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Polycystic ovary syndrome (PCOS) is a complex reproductive, endocrine, and metabolic
disorder in reproductive-age women. In order to explore the active metabolites of brown
adipose tissue (BAT) transplantation in improving the reproductive and metabolic
phenotypes in a PCOS rat model, the metabolites in the recipient’s BAT were explored
using the liquid chromatography–mass spectrometry technique. In total, 9 upregulated
and 13 downregulated metabolites were identified. They were roughly categorized into 12
distinct classes, mainly including glycerophosphoinositols, glycerophosphocholines, and
sphingolipids. Ingenuity pathway analysis predicted that these differentially metabolites
mainly target the PI3K/AKT, MAPK, and Wnt signaling pathways, which are closely
associated with PCOS. Furthermore, one of these differential metabolites, sphingosine
belonging to sphingolipids, was randomly selected for further experiments on a human
granulosa-like tumor cell line (KGN). It significantly accelerated the apoptosis of KGN cells
induced by dihydrotestosterone. Based on these findings, we speculated that
metabolome changes are an important process for BAT transplantation in improving
PCOS. It might be a novel therapeutic target for PCOS treatment.

Keywords: brown adipose tissue, metabolites, LC-MS, sphingosine, PCOS
INTRODUCTION

Polycystic ovary syndrome (PCOS) is one of the most common endocrine diseases in reproductive-
age women. Its prevalence varies from 9% to 18%, depending on different diagnostic criteria and
ethnicity (1, 2). It is manifested as oligo-anovulation, hyperandrogenemia, and metabolic
complications (3), accompanied with higher risks of type 2 diabetes mellitus and cardiovascular
diseases (4). Lifestyle changes, including dietary modifications and exercise, are highly
recommended as the first step of treatment. Medication alone cannot effectively treat the
reproductive and metabolic symptoms of PCOS at the same time. For instance, metformin has
been used to mainly ameliorate the metabolic manifestations of PCOS (5). Combined oral
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https://www.frontiersin.org/articles/10.3389/fendo.2021.747944/full
https://www.frontiersin.org/articles/10.3389/fendo.2021.747944/full
https://www.frontiersin.org/articles/10.3389/fendo.2021.747944/full
https://www.frontiersin.org/articles/10.3389/fendo.2021.747944/full
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:slw4130@shtrhospital.com
mailto:siliangxu2015@njmu.edu.cn
https://doi.org/10.3389/fendo.2021.747944
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2021.747944
https://www.frontiersin.org/journals/endocrinology
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2021.747944&domain=pdf&date_stamp=2021-11-29


Yao et al. BAT Ameliorates PCOS-Involved Metabolome
contraceptive pills have been the main treatment for PCOS
patients for decades, with the disadvantages of a high risk of
thrombosis and blood pressure anomalies (6, 7). To date, there
is still a lack of effective treatment, whether a combination
of lifestyle and medication interventions or alone, for PCOS
ameliorating both reproductive and metabolic symptoms at the
same time. Thus, it is necessary to explore novel therapies
for PCOS.

Emerging evidence indicates that brown adipose tissue (BAT)
transplantation plays a role in improving both the reproductive
and metabolic phenotypes in PCOS animal models (8, 9).
Interestingly, several studies suggest that BAT plays an
endocrine role by secreting brown adipokines, such as growth
and differentiation factor 15 and fibroblast growth factor 21 (9,
10). These brown adipokines could protect beta cell function,
improve insulin sensitivity, and mediate the metabolic effects in
obese mice (11, 12). Brown adipokines have been considered as
candidate agents for therapeutic interventions in diverse
metabolic diseases (10, 13, 14). In humans, classic BAT is
abundant in newborns (15), which makes it difficult to study
its effect on PCOS in adults. BAT is also abundant in small
rodents. The identification of major brown adipokines and the
characterization of their effects in animal models of PCOS are
extremely important for the discovery of potential targets
in PCOS.

Metabolomics has been redefined as the technology for
discovering active factors of biological and pathological
processes (16). Metabolomics can be harnessed to identify the
metabolites that act as regulators of biological processes (17, 18),
providing novel insights into the active role of metabolites in
physiology and diseases. For example, phospholipids,
sphingolipids, and methionine can act as regulators of insulin
sensitivity and metabolism (19). Some metabolites, such as
amino acids and sphingolipids, have also been regarded as
biomarkers for the diagnosis of PCOS (20, 21). In addition, the
metabolic disorder of arginine and proline may participate in the
occurrence and development of PCOS (20), suggesting the roles
of active metabolites in this disorder. However, the underlying
mechanism of metabolites in PCOS remains unknown.

