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Background: Identifying the metabolite profile of individuals with prediabetes who turned
to type 2 diabetes (T2D) may give novel insights into early T2D interception. The purpose
of this study was to identify metabolic markers that predict the development of T2D from
prediabetes in a Chinese population.

Methods: We used an untargeted metabolomics approach to investigate the associations
between serum metabolites and risk of prediabetes who turned to overt T2D (n=153, mean
follow up 5 years) in a Chinese population (REACTION study). Results were compared with
matched controls who had prediabetes at baseline [age: 56 ± 7 years old, body mass index
(BMI): 24.2 ± 2.8 kg/m2] and at a 5-year follow-up [age: 61 ± 7 years old, BMI: 24.5 ± 3.1 kg/
m2]. Confounding factors were adjusted and the associations between metabolites and
diabetes risk were evaluated with multivariate logistic regression analysis. A 10-fold cross-
validation random forest classification (RFC) model was used to select the optimal metabolites
panels for predicting the development of diabetes, and to internally validate the discriminatory
capability of the selected metabolites beyond conventional clinical risk factors.

Findings: Metabolic alterations, including those associated with amino acid and lipid
metabolism, were associated with an increased risk of prediabetes progressing to
diabetes. The most important metabolites were inosine [odds ratio (OR) = 19.00; 95%
confidence interval (CI): 4.23-85.37] and carvacrol (OR = 17.63; 95% CI: 4.98-62.34).
Thirteen metabolites were found to improve T2D risk prediction beyond eight conventional
T2D risk factors [area under the curve (AUC) was 0.98 for risk factors + metabolites vs
0.72 for risk factors, P < 0.05].

Interpretations: Use of the metabolites identified in this study may help determine
patients with prediabetes who are at highest risk of progressing to diabetes.
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INTRODUCTION

Prediabetes is an intermediate metabolic state of hyperglycemia
in which the serum glucose level is higher than normal, but lower
than the diagnostic threshold for diabetes. Prediabetes can be
considered a heterogeneous, subclinical form of diabetes. The
prevalence of prediabetes has increased significantly in recent
decades, and the estimated standardized prevalence of
prediabetes has reached 35.7% in the Chinese adult population
(1). Individuals with prediabetes have a higher risk of developing
diabetes, and the lifetime conversion rate to T2D is as high as
74% (2). Given the availability of lifestyle interventions that are
effective at preventing or delaying the onset of T2D, early
identification of persons with prediabetes is important. A
number of traditional markers are used to estimate the risk of
T2D in normal individuals, such as fasting plasma glucose and
glycated hemoglobin A1c (HbA1c) (3). However, most of these
markers fail to capture the complexity of the etiology of
prediabetes, and thus are limited with respect to detecting early
metabolic abnormalities that may occur years or even decades
before the onset/diagnosis of overt diabetes.

Metabolomics has been used to explore links between
phenotypes and metabolism. Metabolites represent intermediate
and end-products of cellular regulatory processes, and their levels
can reflect physiologic and pathologic changes that maymirror the
progression of diseases. Thus, theymay reflectmetabolic changes at
early stages of a disease. Therefore,metabolomics is a usefulmethod
to deepen the understanding of disease-relevant metabolic
processes and dysregulation, by detecting alterations of the
metabolic profile and specific metabolites.

Metabolic perturbations of prediabetes and diabetes are
complex. Cross-sectional analyses have reported associations of
altered metabolite levels with obesity (4), insulin resistance (5),
prediabetes (6), and overt diabetes (7). Previous findings
suggested that branched-chain amino acids (BCAAs) were
associated with insulin resistance (5) and T2D (7). Further, the
components of nitrogen metabolism pathway were also
considered as potential effectors of earliest stages of T2D
pathophysiology (8). Although metabolomics studies of
diabetes and prediabetes are increasing in number and
attracting the interest of the medical community, a clear
understanding of alterations in metabolite profiles during the
progression from prediabetes to diabetes has not been achieved.
Identification of these changes may be useful for estimating the
risk of developing prediabetes and diabetes.

