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The neuropeptide oxytocin acts as a hormone and a neuromodulator, influencing a multitude
of human social behaviors, including reproduction. During childbirth and the postpartum
period, it plays a key role in regulating and controlling processes that ensure a safe birth and
the health of mother and child. Especially the onset of labor, the progress of labor and initial
breastfeeding are mediated by oxytocin. In the maternal brain it controls the initiation of the
mother–infant bond and the mother’s emotional responses towards her child. In this review
we summarize the current state of knowledge about the role of oxytocin during the different
aspects and mechanisms of human childbirth, combining research from human and animal
studies. Physiological and psychological stress during childbirth and lactation can have
negative effects on the progress of labor, breastfeeding and bonding. We discuss how
maternity caregivers can support the positive effects of oxytocin and minimize the effects of
stress. Furthermore, we highlight aspects of the basic neurobiological principles and
connections where further research is needed to improve our understanding of the
regulation and the effects of oxytocin to support maternal and infant health.
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INTRODUCTION

Childbirth, the early phase of the postpartum period, and lactation are regulated by neuroendocrine
processes, which act in a neurochemical cascade to facilitate the physiological progress of giving birth
and the transition to motherhood (1). The peptide hormone oxytocin plays a crucial role in this process
and is therefore of utmost importance for all professionals involved in maternal caregiving (2), especially
for midwives who carry a large share of the responsibility for the health of mothers and their children
during physiological birth (3). Stress and the consequent release of hormones, e.g., cortisol, has been
shown to be a major factor affecting all aspects of childbirth, lactation, and the development of the
mother–infant bond, yet the direct connection of these behavioral observations with their hormonal
basics is mostly unknown. In this review article we describe the major neurobiological principles and
theories relevant to the production and release of oxytocin, drawing evidence from animal and human
studies, and how it acts as a hormone and as a neuromodulator during childbirth and the postpartum
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period. We aim to highlight where further research is needed to
understand the exact molecular mechanisms in which oxytocin and
other hormones act during childbirth and the postpartum period
and where and how clinical manipulation of oxytocin levels
is indicated.
PRODUCTION AND PRIMARY SOURCES
OF OXYTOCIN IN MAMMALS

Knowledge about sources and transport mechanisms of oxytocin in
mammals mostly comes from research on rodents and other animal
models, and most mechanisms have been shown to be evolutionary
conserved and presumably also apply to all other mammals (4).
Oxytocin is produced by magnocellular neurosecretory cells
within the paraventricular nucleus (PVN) and the supraoptic
nucleus (SON) in the hypothalamus (5–7). After synthesis it is
transported along the axons of these neurons to the
neurohypophysis where it is secreted into the bloodstream in
pulses (Figure 1). In addition to this global release mechanism,
oxytocin is produced locally in specialized cells of the uterus,
amnion, chorion and decidua, where it acts as a paracrine signal
to influence the behavior of neighboring cells (10). Oxytocin also
acts as a neuromodulator, altering the activity of other neurons in
the central nervous system (CNS) of mammals. Parvocellular,
oxytocinergic neurons in the PVN of mice project to other brain
areas, including the prefrontal cortex and basal areas of the limbic
system, i.e., the hippocampus, amygdala and nucleus accumbens (5,
11, 12). These brain areas widely express the oxytocin receptor
(OXTR; 13) and its expression density increases shortly before birth,
caused by the increase of the ratio of estrogen/progesterone,
enabling these regions to be modulated by oxytocin (4, 14). The
brain regions involved are part of a network that is associated with
reward, sociosexual behavior, memory formation, and the
regulation of emotions (Figure 1) (13). In addition to axonal
transport mechanisms, the release of oxytocin is also mediated by
dendrites of neurons in the SON and PVN, leading to a flooding of
close-by and further away brain areas (7). Degradation of oxytocin
after binding to its receptor in the CNS is much slower than the
degradation of oxytocin in the bloodstream, which results in
persistent behavioral effects (7). The concentration of oxytocin in
the CNS is not correlated with blood concentration since peripheral
oxytocin is unable to pass the blood–brain barrier, which makes a
direct effect of peripheral oxytocin on the CNS unlikely. Therefore,
any conclusion based on a correlation between peripheral and
central oxytocin levels has to be taken with caution (13, 15).
THE ROLE OF OXYTOCIN AT THE ONSET
OF HUMAN LABOR