In this study, the protective effects of BAT transplantation on
ovarian functions and metabolic disorders were investigated in
a dehydroepiandrosterone (DHEA)-induced PCOS rat model.
Non-targeted metabolomics were carried out to investigate the
association between metabolites and BAT transplantation. The
present study might provide a novel insight into the potential
therapeutic effects andmechanistic actions of BAT transplantation
in PCOS.
MATERIALS AND METHODS

Establishment of DHEA-Induced
PCOS Rat Model
All rat studies were approved by the Ethics Committee of Animal
Experiments at Shanghai Tongren Hospital, Shanghai Jiao Tong
Frontiers in Endocrinology | www.frontiersin.org 2
University School of Medicine. The 21-day-old female Sprague–
Dawley (SD) rats were purchased from China Three Gorges
University Laboratory Animal Center, and all rats were allowed
to adapt to the environment for 1 week. All rats were randomly
divided into two groups: a control group (Ctrl) and a DHEA-
induced PCOS model group (DHEA). Rats in the DHEA group
were treated daily with a subcutaneous injection of DHEA (cat.
no. SJ-HS0488, XXJL) for 21 days (6 mg/100 g bodyweight,
dissolved in oil). The Ctrl group was injected with the same
amount of oil. The successful PCOS model was determined by a
significantly increased anti-Müllerian hormone (AMH) and
luteinizing hormone/follicle-stimulating hormone (LH/FSH)
ratio (8, 22, 23) and disordered estrous cycles. To verify the
successful PCOS-like model, we randomly chose 5 control rats
and 10 DHEA rats to test the levels of LH, FSH, and AMH. The
estrous cycles were monitored for 10 days with a vaginal smear
from day 11 to day 21 after DHEA or oil injection. In addition,
two PCOS model rats and two control rats were randomly
sacrificed to observe the ovarian morphology using
hematoxylin and eosin (H&E) staining.

Brown Adipose Tissue Transplantation
and the Estrous Cycle Assessment
The PCOS model rats were randomly divided into two
groups: a sham-operated (DHEA+Sham) group and a
BAT transplantation (DHEA+BAT) group. Donor rats within
14 days after birth were operated on to take BAT (0.5 g of
scapula), the peripheral white fat removed, and washed with
sterile phosphate-buffered saline (PBS) at the same time. The
recipient rats were intraperitoneally anesthetized. BAT was
subcutaneously transplanted into the back of the recipient. For
the DHEA+Sham group, the same procedure was used, except
receiving donor tissues. These rats were kept for 3 weeks after
operation. After 11 days of operation, the stages of the estrus
cycle were determined by vaginal smear for consecutive 10 days.
Finally, the rats were sacrificed to collect the BAT and ovarian
tissues for further study (H&E staining, immunohistochemistry,
and detection of metabolites).

Sample Preparation
Approximately 50 mg of BAT was added into 0.5 ml of solvent
(methanol/water = 8:2), containing 4 µg/ml 2-chloro-L-
phenylalanine as an internal standard, and then ground,
ultrasonicated at room temperature (25–28°C) for 10 min, and
finally stored at −20°C for 30 min. After centrifugation at 13,000
rpm at 4°C for 10 min, 200 µl of the supernatant was taken for
subsequent metabolomics analysis. Ten microliters of the
supernatant from all samples was saved and mixed for
quality control.

Immunohistochemistry of Paraffin Section
The BAT and ovaries were fixed in 4% formaldehyde and
embedded in paraffin; slices of 5 mm thickness were sectioned.
After deparaffinization and rehydration, the sections were
processed for blocking of endogenous peroxidase activity and
antigen retrieval pretreatment, followed by blocking in 5% bovine
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serum albumin at room temperature for 20 min. The sections were
then incubated overnight at 4°C with primary rabbit polyclonal
uncoupling protein 1 (UCP1) antibodies (1:300, RRID: 72298; Cell
Signaling Technology, Danvers, MA, USA). The second antibody
was incubated for 30 min after washing three times with PBS. The
signals were visualized with DAB incubation. Images were taken
with the Digital Pathology Slide Scanner (KF-PRO-120, Ningbo
Jiangfeng Medical Technology).

Glucose Tolerance Test and Insulin
Tolerance Test
The rats were fasted for 16 h (1700–0900 hours) with free access
to drinking water and then injected intraperitoneally with D-
glucose (2.0 g/kg body weight) for glucose tolerance test (GTT).
Blood glucose levels were measured before the injection and at
15, 30, 60, 90, and 120 min after injection using an Accu-Chek
glucose monitor (Roche Diagnostics Corp., Indianapolis, IN,
USA). Female rats were fasted for 4 h (0900–1300 hours), with
free access to drinking water, and injected intraperitoneally with
insulin (1 U/kg body weight; Humulus; Eli Lilly, Indianapolis,
IN, USA) for the insulin tolerance test (ITT). Blood glucose levels
were measured before the injection and at 15, 30, 60, 90, and 120
min after insulin injection.