Thus, the purpose of this study was to identify new metabolic
markers that may help understand the pathogenesis from
prediabetes to T2D, and improve risk prediction for the
development of diabetes. Patients with prediabetes diagnosed
by oral glucose tolerance test (OGTT) who had developed
diabetes after a follow-up of 5 years were enrolled. Matched
controls were also randomly selected from participants who were
diagnosed with prediabetes at baseline and after a follow-up
period of 5 years. We assessed and compared metabolite levels in
both groups to determine which were predictive of conversion
from prediabetes to diabetes, and to investigate correlations
between metabolites and clinical indexes during the
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development of diabetes. In addition, we also investigated
novel metabolites associated with risk of developing T2D.
RESEARCH DESIGN AND METHODS

Study Population
The study population was from the Risk Evaluation of Cancers in
Chinese Diabetic Individuals: A Longitudinal (REACTION)
study, which was a multicenter prospective observational study
aiming to evaluate chronic diseases among the Chinese
population (9). The Institutional Review Boards at each study
site approved the study protocol, and all participants provided
written informed consent. During the recruitment period, local
permanent residents (39–79 years of age) were invited to
participate in a screening examination for diabetes. From June
to December 2011, 3,620 residents were successfully recruited,
among whom 1,256 participants were diagnosed with
prediabetes. In 2016, participants returned for a 5-year follow-
up survey. We randomly selected 153 individuals who reported a
diagnosis of prediabetes at baseline (2011) and turned to T2D
after a 5-year follow-up (2016). They did not receive medication
interventions. Matched controls (n = 160) were randomly
selected from participants who were diagnosed with
prediabetes at both baseline and after a 5-year follow-up. The
controls were matched (1.04:1) for sex, age (± 3 years), BMI and
date of blood collection (± 6 months), because these factors are
well-known to influence metabolic profiles (10, 11). Diabetes was
defined according to the American Diabetes Association (ADA)
2010 criteria. The diagnosis of prediabetes was defined as a
fasting plasma glucose (Glu0) level of 5.6-6.9 mmol/L (100-125
mg/dl), a 2-h blood glucose (Glu120) level of 7.8-11.0 mmol/L
(140-199 mg/dl), or a glycated hemoglobin (HbA1c) level of 5.7-
6.4% (39-46 mmol/mol), according to the 2010 ADA guidelines
(12). Serum samples were all collected by Sun Yat-Sen Memorial
Hospital, of Sun Yat-Sen University, and stored at -80°C
until testing.

Clinical and Biochemical Measurements
We collected information regarding lifestyle factors, medical
history, sociodemographic characteristics, and family history
using a standardized questionnaire (9). Anthropometrical
measurements of all participants were obtained by trained staff
using standard protocols (13). Blood pressure (BP) was
measured 3 times, consecutively, by the same observer within 5
minutes using an automated electronic device (OMRON, Omron
Company, China). Body height and body weight were recorded
to the nearest 0.1 cm and 0.1 kg, respectively, with participants
were wearing light indoor clothing without shoes. Body mass
index (BMI) was calculated as weight in kilograms divided by
height in meters squared (kg/m2). Waist circumference (WC)
was measured at the umbilical level with participants in the
standing position at the end of a gentle expiration. All
participants received a standard 75-g oral glucose tolerance test
(OGTT), and plasma glucose concentrations were determined at
Glu0 and Glu120. Venous blood samples were collected after an
overnight fast of at least 10 h. Glu0, Glu120, triglyceride (TG),
January 2022 | Volume 12 | Article 745214
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total cholesterol (TC), high-density lipoprotein cholesterol
(HDL-C), low-density lipoprotein cholesterol (LDL-C),
creatinine (Cr), g-glutamyltransferase (GGT), aspartate
aminotransferase (AST), and alanine aminotransferase (ALT)
concentrations were measured with an autoanalyzer (CX-7
Biochemical Autoanalyser; Beckman, Brea, CA, USA). HbA1c
was measured by high-performance liquid chromatography
(HPLC) (BioRad, Hercules, CA). Triglyceride-glucose index
(TyG index) was calculated as the LN [fasting TG(mg/dl)*Glu0
(mg/dl)/2] (14). The first morning spot urine samples were
collected for assessing the urine albumin (Urine-ALB).

Serum Collection and Preparation
Antecubital venous blood samples (20 ml) were obtained after a
10 h fast, and samples were immediately placed on ice. Samples
were processed within 6 h to obtain serum, which was stored at
-80°C until testing. For metabolic profiling, serum samples were
thawed on ice and metabolites were extracted with methanol
using a previously described method (15). A total of 50 ml of
thawed serum was collected and precipitated by 150 ml of
methanol with 10 ml of 1 mg/ml 2-chloro-L-phenylalanine as
the internal standard. After centrifugation at 14,000 ×g for 10
min at 4°C, the supernatant was transferred to a 1.5 ml sample
vial. A pooled quality control (QC) sample was prepared by
mixing equal amounts (10 ml) of each serum sample.