In humans, premature babies, born 2–6 weeks before the expected
date of birth, carry an increased risk for lifelong health problems
(16) and infants born after a postterm pregnancy have a higher
risk for perinatal morbidity and mortality (17). To give the
newborn the greatest chance of survival a series of finely tuned
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mechanisms have been selected for during the course of human
evolution to initiate the beginning of childbirth at the right point
in time. These include the switch of uterine muscle activity from a
resting state, characterized by single, unsynchronized contractions
during pregnancy, to a state of coordinated uterine contractions at
the point in time when the fetus is mature. In addition, the cervix
has to ripen and efface before it can dilate in order to allow the
descent of the fetus from the uterus to the vagina. Both of these
mechanisms are triggered by processes days or weeks before the
actual onset of labor (18) and happen in the fetomaternal region,
an area of interaction between mother and fetus, and in the
decidua, placenta and the chorioamnion (19). The exact
mechanisms of these processes are still under investigation (18,
20), including the question if they are initiated by the mother (in
the myometrium or placenta) or by the fetus via the
hypothalamic–pituitary–adrenal (HPA) axis. Many hormones,
including estrogen, progesterone, prostaglandins, corticotropin-
releasing hormone (CRH), relaxin, and oxytocin act in parallel and
interactive signaling pathways to initiate the onset of labor (18,
21). These hormones combine an endocrine function, being
secreted into the blood and reaching their destination via the
bloodstream and exert a paracrine function, acting locally on
neighboring cells (21, 22). Certain processes have been shown to
progress complementarily thereby enabling the compensation of
one another in case one factor shows loss of function (23),
indicated for example by the finding that genetically modified
knockout mice not expressing the oxytocin receptor are still able to
bring forth pups (24).

Oxytocin has been described as the key player in these
processes, yet evidence for its direct role remains inconclusive
or absent since direct measurements of blood plasma oxytocin
levels are seldom taken in the context of human reproductive
behavior [cf. (25) for a review about measurements of peripheral
oxytocin levels]. The pulsatory secretion in the neurohypophysis
in combination with the low half-value period of blood oxytocin
requires an adequate sampling rate when measuring its blood
concentration. Sampling rates in previously conducted research
were highly variable, making conclusions difficult (26).

Vannuccini et al. (18) have postulated that oxytocin plays an
important but not critical role at the onset of childbirth.
Nonetheless, it has been shown that the number of uterine
oxytocin receptors increases up to 200-fold towards the end of
gestation (5, 27), caused by the increase of the estrogen/
progesterone ratio, which neutralizes the progesterone-
mediated inhibition of OXTR production in the myometrium.
The density of prostaglandin receptors increases alongside the
OXTR density as well as the synthesis of enzymes, which are
responsible for the contraction of the myometrium (28).

At the onset of labor, estrogen synthesized in the placenta
stimulates the local synthesis of oxytocin in the amnion, chorion
and decidua (26), evident by the presence of oxytocin mRNA (10).
This local synthesis is independent of the endocrine secretion in the
hypothalamus, hence explaining why oxytocin has been detected
locally in cells but not in blood samples (29) and why no increase in
blood plasma concentration of oxytocin during pregnancy and the
beginning of childbirth in women has been reported (30). This
paracrine produced oxytocin in the amnion acts via a direct and an
October 2021 | Volume 12 | Article 742236
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indirect mechanism to mediate uterine contractions. Indirectly, it
stimulates the synthesis of prostaglandins E2 and F2a, which in turn
trigger uterine contractions, leading to an increase in OXTR density
and contributing to the formation of gap junctions between smooth
muscle cells of the uterus (18). Directly, it activates Ca2+ channels in
the smooth muscle cells, resulting in a release of Ca2+ from the
sarcoplasmatic reticulum that initiates the muscle contraction
cycle (20).

