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Glucocorticoids are drugs that are widely used to suppress inflammation and the
activation of the immune system. However, the prolonged use or at high doses of
glucocorticoid can result in adverse side effects including osteoporosis, bone loss, and an
increased risk of fracture. A number of compounds derived from natural plant sources
have been reported to exert anti-inflammatory activity by interacting with the
glucocorticoid receptor (GR), likely owing to their chemical similarity to glucocorticoids,
or by regulating GR, without a concomitant risk of treatment-related side effects such as
osteoporosis. Other herbal compounds can counteract the pathogenic processes
underlying glucocorticoid-induced osteoporosis (GIOP) by regulating homeostatic bone
metabolic processes. Herein, we systematically searched the PubMed, Embase, and
Cochrane library databases to identify articles discussing such compounds published as
of May 01, 2021. Compounds reported to exert anti-inflammatory glucocorticoid-like
activity without inducing GIOP include escin, ginsenosides, and glycyrrhizic acid, while
compounds reported to alleviate GIOP by improving osteoblast function or modulating
steroid hormone synthesis include tanshinol and icariin.
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INTRODUCTION

Glucocorticoids are drugs that modulate a diverse array of signaling pathways, modifying cognitive
signaling, exerting immunosuppressive and anti-inflammatory activity, and preserving normal organ
homeostasis and function (1). Since their first clinical deployment in the 1950s, glucocorticoids have
been widely adopted and are the most commonly utilized immunosuppressive drug class in the world
(2). The prolonged use of glucocorticoids, however, particularly at higher doses, can result in a variety of
adverse side effects including arterial hypertension, Cushing’s syndrome, type 2 diabetes mellitus,
osteoporosis, and increased susceptibility to infection (3).

Endogenous glucocorticoids regulate key processes including calcium homeostasis in the
intestines and kidneys, bone development, and mesenchymal cell differentiation at physiological
concentrations. By stimulating mature osteoblasts to increase canonical Wnt protein production,
glucocorticoids can promote the activation of b-catenin signaling in mesenchymal progenitor cells
such that they differentiate into osteoblasts rather than chondrocytes or adipocytes, thus favoring
osteogenesis. In osteoblasts, Wnt signaling also leads to the expression of osteoprotegerin (OPG),
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which suppresses osteoclastogenesis to maintain bone
homeostasis (4). At very high doses, however, glucocorticoids
can negatively impact bone integrity through a range of
mechanisms, with GIOP having first been described in
individuals with Cushing ’s disease expressing excess
endogenous glucocorticoid levels (5).

Ow ing t o the i r po t en t an t i - i nfl ammato r y and
immunomodulatory activity, glucocorticoids are widely used in
clinical contexts. However, their prolonged use can lead to adverse
outcomes including glucocorticoid-induced osteoporosis (GIOP),
which is themost common secondary cause of osteoporosis and an
important iatrogenic risk to patients in many contexts (6). Such
osteoporosis has been reported in patients with chronic
inflammatory diseases including inflammatory bowel disease,
chronic obstructive pulmonary disease, and systemic lupus
erythematosus (SLE) (7). Most SLE patients undergo chronic
glucocorticoid treatment, and one Dutch study with a 6-year
follow-up period detected a dose-dependent association between
the use of glucocorticoids and lumbar spine bone loss (8). Similarly,
a cohort study of individuals between the ages of 18 and 64
undergoing glucocorticoid treatment for a range of disorders
found that higher doses, longer treatment durations, and
continuous use were associated with the highest fracture risk (9).
Sustained treatmentwithprednisone (10mg/d) for over90dayswas
associated with 7- and 17-fold increases in the risk of hip and
vertebral fractures (9).
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Glucocorticoids can modulate bone biology via a number of
different mechanisms (Figure 1), suppressing osteogenesis and
promoting the apoptotic death of osteoblasts and osteocytes (10).
Additionally, these drugs can increase the number of osteoclasts
and enhance their function, resulting in an overall increase in
osteoclast lifespan (11).

Osteoblast signaling pathways that can be directly impacted
by glucocorticoid exposure include the peroxisome proliferator-
activated receptor g2 (PPARg2) (12), CCAAT/enhancer-binding
protein-a (C/EBPa) (13), adipocyte protein 2 (aP2) (14), and
canonical WNT signaling pathways (15). Glucocorticoids
promote PPARg2, C/EBPa, and aP2 upregulation, leading
precursor cells to preferentially differentiate into adipocytes
instead of osteoblasts, thereby leading to a decrease in overall
osteoblast numbers (12–15). Glucocorticoids also increase the
expression of inhibitory molecules including sclerostin in the
WNT-b-catenin signaling pathway while simultaneously
inhibiting the expression of WNT16 in a dose- and time-
dependent fashion, further contributing to reduced
osteoblastogenesis and bone loss (16, 17).