Serum Metabolomics Profiling by
LC-Mass Spectrometry (LC-MS)
The prepared samples were analyzed using an ultraperformance
HPLC (UHPLC) system (1290, Agilent Technologies) with a
UPLC HSS T3 column (2.1 mm × 100 mm, 1.8 mm, Waters)
coupled to Q Exactive Focus (Thermo Fisher Scientific,
MA, USA), via a previously described method with some
modifications (16). Additional details are provided in the
Supplementary Material Methods section.

Data Analysis
Metabolite levels were log-transformed for analysis. To compare
metabolite levels between the prediabetes and T2D groups, a
paired Mann-Whitney-Wilcoxon test (a nonparametric
univariate method), and multivariate statistical analysis [PCA
(Principal Component Analysis) and OPLS-DA (Orthogonal
Partial Least Squares Discriminant Analysis)] were used, and
analyses were conducted with an R software (v 4.1.0) and SIMCA
15.0 software (Umetrics, Umea, Sweden). Metabolites that were
found to be significant, were adjusted for confounding factors
(Age, BMI, WC, waist-hip ratio, urine albumin, HDL-C, LDL-C,
TC, GGT, Glu0, Glu120, HbA1C) and examined by multivariate
logistic regression analysis to determine their value for
discriminating prediabetes from T2D.

Metabolomics Pathway Analysis (MetPA, v5.0) was performed
to identify significantly altered pathways contributing to the
progression of prediabetes to diabetes. Permutation multivariate
analysis of variance (PERMANOVA) (Bray–Curtis distance) was
employed to test statistically significant differences between
metabolic profiles and individuals’ phenotypes (17). Multivariate
logistic regression analysis was performed with adjustment for
Frontiers in Endocrinology | www.frontiersin.org 3
confounding factors to estimate the association between each
novel metabolite and diabetes risk. An adjusted P-value corrected
for multiple tests using a false discovery rate (FDR) (Benjamini-
Hochberg) of < 0.05 was regarded as significant.

Next, the random forest classifier (RFC) for discriminating
prediabetes from T2D was trained on 182 randomly selected
subjects (91 with prediabetes, 91 with diabetes) from the 306
participants, and then tested on the remaining subjects (62 with
prediabetes, 62 with diabetes). The analysis was conducted with 5
repetitions of 10-fold cross-validation, using cross-validation
error curves to select features as described by Feng et al. (18).
The cross-validation error curves from the 5 trials were averaged,
and the minimum error in the averaged curve plus the standard
deviation at that point was used as the cutoff for an acceptable
error. From the sets of metabolites with a classification error less
than the cutoff, the set with the smallest number of metabolites
was chosen as the optimal set (19). The risk probability of
diabetes for each subject was computed, and the area under
the receiver operating characteristics (ROC) curve (AUC) was
calculated. The RFC model was further tested and validated on
another dataset (160 prediabetes subjects who were still in
prediabetes status in the 5-year follow-up). Clinical indexes
were also applied for RFC construction. Furthermore, the
combinations of the optimal metabolites and clinical factors
sets were applied for RFC model to compare diabetes
prediction capability.
RESULTS

The characteristics of pre-diabetes and matched control at
baseline were shown in Table 1. Overall, despite of no
differences in serum cholesterol and liver functions,
significantly higher baseline Glu120, HbA1c and urine albumin
levels were found in the pre-diabetes group who turned to
diabetes than those who were still in pre-diabetes status after
the 5-year of follow-up.

The characteristics of pre-diabetes andmatched control after 5-
year follow-up are shown in Supplementary Table 1. The mean
Glu0 andGlu120 values inprediabetes group at baselinewere 5.75±
0.64mmol/L and 9.19 ± 1.16mmol/L, respectively, and they turned
to diabetes after 5-year follow-up with the values as 6.27 ± 1.36
mmol/L and 12.90 ± 2.84 mmol/L, respectively. Besides, patients
who developed diabetes after the 5-year of follow-up had higher
levels ofBMI,WC,waist-hip ratio aswell asHbA1c comparingwith
prediabetes group. A comparison of diabetes risk factors between
thegroups showedthat individualswithdiabetesweremore likely to
be hypercholesterolemic compared with individually matched
controls, and had significantly higher LDL-C, TC, and urine
albumin levels. Levels of GGT were significantly different between
the 2 groups, but the mean value of both groups was within
normal limits.