Detection of Metabolic Profiling by LC-MS
Ultra-performance liquid chromatography (Ultimate 3000)
combined with the Thermo Orbitrap Elite Mass Spectrometer
was used for liquid chromatography–mass spectrometry (LC-
MS) analysis. The flow rate was set to 0.4 ml/min with mobile
phase A of 0.1% formic acid solution and mobile phase B of
acetonitrile (0.1% formic acid). The column temperature was
25°C. Post time was set to 5 min to balance the system. MS uses
the positive ion mode combined with the negative ion mode.

Data Analysis
The Compound Discoverer software (Thermo Scientific, San Jose,
CA, USA) was used to analyze the data. Post-editing was performed
in EXCEL 2007 software. In order to obtain consistent differential
variables, the resulting matrix was further optimized by removing
all peaks with ion intensity = 0 in more than 80% of the samples.
The data were normalized to the peak area of the corresponding
internal standard, and the internal standard was used for
reproducibility. Finally, the ion peaks generated by the internal
standard were eliminated. Then, the edited data matrix was
imported into Simca-P software (version 11.0). Before the
multivariate statistical analysis, the data were mean centered and
Pareto scaled. Principal component analysis (PCA) and partial least
squares discriminant analysis (PLS-DA) were conducted to analyze
the dissimilarity tendency among groups. Variable importance in
projection (VIP) >1.0 and p-values <0.05 were selected as
statistically significant according to the PLS-DA model. The
Kyoto Encyclopedia of Genes and Genomes (KEGG) online
database pathway enrichment analysis and ingenuity pathway
analysis (IPA) were applied to understand the functions and
interactions of the genes and metabolites in biological systems.
Frontiers in Endocrinology | www.frontiersin.org 3
Cell Culture
The steroidogenic human granulosa cell-like tumor cell line
(KGN) was maintained in Dulbecco’s modified Eagle’s
medium (DMEM)/F12 supplemented with 10% fetal bovine
serum (FBS) (both from Gibco, Amarillo, TX, USA), 100 U/ml
penicillin, and 100 mg/ml streptomycin in a humidified
atmosphere at 37°C with 5% CO2. The growth medium was
changed every 2–3 days.

Apoptosis Analysis
Apoptosis was detected using an annexin V-FITC apoptosis
detection kit (RRID: 556547; BD, Franklin Lakes, NJ, USA).
KGN cells were seeded into six-well plates (3 × 105 cells per well)
and starved for 4 h in FBS-free medium. After stimulation with
dihydrotestosterone (DHT) (Solarbio, Beijing, China) for 4 h,
sphingosine was added (10 mm). The cells were detached using
trypsin, washed with cold PBS twice, and then each well was
incubated with 5 ml annexin V-FITC and 5 ml propidium iodide
(PI) at room temperature for 15 min in the dark. Cells were
detected by flow cytometry.

Statistical Analysis
All the results were presented as the mean ± standard error of the
mean (SEM). Univariate analysis of variance (ANOVA, with
post-hoc Scheffe test) was applied to determine the significance of
the observed differences among the Ctrl, DHEA+Sham, and
DHEA+BAT groups using SPSS 26 for Windows (IBM,
Armonk, NY, USA), whereas two groups were compared using
unpaired Student’s t-test in the Ctrl and DHEA groups.
GraphPad Prism 9.0 was used for other data analyses. A
p < 0.05 was considered statistically significant.
RESULTS

BAT Transplantation in PCOS Model Rat
In order to determine the active adipokines of BAT related to
PCOS, BAT transplantation in PCOS model rats was established.
The experiment design is illustrated in Figure 1A. The PCOS
model validation, estrous cycle monitoring, and PCOS-like
phenotype observation were conducted in the scheme.