Before uterine contractions begin, an inflammation-like process
in the amnion and chorion, characterized by an increase in
cytokines, chemokines, as well as prostaglandins E2 and F2a, has
been observed. These processes cause biochemical changes of fetal
membranes and the ripening of the cervix, initiating parturition
(31). Inflammatory activation is also caused by direct action of
oxytocin on the release of cytokines (32).
Frontiers in Endocrinology | www.frontiersin.org 3
THE ROLE OF OXYTOCIN DURING
CHILDBIRTH AND THE INVOLUTION
OF THE UTERUS
During human parturition, the measurable amount of blood
plasma oxytocin increases: it doubles during the latent phase of
dilatation and increases further until the second stage of labor
(33). The pulsatile secretion of oxytocin by the neurohypophysis
increases in amplitude and frequency during childbirth, reaching
a maximum of three pulses within ten minutes shortly before
delivery (34). These oxytocin pulses are triggered by signals
within the CNS and by the pressure that is exerted by the fetus
on mechanoreceptors of the cervix and the vaginal walls via a
positive feedback loop, termed Ferguson reflex. From research in
rodents we know that intense, rhythmically appearing neural
FIGURE 1 | Peripheral effects of central oxytocin release during childbirth and lactation. The neuropeptide oxytocin is mainly produced by magnocellular neurons in
the paraventricular nucleus (PVN) and the supraoptic nucleus (SON) of the hypothalamus. Axons of these neurons terminate in the neurohypophysis, where oxytocin
is secreted – in pulses – into the blood. Mechanoreceptors in the nipple (activated by the suckling newborn) and the cervix (cf. Ferguson reflex) create a positive
sensory feedback loop, which leads to the additional release of oxytocin in the brain. Oxytocinergic neurons in the hypothalamus also release oxytocin to other brain
areas (sources: 7–9) via axonal transport and via dendritic release (not shown). NAc, Nucleus accumbens; PFC, Prefrontal cortex; SCN, Suprachiasmatic nucleus;
BNST, Bed nucleus of the stria terminalis. Created with BioRender.com.
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signals have been recorded in the PVN and SON in the
hypothalamus, which receive their input from the sensory
neurons in the cervix and vagina (35). This rhythmic activity
in the hypothalamus leads to the pulsatory release of oxytocin in
the brain and into the bloodstream (Figure 1) (36, 37). When the
exerted pressure on the cervix by the fetus reaches a maximum,
that is during the fetal expulsion stage and shortly after birth, the
oxytocin concentration increases 3- to 4-fold compared to the
onset of labor (33, 34). In rats it was shown that a hypothalamic
opioid-dependent neural circuit prevents an overshoot of
oxytocin levels (38). A study by Goodfellow et al. (39) found
that in women receiving epidural analgesia, blood oxytocin
concentration is reduced, presumably because the administered
anesthetics and opioids prevent the transmission of afferent
neural signals. It is currently being discussed that this is the
reason why the longer the epidural analgesia is administered, the
higher the rate of non-spontaneous births and the use of
synthetic oxytocin (40). Medical intervention during birth by
means of emergency caesarian section and/or epidural analgesia
also adversely affect the initiation of breastfeeding after birth by
reducing oxytocin and prolactin levels (41).

Surprisingly, the pulsatile release profile of oxytocin and the
frequency of uterine contractions are not temporally correlated
(42). This can be because contractions of the uterine muscle cells
are additionally controlled by the parasympathetic nervous
system overlaying the frequency of the oxytocin pulses.
Projections from the PVN to parasympathetic nerves in the
lumbosacral region of the spine, activated by central oxytocin,
cause uterine contractions and additionally improve circulation
in the uterine muscles, at least in rats (43, 44).

For the involution of the human uterus, i.e., the reduction of
the uterus to prepartum size and condition after birth, tonal
contractions of the uterine muscles are essential. These
specialized contractions are also mediated by oxytocin (18).
The highest levels of peripheral oxytocin have been measured
15 minutes after delivery (45). These high postpartum levels are
achieved by activation of the hypothalamus, induced by the skin
contact of mother and child and the stimulation of the mother’s
nipples through breastfeeding (46–48).
THE ROLE OF OXYTOCIN
DURING LACTATION