Figure 1A provides a detailed workflow of the metabolomics
study. The metabolomics data acquired resulted in 3,531 positive
mode peaks and 4,849 negative mode peaks after quality control.
No significant drifts in the QC (quality control) metabolites
profiles obtained in both ion modes were observed, and
January 2022 | Volume 12 | Article 745214
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the profiles demonstrated relatively good stability and
reproducibility. Both PCA scores plot and OPLS-DA scores
plot, validated with permutation tests (200 permutations) (20),
revealed significant metabolite differences between the
prediabetes group and the diabetes group. PERMANOVA
analysis demonstrated diabetes status exhibited significant
impact on the metabolic profile (Q-value < 0.05, 999
permutations). Overall, the serum metabolome datasets were
significantly associated with Glu120 (Q-value < 0.05)
(Supplementary Table 2). Weak interactions were observed
between the global metabolomics profiles and clinical
parameters such as LDL-C and TC (P-value < 0.05, Q-value >
0.05). Furthermore, age and Glu0 were weakly associated with
serum metabolome profile in women, and smoking behavior was
weakly associated with serum metabolites profile in men (20).

The 22 significantly up-regulated and 79 significantly down-
regulated metabolites independent of conventional risk factors in
the T2D group are shown in Figure 1B; the metabolites were
mainly components of amino acid metabolism and lipid
metabolism (20). MetPA analysis indicated that notable
metabolism dysregulation occurred in the progression of T2D.
As shown in Figure 1C, amino acids metabolism and
lipids metabolism were statistically different between the
prediabetes and diabetes groups. This was especially apparent
with respect to Aminoacyl-tRNA biosynthesis, Alanine, aspartate
and glutamate metabolism, Phenylalanine, tyrosine and
tryptophan biosynthesis, and Sphingolipid metabolism (20).

The odds ratio (OR) associated with metabolites and clinical
factors for the risk of diabetes after adjustment for confounding
factors are summarized in Figure 1D. Multivariable logistic
regression analyses revealed 20 altered metabolites were
significantly associated with an increased risk of diabetes after
Frontiers in Endocrinology | www.frontiersin.org 4
adjustment for clinical factors and FDR correction. In the
multivariate model, the OR of inosine for developing diabetes
was 19.00 (95% confidence interval [CI]: 4.23-85.37), and the OR
of carvacrol was 17.63 (95% CI: 4.98-62.34). Glu0 was
independently associated with development of diabetes (OR =
6.28; 95% CI: 2.88-13.66), as was Glu120 level (OR = 5.64; 95%
CI: 3.55-8.97). These diabetes positively associated metabolites
such as inosine, carvacrol, and decan oylcarnitine might be
complementary to glucose in improving diabetes forewarning,
which would be further validated in the future study.

A RFC was established to investigate whether metabolic
profiling or clinic profiling could predict future diabetes
development in prediabetic subjects independent of primary
diagnostic criteria of diabetes (Glu0, Glu120, and HbA1C). As
age variant was a conventional diabetes risk factor, it was
additionally added in the performance evaluation of the
diabetes risk model in the independent dataset (pre-diabetes
matched control) in the after-mentioned RFC model. As shown
in Figures 2A–D, the RFC risk model contained 3 clinical factors
(BMI, waist-hip ratio, and WC), and the validated AUC for
diabetes development prediction was 55.79% (95% CI: 49.38-
62.19%). Recent studies have shown TyG index in comparison
with fasting plasma glucose improved diabetes prediction in
patients with normal fasting glucose (14), so it was also
analyzed as a conventional risk index. To further explore
whether other 5 conventional risk indexes (such as DBP, SBP,
TG, LDL and TyG index) could improve the prediction
capability of diabetes progress, and new RFC model with
aforementioned 8 clinical indexes (BMI, waist-hip ratio, WC,
DBP, SBP, TG, LDL and TyG index) was established which
showed a better prediction performance with AUC of 71.87%
(62.79%-80.94%) (Figures 2E, F).
TABLE 1 | The characteristics of Pre-diabetes and matched control at baseline.