The receptor activator of nuclear factor-kB ligand (RANKL)-
osteoprotegerin (OPG) pathway is also amenable to modulation
by glucocorticoids, which increase RANKL production and
suppress OPG mRNA expression (18–20). Glucocorticoids can
also enhance Notch signaling in osteoblasts and osteocytes,
leading to increased Notch target gene expression including
FIGURE 1 | Direct glucocorticoid effects on bone. Endogenous or physiological glucocorticoids stimulate mature osteoblasts to produce canonical Wnt proteins, which
activate the b-catenin signaling cascade in mesenchymal progenitor cells and promote them to differentiate towards osteoblasts. These actions favor bone formation.
Additionally, Wnt signaling in osteoblasts and osteocytes promotes osteoprotegerin expression, which in turn inhibits osteoclast formation resulting in decreased or
unchanged bone resorption. Exogenous glucocorticoids negatively affect osteoblast and osteocyte function. In osteoblasts and osteocytes, increased PPARg2 and Notch
target gene expression and decreased wnt signaling contribute to decreased osteoblastogenesis, and activation of caspase 3 results in increased osteoblast and
osteocyte apoptosis. Glucocorticoids induce upregulation of expression of RANKL and M-CSF, which leads to increased osteoclastogenesis and osteoclast lifespan.
PPARg2, peroxisome proliferator-activated receptor-g2; RANKL, receptor activator of nuclear factor-kB ligand; M-CSF, macrophage colony-stimulating fact.
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hairy and enhancer of split (Hes) and Hes-related with YRPW
motif (Hey), which are repressive transcription factors that have
the potential to mediate the impairment of osteoblast
functionality and consequent reductions in osteogenesis (21, 22).

Glucocorticoid-induced apoptosis is linked to the enhanced
activity of effector proteins including caspase 3, 7, and 8
downstream of the pro-apoptotic Bim and Fas/FasL death
receptor pathways (10). Glucocorticoids can also stabilize GSK-
3b activity to induce osteoblast apoptosis.

Glucocorticoids can impact osteoblasts to increase the
RANKL : OPG ratio, thereby promoting osteoclast
differentiation and maturation such that the overall rate of
bone resorption increases. This effect can be further
exacerbated by the ability of glucocorticoid treatment to induce
the production of macrophage colony stimulating factor (M-
CSF), which is released from osteoblasts and enhances the
differentiation and activity of osteoclasts (23). The long-term
impact of glucocorticoids on osteoclast function, however, is less
certain, with multiple reports indicating that these compounds
can interfere with the osteoclast cytoskeleton such that the
activity of these cells may be increasingly impaired even as
their longevity increases (24–26).
THE IMPACT OF HERBAL MEDICINES ON
GLUCOCORTICOID- INDUCED
OSTEOPOROSIS

Many studies have shown that herbal medicines can significantly
increase bone density and improve clinical findings in GIOP
patients, thus serving as novel tools for the treatment and/or
prevention of this debilitating glucocorticoid-related
complication (27–29).

Herbal Medicines Exert Glucocorticoid-
Like Anti-Inflammatory Activity Without
Inducing GIOP
A range of herbal compounds have been suggested tomediate anti-
inflammatory activity by signaling through the glucocorticoid
receptor, likely owing to their structural similarity to
glucocorticoids. Notably, these compounds seem to be able to
mediate these effects without a significant risk of negative
glucocorticoid-related side effects such as GIOP.