A number of studies in rodents have revealed that oxytocin also
plays a pivotal role during lactation. Wagner and colleagues (49)
found that mammary glandular tissue of female OXTR-knockout
mice is reduced within twelve hours after giving birth, despite the
pups’ suckling. When a pup suckles its mother’s breast,
mechanosensitive receptors are activated in the areolar region.
These neurons are oxytocinergic and project via the
spinothalamic tract to the hypothalamus, where they trigger
the activation of oxytocin-producing neurons leading to a
pulsatory secretion of oxytocin into the bloodstream (13, 50).
A positive feedback loop within the SON in which oxytocin acts
on its own release leads to an amplification of the amount of
oxytocin that is secreted (Figure 1) (6). This mechanism ensures
Frontiers in Endocrinology | www.frontiersin.org 4
that the necessary amount of oxytocin in the mammary glands is
available (51). Secretion by these neurons in the SON occurs in
bursts every 5–15 minutes and lasts for 3–4 seconds (5). In the
mammary glands, blood plasma oxytocin binds to its receptor
expressed in the myoepithelial cells of the walls of the lactiferous
ducts and in the epithelial cells of the alveolar glands. Oxytocin
causes contractions in the myoepithelial cells, which increases
the pressure in the breast, resulting in a wavelike release of milk
from the mammary glands through the lactiferous ducts (5, 13).
This milk ejection reflex, or let-down reflex, appears 30–60
seconds after the infant has begun suckling and is viable
during the whole time a mother breastfeeds her child (5).

The number of oxytocin receptors in these myoepithelial cells
in rats is upregulated during gestation in a similar manner as in
the myometrium (52). A study by Erickson and Emeis (53) has
shown that the administration of exogenous oxytocin during
human childbirth can have negative consequences for
breastfeeding. We suspect that this is because synthetic
oxytocin causes the internalization of oxytocin receptors hence
resulting in lower activation levels by oxytocin which are
required for successful lactation (5).

The milk ejection reflex is not only activated by the infants’
suckling and, hence, the activation of peripheral neurons in the
SON, but also by the activation of central oxytocinergic neurons.
These are triggered by other external stimuli, e.g., the infant
crying which elicits a dendritic release of central oxytocin (54)
and a central activation of the milk ejection reflex, even before
the infant begins to suckle. This external trigger mechanism of
the milk ejection reflex has been shown to be an important factor
for successful, long-lasting breastfeeding (5).

THE ROLE OF OXYTOCIN IN MOTHER–
INFANT BONDING

The simultaneous activity of the neuropeptide oxytocin during
childbirth, both in the periphery and in the brain, is a fascinating
example of the result of evolutionary processes that ensure a
species’ successful reproduction and thus its survival. In the
brain, oxytocin acts as a neuromodulator in multiple neural
circuits via axosynaptic and dendritic projection from the SON
and PVN, which are essential for the control of reproductive
behaviors (55). Oxytocin also contributes to other behaviors such
as food intake, learning and memory, and addiction to opioids
(5). Oxytocin has additionally been associated with promoting
human social interactions (56) and has been shown to reduce
fear and pain, as well as physiological and psychological stress
(34, 57). Maternal care behaviors, the development of the
mother–infant bond and maternal aggression to protect the
own young are directly influenced and facilitated by oxytocin
(13, 58). Most of what we know about the role of oxytocin in
maternal behaviors comes from animal studies, mainly from
findings in rodents and sheep, e.g., OXTR-deficient mice show
higher levels of pup abandonment compared to wildtype
controls (59). In all mammals, mother and young have to go
through two steps to form their bond: first, a selective
recognition process that has to happen in a short period of
time after birth and, second, the establishment of a permanent
October 2021 | Volume 12 | Article 742236
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affection and attraction (6, 60). The first step, the recognition
process, is mediated under hormonal, including oxytocinergic,
control (61), whereas the process to implement a long-lasting
connection is based on structural changes in the mother’s brain
and becomes independent of hormonal control (62, 63).
Research in rodents has revealed that the initiation of the
mother–infant bond by recognition of the young is regulated
by an interaction between oxytocin, estrogen, and prolactin in
the anterior hypothalamus and the stria terminalis, which
connects the hypothalamus with the amygdala (61).
Furthermore, these nuclei interact with the dopaminergic
reward system, which in turn controls maternal motivation.
Numan and Young (61) also found that projections from the
olfactory system (olfactory recognition of the young) and the
amygdala (responsible for the evaluation of emotional valence)
are crucial for the initiation of the bond. The oxytocin required
for these processes stems from oxytocinergic projections from
the PVN to the anterior hypothalamus, which are activated by
the Ferguson reflex and nipple stimulation (62).