Variables Pre-Diabetes Group# (Baseline ) Pre-Diabetes Matched Control Group (Baseline ) p.value*

Age 56 ± 7 56 ± 7 0.79
Gender (male/female) 49/104 46/114 0.61
BMI 24.2 ± 2.8 24.4 ± 2.7 0.50
SBP 129 ± 14 129 ± 14 0.87
DBP 76 ± 9 78 ± 10 0.16
WC 83 ± 8 84 ± 8 0.76
HC 95 ± 7 96 ± 6 0.24
Waist-hip ratio 0.88 ± 0.06 0.87 ± 0.06 0.44
HR 82 ± 11 81 ± 11 0.98
HDL-C (mmol/L) 1.22 ± 0.36 1.24 ± 0.33 0.97
LDL-C (mmol/L) 3.11 ± 0.94 3.11 ± 0.92 0.81
TC (mmol/L) 5.21 ± 1.26 5.16 ± 1.23 0.50
TG (mmol/L) 2.06 ± 1.90 1.84 ± 1.26 0.73
ALT (U/L) 16 ± 9 16 ± 10 0.70
AST (U/L) 19 ± 7 19 ± 7 0.50
GGT (mg/dL) 28 ± 18 26 ± 21 0.11
Glu0 (mmol/L) 5.75 ± 0.64 5.63 ± 0.61 0.09
Glu120 (mmol/L) 9.19 ± 1.16 8.73 ± 1.21 <0.001
HbA1c (%) 5.97 ± 0.35 5.89 ± 0.35 0.02
Urine-ALB 8.90 ± 10.39 7.81 ± 9.39 0.03
January 2022 | Volume 12 | Articl
# mean ± SD or number of individuals (%). *P. value was calculated by the two-tailed Wilcoxon rank-sum tests (continuous variables) or chi-square tests (discontinuous variables). BMI,
Body Mass Index; SBP, Systolic blood pressure; DBP, Diastolic blood pressure; WC, Waist circumference; HC, hip circumference; HR, Heart Rate; HDL-C, High-density lipoprotein
cholesterol; LDL-C, Low-density lipoprotein cholesterol; TC, Total cholesterol; TG, Triglyceride; ALT, Alanine aminotransferase; AST, Aspartate aminotransferase; GGT, G-
glutamyltransferase; Glu0, fasting plasma glucose; Glu120, 2-h blood glucose. Urine-ALB, urine albumin.
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The predictive performance of metabolites for diabetes
development prediction was also examined using the same
numbers of random selected subjects as the training and
validation datasets. As illustrated in Figures 2G–J and Table 2,
a model containing 13 features was successfully generated; the
model exhibited an AUC of 95.68% (95% CI: 92.61-98.75%) for
diabetes development prediction (Figure 2H). The risk
probability of all subjects was estimated, and subjects with
diabetes and prediabetes in the validation sets could be more
broadly separated than clinical indexes (Figure 2I).

To investigate whether the identified metabolites improved
diabetes risk prediction, the same numbers of random selected
subjects as the training and validation sets were used to construct
a risk prediction model of diabetes by combination of the 8
clinical indexes, and 13 metabolites selected above. The AUC of
the new combinational model was 98.10% (95% CI: 96.29-
99.91%) (Figure 2K). As shown in Figure 2L, the combination
risk prediction model provided an increased predictive value
comparing to the metabolites panel alone, or the clinical features
model alone. Together, these results indicated that the
metabolome profile was regulated in a complex manner during
development from prediabetes to diabetes.
Frontiers in Endocrinology | www.frontiersin.org 5
DISCUSSION

In this prospective investigation using an untargeted high-
resolution metabolomics approach, we detected alterations in
serum metabolites preceding the onset of diabetes from
prediabetes by about 5 years. In addition, we identified
metabolites that were associated with risk of diabetes, and
improved the ability to predict the development of diabetes
beyond that using routine clinical risk factors. Prior
metabolomics studies have focused on a mixture of individuals
with normoglycemia and prevalent dysglycemia (21–23),
whereas the current study is novel in the respect that the
participants had baseline prediabetes and turned to T2D.