Escin
Escin is a natural mixture of triterpene saponins extracted from
the seeds of Aesculus chinensis Bge. or Aesculus wilsonii Rehd.
Escin has been reported to exhibit pharmacological effects
similar to those associated with glucocorticoid administration.
For example, oral escin (5 and 10 mg/kg, p.o.) intake has been
found to suppress carrageenan-induced paw edema and to
inhibit prostaglandin E2 (PGE2) production (30). Notably,
when compared with glucocorticoids, escin (2 mg/kg, i.v.) has
been shown not to induce thymic or splenic immune cell
apoptosis in mice, nor does it promote the enhanced secretion
of endogenous corticosterone (31). Zhang et al. found that the
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sustained administration of escin (0.45 and 0.9 mg/kg for a
period of 10 days, i.v.) in the context of post-surgical bone
fracture healing has no adverse impact on wound or bone healing
processes (32). There is also evidence that glucocorticoids and
escin (2 mg/kg, i.v.) exhibit synergistic anti-inflammatory
activity when administered in vitro and in vivo at low doses,
suggesting at least partial overlap in the pharmacological
pathways impacted by these compounds (33). Combination
glucocorticoid and escin(5 and 10 mg/kg for a period of 16
days, i.g.) treatment can significantly decrease synovial
inflammatory infiltration, synovial hyperplasia, and bone
erosion in a rat model of adjuvant-induced arthritis (AIA) rats
while reversing some of the adverse effects of glucocorticoid
treatment alone such as reductions in boy weight and increases
in the spleen index relative to untreated rats (34). Administering
escin (10 mg/kg for a period of 14 days, p.o.) together with a low
dose of dexamethasone (Dex) has been shown to markedly
suppress paw swelling, joint pathology, arthritic index scores,
and immune organ pathology in an animal model, all while
reducing the necessary Dex dose and thus decreasing the rate of
adverse effects associated with Dex administration (35). The anti-
edema and anti-inflammatory properties of escin may be
attributable to its ability to bind to the glucocorticoid receptor
(GR), consistent with glucocorticoid-like activity (36). Escin (1.8
and 3.6 mg/kg, i.v.) may additionally augment the antioxidant
capacity of tissue in the context of lipopolysaccharide (LPS)-
induced acute lung injury (ALI) and endotoxin-induced liver
injury by suppressing the production of inflammatory
compounds including NO, TNF-a , and IL-1b while
simultaneously promoting GR upregulation in the liver and
lungs (37, 38).

Ginsenosides
Ginsenosides are the primary active ingredients isolated from
ginseng, and they have been reported to exhibit anti-
inflammatory activity in vitro and in vivo owing to their
structural similarity to steroid hormones. Compound K is a
ginsenoside that has, in vitro, been shown to suppress TNF-a-
induced fibroblast-like synoviocyte (FLS) migration, proliferation,
and secretion, consistent with joint-protective activity (80 mg/kg
for a period of 14 days, i.g.) (39). In a rat model of myocardial
infarction (MI), ginsenoside Rg3 (30 mg/kg for a period of 7 days,
i.g.) reduces inflammation via the inhibition of the NF-kB pathway
(40). Combining the ginsenosides Rh1 (20 mg/kg, i.p.) and Rg2
(20 mg/kg, i.p.) can suppress LPS-induced tissue damage and
inflammation by interfering with the ability of LPS to bind to
and trigger the activation of TLR4 (41). Ginsenoside Rb1 (10 and
20 mg/kg, i.p.) markedly alleviates LPS- or cantharidin-induced
acute kidney injury, LPS-induced septicemia, and dimethyl
benzene-induced ear edema in mice (42). Ginsenoside treatment
is also not associated with any significant adverse reactions. In
mice overexpressing TNF-a, ginsenoside Rg1 (20 mg/kg, i.g.)
can prevent bone erosion, inhibit synovial inflammation, and
reduce serum levels of both IL-6 and TNF-a, and treatment for
12 weeks with ginsenoside Rg1 was not associated with any liver
or kidney damage (43). Ginsenoside Rd (10 mg/kg, i.p.) can
suppress ischemia-induced microglial activation and inhibit
November 2021 | Volume 12 | Article 744647

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Zhang et al. Herbal Medicines Prevent GIOP
proinflammatory cytokine production while inducing fewer severe
side effects as compared to glucocorticoids (44). Importantly, these
ginsenosides can also work in synergy with glucocorticoids to
inhibit inflammation. For example, combining corticosterone
with low concentrations of Rg1 can suppress the LPS-induced
production of NO and TNF-a by RAW264.7 macrophages while
simultaneously promotingGRupregulation (45). Ginsenosides can
also shape cellular responses in a GR-mediated manner, as in the
case of Rg1 (12.5 mg/kg, i.p.), which suppresses LPS-induced NF-
kB nuclear translocation and inflammatory cytokine production in
a GR-dependent fashion. Notably, Rg1 (20mg/kg for a period of 21
days, i.g.) has no adverse impact onmurine osteoblast differentiation
or proliferation (46). In a murine collagen-induced arthritis (CIA)
model system, the ginsenoside Rh1 (10 mg/kg for a period of
10 days, i.p.) was also able to augment the anti-inflammatory
activity of Dex by enhancing GR expression and binding without
inducing hyperglycemia (47). Ginsenoside CK (112 mg/kg for a
period of 24 days, i.g.) can also activate GR to suppress b-arrestin2
expression, thereby inhibiting inflammation (48).