Little is known about the effect of central oxytocin on bonding
behavior of human and non-human primates. A direct
manipulation of central oxytocin can be achieved by intracerebral
injection into the ventricular system in various animal models, like
sheep and rodents, activating the onset of maternal behaviors and
facilitating the bonding process (64, 65). In humans, a successful
method to influence central levels is to administer oxytocin
intranasally. After administration the activation of brain regions
can be measured, e.g., using fMRI to determine changes in the
activation of brain regions and in the behavioral response to
exogenous oxytocin (66). Peripheral oxytocin levels are also under
investigation in bonding research. Feldman et al. (67) found that
plasma oxytocin levels were stable across pregnancy and the
postpartum period and related to the emergence of a set of
maternal bonding behaviors. A recent study investigated the
effects of maternal behavior of mothers with infants aged 4–24
months and found that synchronous maternal behavior (an
indicator for high quality maternal care) was associated with
increased dopamine responses, stronger intrinsic connectivity
within the medial amygdala network and a decrease in plasma
oxytocin (68). Further research is required to expand our
understanding of the role of central and peripheral oxytocin in
human mother–infant, and potentially father–infant, bonding (69).
To carry out this research, researchers should take into account
recent findings that suggest that oxytocin is present in different
functional states in human blood plasma samples and that it
potentially exerts its effects after degrading into various active
fragments (70). Commercially available methods have been
shown to detect these different states of human blood plasma
oxytocin with variable specificity (71), likely explaining the high
variance of human blood plasma oxytocin concentrations reported
in the literature (72).

Contrary to the adult brain, the blood–brain barrier of the
fetus is permeable for peripheral oxytocin from its mother’s
circulatory system. In rodents it was shown that a systemic
administration of oxytocin to the dam during birth has a long-
term impact on the behavior of the pups (73). Later in life, these
Frontiers in Endocrinology | www.frontiersin.org 5
pups exhibited an improvement in caregiving to their own pups
and an increase in the number of social interactions with each
other in their adult life stage. Epigenetic changes in the gene
encoding for the OXTR in the fetal brain (increased DNA
methylation at the OXTR promotor) and an increase in the
total number of oxytocin receptors are discussed as potential
explanations for these findings (73). It remains to be investigated
if maternally given oxytocin during labor, childbirth, or after
giving birth have an (epigenetic) effect on the child’s oxytocin
system in humans (74).
THE EFFECTS OF STRESS ON THE
OXYTOCIN SYSTEM

Anxiety has been shown to prolong the time to give birth and this is
correlated to low blood plasma concentrations of oxytocin in
women (75). Additionally, Thomas et al. (76) found a positive
relationship between the length of parturition and the concentration
of b-endorphin, an endogenous opioid that is released during time
of stress. It is being discussed if the prolongation of parturition
under stress is caused by an opioid-dependent reduction of oxytocin
release, as this was shown in rats (77). This is achieved by two
means: first, opioids inhibit the neurosecretory terminals in the
neurohypophysis via binding to k-opioid receptors (78) and,
second, by reducing the pulse rate of oxytocinergic neurons of the
PVN via binding to m-opioid receptors (79). Support for these
proposed mechanisms comes from further studies in rodents in
which it was shown that oxytocin infusions and the administration
of the opioid antagonist naloxone can mitigate the prolongation of
parturition caused by disturbing the dam (77). The inhibition and
regulation of oxytocin secretion through the effects of opioids serves
to control the contractions during childbirth and to prevent uterine
tachysystole. After birth, the number of opioid receptors and the
concentration of b-endorphin in the hypothalamus is reduced. This
builds the basis upon which the extremely high postpartum
oxytocin concentrations are achieved (79). From these findings it
is likely to conclude that stress, which is caused by disturbance of the
mother during childbirth, leads to an increase in the opioid-
mediated inhibition of oxytocin secretion and thereby to a
reduction in uterine contractions that will have a negative effect
on the progress of labor.