To identify metabolites that were altered between participants
with prediabetes and those with T2D, we performed non-
targeted serum metabolomics profiling of baseline prediabetes
and follow-up T2D groups in order to reduce noise due to inter-
individual variability. The significant metabolic signatures
identified in this study can be broadly classified into those
associated with amino acid metabolism, especially aromatic
amino acids, and lipid metabolism. Prior studies have reported
increased circulating levels of branch-chain amino acids
A B

DC

FIGURE 1 | (A) Overview of workflow in this study. (B) Heatmap of 101 significant metabolites. Amino acid and lipids showed obvious differences between
prediabetes group and diabetes group from the results of metabolites abundance heatmap. (C) Metabolomic pathway analysis highlighted the potential importance
of distinct pathways that were represented by metabolites associated with diabetes. Each bubble present one pathway. The color and size of each circle was based
on P values and pathway impact values, respectively. (D) The OR per standard deviation increment and 95% CI estimation for the association between each novel
metabolite and increased diabetes risk. ORs and 95% CIs of diabetes for the comparison between highest versus lowest tertile of clinical parameters and
metabolites were adjusted for confounding factors (BMI, Age, WC, Waist–hip ratio, urine ALB, HDL-C, LDL-C, TC, GGT, Glu0, Glu120, HbA1C) discriminating
prediabetes group from diabetes group by multi-logistic regression analysis. Red star indicated selected biomarkers by RFC model, blue stars indicated conventional
diabetes diagnosis factors.
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(BCAAs) and aromatic amino acids are associated with insulin
resistance (2, 24) and diabetes (25, 26). In the current study, the
amino acids phenylalanine and tyrosine were down-regulated in
diabetes group compared with the prediabetes group. Besides,
Frontiers in Endocrinology | www.frontiersin.org 6
the BCAA valine (VIP value=0.78, Q-value=5.04E-18, fold-
change (diabetes/prediabetes) =1.26) was up-regulated and
isoleucine (VIP value=0.29, Q-value=0.001, fold-change
(diabetes/prediabetes) =0.94) was down-regulated in diabetes
A B

D E F

G IH

J K L

C

FIGURE 2 | Random forest classification (RFC) model based on clinical parameters (A-F), metabolites (G-J) and potential biomarkers panel discovery and evaluation (K, L).
(A, G) Distribution of 5 trials of 10-fold cross-validation error in random forest classifiers. The model was trained with clinical factors in the training set (prediabetes group,
n=91; diabetes group, n=91). The black solid curve showed the average of the 5 trials (dash lines). The red line indicated the number of picked features in the optimal set.
(B, E, H, K) Receiver Operating Characteristic curve (ROC curve) and area under the ROC curve of 3 selected clinical indexes (B), 3 selected clinical indexes and 5
conventional prediction indexes (DBP, SBP, TG, LDL and TyG index) (E), 13 selected metabolites (H), 13 selected metabolites and 8 clinical indexes (K) for the test set with
prediabetes subjects (n=62) and diabetes subjects (n=62). (C, F, I, L) Box-and-whisker plot presents the risk probability of developing diabetes among the training datasets
(prediabetes group, n=91; diabetes group, n=91), validation datasets 1 (prediabetes group, n=62; diabetes group, n=62), validation datasets 2 (pre-diabetes matched
control, n=160) according to the RFC model, Age was additionally added to predict validation datasets 2. (D, J) The importance of clinical variables and metabolites
variables. The red color indicated selected clinical indexes and the blue color indicated selected optimal metabolites panel.
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group based on the univariate statistics. On the other hand,
phenylalanylphenylalanine, which is reported to be positively
associated with pancreatic ductal adenocarcinoma (27), was
significantly up-regulated in diabetes group and associated
with an increased risk of diabetes.

In insulin-resistant states, the body aims to compensate for
decreased peripheral tissue glucose uptake through increased
pancreatic insulin secretion (28). Phenylalanine, which is
positively associated with insulin secretion, may be involved
compensation pathways in the early stages of insulin resistance
via the stimulation of insulin secretion. Once the ability for
compensated insulin secretion is reached, there is progression to
overt diabetes. Our findings of early metabolite changes in the
progression of prediabetes into diabetes are consistent with a
recent Mendelian randomization analysis, that reported that
elevations in amino acid levels occur after the development of
insulin resistance (29). Aromatic amino acids may be potential
markers for dysglycemic states; the precise role and function of
the amino acids with respect to diabetes have yet to be identified.
Although previous observational studies have reported
associations of circulating aromatic amino acids with adverse
events in non-diabetic persons, the present report for the first
time has identified increased circulating levels of certain amino
acids are associated with an increased risk of prediabetes
progressing to diabetes. Interestingly, other metabolites such as
BCCAs which were associated with diabetes incidence in
previous studies were not prioritized by our selection
Frontiers in Endocrinology | www.frontiersin.org 7
algorithm; however, this finding is consistent with the results
of a metabolomics study of American Indians (30). It is possible
that the unique characteristics of the Chinese population, e.g.,
genetic background and lifestyle, could result in a unique
population-specific metabolomics signature.