Glycyrrhizic Acid and Glycyrrhetinic Acid
Glycyrrhizic acid (also known as glycyrrhizin) is the primary
glycoside derivative of licorice, and it has been ascribed a range of
anti-inflammatory activities. By suppressing signaling through
the Smad3 and MAPK pathways, for example, glycyrrhizin (30
and 100 mg/kg for a period of 28 days, i.g.) has been shown to
reduce the severity of bleomycin-induced inflammation and
pulmonary fibrosis in mice (49). Glycyrrhizin (10 mg/kg for
once every day in the first 3 weeks following by given once every
3 days until the twelfth week, intra-articular knee injection)
treatment can also alleviate inflammation and the degeneration
of cartilage tissue in a rat model of osteoarthritis via regulating
the TLR4/NF-kB and HMGB1 pathways (50). In vivo,
glycyrrhizic acid undergoes hydrolysis to yield glycyrrhetinic
acid, which is structurally similar to steroid hormones such that
it is able to exert a range of biological effects including
glucocorticoid-like anti-inflammatory activity through
interactions with steroid hormone receptors and metabolic
enzymes. For example, in a murine ALI model system,
glycyrrhetinic acid (10, 20 and 40 mg/kg for a period of 7 days,
i.g.) was able to reduce injury severity by suppressing NLRP3
inflammasome activation through the ROS-PI3K/AKT pathway
(51). Glycyrrhetinic acid (40 mM)may also be hepatoprotective in
the context of chronic liver inflammation, functioning by
suppressing the phosphorylation of IkBa phosphorylation and
the nuclear translocation of p65 so as to reduce iNOS expression,
thus alleviating inflammation (52). Glycyrrhetinic acid and
glycyrrhizic acid can interact with GR as ligands, modulating
glucocorticoid resistance can also prevent inflammation by
disrupting the GR-HSP90 (53, 54). As a relatively weak
glucocorticoid-like drug, glycyrrhizic acid can enhance the
effects of glucocorticoids while antagonizing the adverse effects
associated with high-dose glucocorticoid treatment. Licorice (75
mg/kg for a period of 5 days) can also suppress 11 beta-
hydroxysteroid dehydrogenase mRNA expression while
potentiating glucocorticoid activity (55). Therefore, glycyrrhizic
acid and glycyrrhetinic acid seem to be able to exert
Frontiers in Endocrinology | www.frontiersin.org 4
glucocorticoid-like anti-inflammatory activity without a
significant risk of negative glucocorticoid-related side effects
such as GIOP.

Herbal Medicines Capable of Inhibiting
or Treating GIOP
Icariin
Icariin is the main active ingredient of epimedium, which is a
natural compound that has been increasingly studied in the
context of osteoporosis treatment and prevention, as it has been
shown to simultaneously suppress bone resorption and expedite
bone formation (56). Icariin (125 mg/kg for a period of 14 days,
i.g.) can promote primary osteoblast maturation and associated
bone remodeling, inducing osteoblast mineralization and the
expression of key markers of terminal differentiation such as
alkaline phosphatase (ALP) and type I collagen (57–60). Icariin
(0.1 mM) also exhibits robust anti-apoptotic activity, promoting
BMSC proliferation and osteogenic differentiation via Wnt/b-
catenin pathway activation (61).

With respect to the symptoms of GIOP, icariin (5 mM for a
period of 48 h) can enhance trabecular bone density in the
context of glucocorticoid exposure, promoting osteogenic
differentiation via the suppression of Notch signaling (62).
Through the enhancement of autophagic activity, icariin
(50 mg/kg for a period of 30 days, i.p.) can reduce OVX-
induced bone loss in animal model systems (63), in addition to
disrupting the Dex-induced apoptotic death of osteocytes (58).
Icariin can also activate the ERK and ER pathways to control
bone homeostasis, promoting OPG expression andWnt pathway
activation. Inhibiting osteoclastogenesis is at least partially
responsible for the anti-osteoporotic activity of icariin and
compounds derived therefrom. The levels of the osteoclast
differentiation marker tartrate-resistant acid phosphatase
(TRAP) are reduced in a dose-dependent manner when
osteoclast precursor cells are treated with icariin (10 nM,
every 3 days) (64). Icariin (10 mM) is also able to directly
suppress RANKL-induced hemopoietic cell differentiation into
osteoclasts (65). In addition to regulating osteoclastogenesis,
icariin (50 and 100 mM) can arrest cell cycle progression in
osteoclast precursors, thereby inducing their apoptotic death
(66). It can further reverse deleterious Dex-induced trabecular
phenotypes while stimulating bone remodeling, increasing bone
calcium, OCN, and FGF-23 levels while reducing the levels of
bone resorption markers including CTX and TRAP-5b. Indeed,
in GIOP model mice, icariin (100 mg/kg for a period of 6 or
12 weeks, p.o.) treatment has been shown to protect against bone
degeneration, hypercalciuria, and hypocalcemia (67). As such,
icariin may be a valuable tool for use in the induction of bone
regeneration owing to its potent osteogenic bioactivity.

