality from COVID-19
including smoker status and alanine aminotransferase (ALT) as potential confounder
variables in the final models according to the median hemoglobin concentration
(13.6 g/dL). (A, B)Models including smoker status (n=878) as a confounding factor
in subjects with hemoglobin levels below and above the median, respectively.
(C, D) Models including liver function assessed by alanine aminotransferase
(ALT, n=1333) as a confounding factor in subjects with hemoglobin levels below
and above the median, respectively.

Supplementary Figure 4 | Incidence odds ratio of mortality from COVID-19
including chronic obstructive pulmonary disease (COPD) and hematocrit as
potential confounder variables in the final models according to the median
hemoglobin concentration (13.6 g/dL). (A, B) Models including chronic obstructive
pulmonary disease (COPD, n=422) as a confounding factor in subjects with
hemoglobin levels below and above the median, respectively. (C, D) Models
including hematocrit (n=926) as a confounding factor in subjects with hemoglobin
levels below and above the median, respectively.
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26. Bello-Chavolla OY, Bahena-López JP, Antonio-Villa NE, Vargas-Vázquez A,
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