In this study we identified 13 metabolites, 3 up-regulated and
10 down-regulated, that independently predicted the progression
from prediabetes to T2D. It is noteworthy that inosine, carvacrol,
and carnitine were all associated with increased risk of
developing diabetes from prediabetes, and the associations
were independent of classical risk factors. Inosine, a naturally
occurring purine, was long considered to be an inactive
metabolite of adenosine. However, recent studies have shown
that inosine has immunomodulatory and anti-inflammatory
properties in vitro and in vivo (31). Inosine is a potent
stimulator of insulin secretion from isolated mouse islet cells
(32), but its relation with diabetes development in humans
remains unknown. Carvacrol is a predominant constituent of
essential oils and has well-known antioxidant, antimicrobial,
antifungal, and anti-inflammatory properties (33, 34), and
exerted an anti-hyperglycemic effect in STZ-induced diabetic
mice and a protective role in diabetes-induced aortic
hypercontractility (35, 36). In the present study, the OR
associated with metabolites and clinical factors for the risk of
diabetes after adjustment for confounding factors are analyzed.
The OR of carvacrol was 17.63 (95% CI: 4.98-62.34), which was
considered as complementary to glucose in improving diabetes
TABLE 2 | 13 features discriminating diabetes patients from prediabetes subjects selected with Random Forest model.

Name mz RT(min)* ppm Ion FORMULA Super_class VIP§ Foldchange
(T2D/

Prediabetes)

P value q value‡

Inosine(-) 267.07 2.26 0.56 H- C10H12N4O5 Nucleosides, Nucleotides, and
Analogues

2.36 4.29 6.44E-
23

3.89E-22

PC(P-17:0/0:0)(+) 494.36 7.54 3.59 H+ C25H52NO6P Lipids 3.03 0.13 7.98E-
25

1.42E-23

PC(O-16:0/3:1(2E))(+) 536.37 7.49 3.75 H+ C27H54NO7P Lipids 1.86 0.48 5.60E-
24

5.27E-23

Carvacrol(-) 149.10 5.95 0.88 H- C10H14O others 1.33 1.66 8.09E-
23

4.70E-22

PC(O-16:0/O-1:0)(+) 496.37 7.57 3.11 H+ C25H54NO6P Lipids 3.19 0.11 8.43E-
25

1.46E-23

PC(O-18:0/O-2:1(1E))(+) 536.41 8.22 3.85 H+ C28H58NO6P Lipids 3.21 0.10 7.40E-
26

6.53E-24

LysoPC(20:1(11Z))(+) 550.38 7.87 3.44 H+ C28H56NO7P Lipids 1.79 0.43 1.12E-
25

7.07E-24

Phe Phe(+) 313.15 3.72 3.30 H+ C18H20N2O3 Amino Acids, Peptides, and
Analogues

2.80 3.03 3.30E-
21

1.24E-20

PE(P-16:0e/0:0)(-) 436.28 7.11 0.13 H- C21H44NO6P Lipids 2.36 0.22 3.37E-
24

3.58E-23

PE(O-18:1(9Z)/0:0)(-) 464.31 7.84 0.14 H- C23H48NO6P Lipids 2.36 0.22 2.97E-
24

3.27E-23

LysoPC(P-16:0)(+) 480.34 7.17 3.26 H+ C24H50NO6P Lipids 2.31 0.24 7.40E-
26

6.53E-24

1-Palmitoyl Lysophosphatidic
Acid(-)