Many clinical studies have shown that Chinese medicine
containing epimedium has achieved good clinical effects in the
treatment of GIOP patients. Hugu Capsules (comprised of
epimedium, polygonum multiflorum, rehmannia glutinosa and
other traditional chinese medicines) can significantly increase
the bone mass of 51 patients with GIOP, improve bone turnover,
and relieve pain (68). Through observation of 50 GIOP patients,
Wu et al. found that taking Xianling Gubao capsule while using
November 2021 | Volume 12 | Article 744647
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glucocorticoids treatment can increase the BMD of the patient’s
lumbar spine and proximal femur, thereby reducing the
incidence of osteoporotic fractures and having fewer adverse
reactions (69). Through clinical observation of 66 patients with
GIOP, Shi et al. found that Bugu Capsules (including
epimedium) can significantly reduce the impact of OP caused
by glucocorticoids, reduce blood calcium, parathyroid hormone
levels, and increase bone density (70).

Tanshinones
Tanshinone IIA, extracted from Salvia miltiorrhiza Bunge, is a
perennial herbal plant widely used as a folk remedy in Asian
countries. Several studies have proved that Tanshinone IIA
possesses many biological activities, such as anti-inflammatory,
free-radical scavenging abilities, antioxidant properties, liver
protection, and anti-cancer properties. Tanshinones are
compounds that can also simultaneously inhibit osteoclastogenesis
and bone resorption while promoting more robust bone formation
with concomitant osteoblastogenesis. These tanshinones (2, 5mg/ml)
suppress osteoclast development through the disruption of RANKL-
mediated NF-kB, MAPK, Akt, and M-CSF/c-Src signaling pathway
activation (71, 72). Tanshinone IIA, for example, can inhibit
Frontiers in Endocrinology | www.frontiersin.org 5
osteoclastogenesis through the inhibition of RANKL-induced c-Fos
andNFATc1 (71),withTanshinone IIA (20mg/mL for a periodof 30
min) pretreatment reportedly reducing the fusion, actin ring
formation, and resorptive activity of osteoclasts in a co-culture
system containing M-CSF and RANKL-treated calvarial osteoblasts
and BMCs (73). Mechanistically, Tanshinone IIA (10 mg/mL) can
function as a selective COX-2 inhibitor to suppress PGE2 and to
therebymodulateOPGandRANKL expression (74), all of which are
related toosteoclast function.Tanshinones (1mMforaperiodof24h)
can also disrupt the apoptotic death of osteoblasts and consequent
osteoporosis observed upon glucocorticoid treatment by inactivating
Nox4 (75). In osteoporosis model mice, Tanshinone IIA (10 mg/kg
for a period of 6 weeks, p.o.) was able to decrease the incidence of
fractures and severe osteopenia while augmenting bone strength,
mineral levels, and collagen in the bonematrix (76). Tanshinone (10
mg/kg for a period of 21 days, i.v.) was also able to upregulate
phosphoglycerate dehydrogenase and to thereby suppress OVX-
induced osteoporosis and BMSC senescence (77). Tanshinone can
alleviate theadverseeffectsofDex treatmentandconsequencecellular
injuries such as caspase-9-dependent apoptosis, increased cytosolic
cytochrome c and Nox levels, and increased ROS generation (75).
Current preclinical evidence suggests that these Tanshinones
TABLE 1 | Herbal medicines capable of inhibiting or treating GIOP.

Origin Main components In vitro In vivo Mechanism of bone
protection

Cells Dosage Animal Dosage and administration
route

Celastrus genus of the
Celastraceae family

Celastrol (78) – – Male C57BL/
6J mice

1 mg/kg, per day for 12 weeks,
i.m.