A second mechanism that has been identified as a factor in the
slowing of labor under stress is mediated by the autonomic nervous
system. Oxytocin is known to activate parasympathetic projections
in rats, leading to an increased blood flow into the uterine muscles
and a widening of uterine arteries (43), ensuring the fetal oxygen
supply even during uterine contractions in cows and horses (80).
Therefore, oxytocin causes a shift in activity of the autonomic
nervous system from the sympathetic to the parasympathetic
nervous system (81). This change is measurable, for example by
the heart rate variability (HRV), which is greater under
parasympathetic control. Stressful situations during birth alter the
autonomic nervous system by increasing the dominance of the
sympathetic over the parasympathetic nervous system (i.e., lower
October 2021 | Volume 12 | Article 742236
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HRV) by activating b2 adrenoreceptors through adrenalin and
noradrenalin (80, 82). There is evidence in pigs that the activation
of these receptors causes an inhibition of uterine contractions and
therefore a slowing of labor (83). An effect of stress on the release of
oxytocin has been shown in pigs (83) but not in horses (82),
probably due to methodological differences, e.g., different sampling
rates in measuring oxytocin concentrations.

The pulsatory stress caused by the rhythmic contractions of the
uterus during labor causes a tend-and-befriend reaction of the
mother, contrary to the usual fight-or-flight response to stress
mediated by the sympathetic nervous system. The biological basis
of this tend-and-befriend reaction, first described by Taylor et al.
(84), appears to be oxytocin and its interplay with estrogen, which
ensures the safety of delivery and the appropriate behavior of the
mother after birth (46). Corroborating this hypothesis, previous
studies have found that oxytocin has an anxiolytic effect (34, 85,
86), and is able to regulate the stress response via oxytocinergic
projections which connect the hypothalamuswith the hippocampus,
amygdala and prefrontal cortex (87). Exogenous stress during labor
leads to a dominance of the sympathetic nervous system, a shift in
response from tend-and-befriend towards fight-or-flight and the
release of catecholamines, which can slow labor progress (88).

Acute stress also has negative effects on lactation. If the
sympathetic nervous system is highly active, it has an
inhibiting effect on the hypothalamus and, hence, the pituitary
gland. This causes a reduction in the release of oxytocin and
prolactin. Furthermore, it causes a local vasoconstriction of the
nipple and an overactivity of the myoepithelial cells in the
mammary gland. These factors contribute to a disruption of
milk production and the milk ejection reflex (89). This is
supported by a recent systematic review by Uvnäs-Moberg
et al. (41), which shows that stress reduces the number of
oxytocin pulses during early breastfeeding.

It should also be noted that the mother’s behavior itself is
affected by an increase in stress. Animal research in rodents has
shown that intracranial injections of CRH into the ventricular
system inhibit certain components of maternal behavior (64, 90).
Findings about the role of CRH onmaternal behavior are supported
by observations of human patients who have suffered from early
childhood trauma. These patients showed a chronic overactivation
of the CRH system as well as the HPA axis and impairment of
parental behavior (64). In non-human primates, mothers who
received injections of CRH into their ventricular system spend
less time with their offspring (64). It is likely that changes in the
oxytocin system are the underlying cause for the described effects on
the mother–infant bond, which remains to be studied.
CLINICAL CONSEQUENCES OF
OXYTOCIN MANIPULATION

The crucial task for all maternity caregivers is to support the
mother’s innate biological processes and to carefully balance the
benefits and dangers of any intervention. Further research is
required to estimate the potential effects of a prolonged infusion
Frontiers in Endocrinology | www.frontiersin.org 6
of synthetic oxytocin on its natural pulsatory release profile,
which is essential for a normal birth process. Two aspects should
be considered when administering synthetic oxytocin during
childbirth. First, the dosage of synthetic oxytocin should not
exceed the physiological blood plasma concentration of 9 mU/
min (34, 91). A recent study by Daly and colleagues (92) has
shown that the dosage of synthetic oxytocin during the onset of
labor and the subsequent birth varies substantially between
clinics and countries. In Germany, dosages up to 27 IU within
eight hours have been documented. Secondly, a constant
infusion of synthetic oxytocin results in a flattening of the
natural oxytocin pulses (34). An infusion with synthetic
oxytocin, mimicking the naturally occurring pulses, could
potentially maintain the amplitude and frequency of uterine
contractions and prevent an overstimulation. This could also
slow down the downregulation of OXTR density (13, 34). Gimpl
and Fahrenholz (5) have shown that in fibroblast cells more than
60% of all oxytocin receptors are internalized within 5–10
minutes after receptor stimulation, thereby drastically reducing
the binding capacity of these cells for oxytocin.