409.24 6.07 0.02 H- C19H39O7P Lipids 2.57 0.15 7.14E-
25

1.34E-23

L-Histidine(-) 154.06 0.58 0.27 H- C6H9N3O2 Amino Acids, Peptides, and
Analogues

1.62 0.41 1.42E-
22

7.56E-22
J
anuary
 2022 | Volume
 12 | Artic
*Retention time. §VIP (Variable Importance for Projection),one indicator reflecting the capability of the variables to explain Y. ‡Adjusted p.value calculated by the paired two-tailed Wilcoxon
rank-sum tests after false discovery rate correction.
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forewarning, However, the role of carvacrol in the progression
from prediabetes to diabetes in human remained unknown.
Amino acid derivative carnitine is primarily synthesized in the
liver in its L-form from lysine and methionine, and transported
via the bloodstream to cardiac and skeletal muscle. It is required
for mitochondrial fatty acid b-oxidation and the transport of
long-chain fatty acids across the inner membrane of the
mitochondria, in the form of acyl-carnitine, where they can be
metabolized for energy. Carnitine has been used in a number of
human studies alone or as part of a combination therapy (37, 38).
However, a recent study indicated that dietary L-carnitine could
be converted into the atherosclerosis- and thrombosis-
promoting metabolite trimethylamine N-oxide via sequential
gut microbiota–dependent transformations (39). While the 3
metabolites have been well-studied, the mechanisms by which
the affect diabetes risk is not clear. Maybe the increased
metabolites that occurs at the stage of diabetes is not part of
the pathogenic mechanism that induces or maintains the disease.
They only represent a kind of protective mechanism associated
with recovery from the abnormal glucose metabolism in body.
Future investigations are warranted to better understand the
effects of these metabolites, and their relations with diabetes risk.

An important finding of this study is that the combination of
the identified metabolites can predict the development of T2D
from prediabetes better than using conventional risk factors. The
AUC of 8 conventional clinical risk factors for predicting the
development of T2D from prediabetes was only 0.72, which is
lower than reported in other recent studies of normoglycemic
individuals (40). A possible explanation might be related to the
study population: in persons with prediabetes the predictive
value of traditional T2D risk factors may not be as strong as in
persons who are normoglycemic. A model that combined 13
metabolomics signatures and 8 traditional risk factors exhibited
an AUC of 0.98 for predicting the development of diabetes from
prediabetes. It is noteworthy that we observed significant
associations between long chain-phospholipids and diabetes
risk; long chain-phospholipids were found to be predictive of
diabetes in the prospective Framingham Offspring cohort and
the Malmö Diet and Cancer study (24). Similar observations
have recently been reported with respect to the fatty acid
compositions of triglycerides (41), suggesting that lipids with a
shorter chain length may trigger development of diabetes,
whereas those containing longer chains may offer protection.

In comparing of persons with prediabetes and those with T2D,
we observed a significant reduction of lysophosphatidylcholine
(LysoPC) species in diabetes patients, including LysoPC (20:1
(11Z)) and LysoPC (P-16:0), which were selected by the diabetes
prediction model. LysoPC is an important signaling molecule and
fatty acid carrier, and accounts for 5–20% of total plasma
phospholipids. Alterations in LysoPC species have been widely
studied in relation to diabetes and obesity. A large cross-sectional
study reported significantly lower levels of several LysoPC species
in patients with impaired glucose tolerance and diabetes (42). In
vivo and in vitro studies have reported that LysoPC species
enhance glucose-dependent insulin secretion via G-protein-
coupled receptor G119 (43).
Frontiers in Endocrinology | www.frontiersin.org 8
There are some limitations to this study that should be
considered. First, because all of the participants were Chinese,
the conclusions may not be generalizable to other ethnicities.
Second, it is possible that certain unstable metabolites will
degrade during sample collection, storage, and processing;
however, all samples were collected according to a standardized
protocol and stored at -80°C. Plasma metabolites detected by
UPLC-QTOF-MS have been shown to be stable over a period of
13-17 years when stored at -80°C. Thus, we do not believe that
sample handling or storage had any marked effect on the study
results. Third, we acknowledge that the results of our population-
based analysis should be interpreted with caution since some
unmeasured factors (e.g. changes in lifestyle factors, pre-clinical
treatments or other diseased states over time) might have
influenced our findings. Lastly, insulin level data were not
available; thus, insulin resistance and insulin sensitivity could
not be evaluated. In recent studies, TyG index was identified as a
risk marker of insulin resistance, so we used TyG index as a
conventional factor for diabetes prediction in prediabetes
patients (44).

In conclusion, this study identified a discrete set of
metabolites associated with an increased risk of prediabetic
persons developing T2D. Changes in these metabolites
preceded the onset of overt diabetes, and in clinical practice
may help to identify individuals with prediabetes who are at
increased risk of progressing to overt diabetes.
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