Activating Wnt signaling
pathway

Daphne odora var.
marginatai

Daphnetin (81) MC3T3-
E1 cells

20 mM for 48 h Male SD rats i.m., i.p.

Herba Cistanches Echinacoside (82) MC3T3-
E1 cells

10 mg/l for 48h – – Induction of osteoblast
apoptosis

Ginkgo Biloba Ginkgo biloba extract
(83)

– – Female Wistar
rats

28, 56 mg/kg, per day for 20 days
or 30 days, i.g.

Red Ginseng Red Ginseng (79) MC3T3-
E1 cells

250, 500, 1000
mg/mL for 48h

– –

Cnidium monnieri (L.)
Cusson

Osthole (80) – – Female SD rats 10, 20 mg/kg, per day for 8 weeks,
i.m.

Regulating TGF-b/Smad
signaling

Rhizoma gastrodiae Gastrodin (84) MC3T3-
E1 cells

1, 5 mM for 48 h Female SD rats 1, 5 mg/kg, per day for 60 days,
i.g.

Upregulating expression of
BMP

Myrica rubra Sieb. et
Zucc.

Myricetin (85) MC3T3-
E1 cells

20 mM Male SD rats 2.5 mg/kg,once every other day for
a period of 5 weeks, i.p.

Curcuma longa Curcumin (86) – – Male C57BL/
6J mice

200 mg/kg per day for 12 weeks,
i.g.

Inhibiting the activity of
RANKL/RANK signaling

Chansu Gamabufotalin (87) BMMs 100, 150 nM for
3-5 days

– –

Piper sarmentosum
Roxb.

Piper sarmentosum
(88)

– – Male SD rats 125 mg/kg Inhibiting the activity of 11b-
HSD1

Achyranthes bidentata
Bl.

b-ecdysone (89) BMSC 10-7 M for 8 h Male Swiss-
Webster mice

0.5 mg/kg Inhibiting the autophagy
produced by osteoclasts

Pueraria Lobata Total Flavones of
Pueraria Lobata (90)

– – Female SD rats 100, 200 mg/kg, per day for 12
weeks, i.g.

Promoting bone matrix
formation

Pueraria pseudo-hirsuta
TANG et WANG

Chilk extracts (91) – – Female wistar
rats

200mg/kg, per day for 6 months,
i.g

Decreasing sex hormone
levels

Lycium chinense Miller Lycium barbarum
polysaccharide (92)

– – Wistar rats 2.6 g/kg, per day for 12 weeks, i.g. Regulating calcium and
phosphorus metabolism

Salvia miltiorrhiza Bunge Salvianolic acid B (93) – – Male SD rats 40, 80 mg/kg, per day for 12
weeks, p.o.

Regulating lipid metabolism
balance
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preserve skeletal integrity primarily by suppressing bone resorption
and osteoclast formation, underscoring their potential value for the
treatment of GIOP.

Many other herbal medicines have also been found to reduce
GIOP incidence or severity through a range of mechanisms. For
example, celastrol can suppress GIOP incidence in rats by
modulating the Wnt and PI3K/AKT signaling pathways (78),
while KRG can induce the apoptotic death of osteoblasts,
highlighting its potential therapeutic utility as a tool to delay
the onset of osteoporosis (79). Osthole has been shown to
prevent Dex-induced osteoporosis in female rats, potentially by
normalizing hormone and cytokine homeostasis through
increases in TGF-b1 production (80) (Table 1).
CONCLUSION

Much like other hormone molecules, glucocorticoids can exert a
range of effects on tissues and organs when employed at
physiological and pharmacological doses. While awareness of
osteoporosis and other risks associated with prolonged or high
doses glucocorticoid use is growing, GIOP remains
underdiagnosed and inadequately treated. Herbal medicines
characterized to date have been shown to treat GIOP through
two primary mechanisms, with some exerting glucocorticoid-like
activity without a risk of adverse reactions, and the others
treating GIOP through mechanisms including the regulation of
Wnt signaling pathway, the induction of osteoblast apoptosis,
and the inhibition of RANKL/RANK signaling.
Frontiers in Endocrinology | www.frontiersin.org 6
However, Further clinical studies of these herbal medicines
are needed to demonstrate prevention properties in GIOP
patients. For example, sodium aescinate has been widely used
in clinic to treat traumatic and inflammatory edema, etc. A
randomized, parallel, controlled clinical trial can be conducted to
evaluate the anti-inflammatory efficacy combined with
glucocorticoids, as well as the side effects, GIOP.
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