It is also unknown how epidural analgesia and the associated
reduction (or the complete suppression) of the Ferguson reflex,
which ensures the sufficient oxytocin concentration during and
after birth (see above), affects the physiological processes of
mother and child. Among the many other positive aspects that
are mediated by oxytocin, an elevated oxytocin concentration
after birth contributes to the emergence of the mother’s positive
emotions towards her baby and towards herself (46, 88).
Maternal satisfaction with birth is achieved by an interaction
of oxytocin with the dopaminergic reward system (93, 94).
Oxytocin also has an amnestic effect and lets the mother forget
about the painful aspects of labor and childbirth (34, 95).
Maintaining a normal level of oxytocin during childbirth and
afterwards has therefore not only an effect on the way in which
the mother experiences the birth of her child but also on her own
mental well-being (96).

Surprisingly little is known about how midwives can support
mothers during these processes and how oxytocin levels can be
increased (or maintained) physiologically, although this should
be one primary focus of midwifery work (3). For example it has
been shown in a study by Lund et al. (97) that rhythmic,
massage-like stimulation of the skin increases the blood plasma
oxytocin concentration and reduces the amount of nociception.
It is known that stimulation of the breast before parturition also
leads to an increase in blood plasma oxytocin levels (98).
However, it remains to be investigated if these measures can
have a positive effect on the progress of labor. Likewise, studies
about the influence of body position during birth on the oxytocin
system are missing (99). More research is needed to inform
guidelines on supporting women in labor, based on scientific
evidence about promoting the natural release of oxytocin and the
effects of synthetic oxytocin administration during birth (100).

We postulate that the professional support of women in the
postpartum period should always have the reduction of stress-
causing disturbances from intrinsic and extrinsic factors and the
support of the mother–child bond (including breastfeeding) as
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its primary goals. Important factors that have been shown to
reduce stress during birth are the birth environment, which can
hinder or support physiological birth depending on the stress
level exerted on the birthing woman (101), as well as intrapartum
care with minimal intervention and birth preparedness (102),
which requires a one-to-one support during labor and birth by
birth attendants, mainly midwives. It has been shown that this
social support reduces labor stress and pain (1).

Continuous support by a midwife has also been shown to
have a positive effect on the mother’s self-determination and self-
confidence (103). Further studies should explore the mediating
effect on stress of the midwifery model of care, including
continuity of care during the entire childbearing trajectory and
one-to-one support during labor (104) and its potential impact
on the oxytocin system.
CONCLUSIONS

The neuropeptide oxytocin plays a central role in securing the
health and safety of mother and child during birth and beyond. It
acts by endocrine and paracrine mechanisms, both in the
periphery and as a neuromodulator in the central nervous
system. The processes in which oxytocin is released, binds to
its receptor, and affects various aspects of childbirth are finely
tuned and strictly regulated, both temporally and spatially.
Additionally, oxytocin influences a large bandwidth of basic
biological functions of human social behavior, including
recognition, trust and empathy (105). By lying the basis for
reproductive pair-bonds it ensures our species’ survival. It does
so by directly supporting childbirth and lactation and by
Frontiers in Endocrinology | www.frontiersin.org 7
affecting the emotional processes of parental care, pair bonding
and social interactions by changes in the physiology and
anatomy of maternal brains. Considering that maternal
oxytocin levels during childbirth can have an epigenetic effect
on the infant’s brain, everyone involved, clinicians, midwives,
and mother and father carry a great responsibility for the well-
being of the mother and the health of the next generation (73,
106). It is therefore vital to increase our understanding of the role
of oxytocin and how its release can and should be influenced. A
deeper knowledge of the underlying processes will influence and
improve future obstetrics and mainly the work of midwifes who
are important attendants and confidents of women before,
during and after birth (107) to ensure the health of mothers
and a safe start in life for their children.
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