PCOS is always accompanied by altered plasma gonadotropin
concentrations. The levels of LH, FSH, and AMH were tested to
verify whether the PCOS model was a success. Compared with
those in the Ctrl group, the concentrations of LH, FSH, and
AMH and the LH/FSH ratio were significantly higher in the
DHEA group (Figure 1B). The vaginal smear results of the rats
showed disordered estrous cycles in the DHEA group
(Figure 1C). Two PCOS model rats and two control rats were
randomly sacrificed for H&E staining. H&E staining was
performed to determine the alteration of ovarian pathology. In
the DHEA group, multiple cystic follicles appeared with thinner
granulosa cell layers, which were vacuolated and disordered in
structure with corpus luteus (Figure 1D).
November 2021 | Volume 12 | Article 747944
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A

B

D E

C

FIGURE 1 | BAT transplantation in a PCOS rat model. (A) Scheme of the group assignments and timeline of the experiment process (n = 24). Female SD rats were
treated with DHEA for 21 days to construct the PCOS model. BAT transplantation or sham operation was performed on day 21. Donor rats, within 14 days after
birth, were operated on to take BAT and then BAT was transplanted to PCOS model rats. The estrous cycles were checked daily for the following 10 days.
Reproductive and metabolism phenotype detection was done on day 42. (B) Serum concentrations of FSH, LH, and AMH, as well as the LH/FSH ratio (5 control
rats and 10 DHEA rats). (C). Disordered estrous cycles were observed in PCOS rats. (D) H&E staining of the ovarian tissues from the Ctrl and DHEA+Sham groups
(scale bar, 1 mm). Ovarian histology revealed that cystic follicles (arrow) and a few corpora lutea (asterisk) appeared in the DHEA group compared with the Ctrl
group. (E) UCP1 was identified by immunohistochemistry in the donor BAT (scale bar, 100 µm). PCOS, polycystic ovary syndrome; BAT, brown adipose tissue; SD,
Sprague–Dawley; DHEA, dehydroepiandrosterone; FSH, follicle-stimulating hormone; H&E, hematoxylin and eosin; LH, luteinizing hormone; AMH, anti-Müllerian
hormone; UCP1, uncoupling protein 1; D, diestrus; E, estrus; M, metestrus; P, proestrus. Data were analyzed using unpaired Student’s t-test. *p < 0.05, **p < 0.01,
***p < 0.001.
Frontiers in Endocrinology | www.frontiersin.org November 2021 | Volume 12 | Article 7479444
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UCP1 is the critical regulator of thermogenesis, as a specific
marker of BAT (24). The BAT of donor rats transplanted to rats in
the DHEA+BAT group was verified by immunohistochemistry
(Figure 1E). The results of UCP1 immunohistochemistry
indicated that the transplanted tissues were BAT. The results
mean the successful establishment of BAT transplantation in
PCOS model rats.

Effect of BAT Transplantation on
the Follicular Development
in the PCOS Model
Irregular menstruation is one of the diagnostic criteria of PCOS.
To explore whether BAT transplantation could recover the
ovarian performance of PCOS rats, vaginal smear was
performed to observe the effect of BAT transplantation on the
estrous cycle in PCOS model rats (Figure 2A). In our study, we
found that the Ctrl group had an ordered and complete estrous
cycle, whereas a disordered estrous cycle manifested in the
DHEA+Sham group. BAT transplantation rescued the
phenotype of disordered estrous cycles in PCOS rats.
Compared with the DHEA+Sham group, follicles of different
stages and multiple luteal bodies reappeared with BAT
transplantation (Figure 2B). Together, these results indicate
that BAT transplantation can improve the ovarian performance
of PCOS model rats.

Effect of BAT Transplantation on
Metabolic Characterization in
the PCOS Model
Water and food were sufficiently provided for ad libitum intake.
All rats were weighed every week, for a total of 6 weeks. The
results showed that the mean weight of the DHEA group had
significantly decreased compared to that of the Ctrl group on
days 7, 14, and 21 before BAT transplantation (Figure 3A). The
PCOS model rats were randomly divided into two groups on day
21: a DHEA+Sham group and a DHEA+BAT group. We
compared the effects of BAT transplantation on the mean
weight of PCOS model rats, and it was found that the mean
weights of rats in the DHEA+BAT group increased compared
with those in the DHEA+Sham group on days 28, 35, and
42. However, a significant difference was only observed on
day 35 when comparing the DHEA+Sham group and the
DHEA+BAT group.

PCOS is also caused by a metabolic disorder, which is
characterized by impaired glucose tolerance and insulin
tolerance. The GTT was performed on day 39 and the ITT
performed on day 42 to observe the metabolic changes. The GTT
results showed a delayed glucose clearance in the DHEA+Sham
group, and BAT transplantation partially reversed it (Figure 3B).
For the ITT, the DHEA+Sham group had higher glucose levels
(Figure 3C). In addition, the UCP1 levels decreased in the
DHEA+Sham group and were recovered in the DHEA+BAT
group (Figure 3D). These results indicate that BAT transplantation
ameliorates insulin resistance and corrects the metabolic
abnormality in PCOS model rats.
Frontiers in Endocrinology | www.frontiersin.org 5
The Differential Changes in Metabolomics
Resulting From BAT Transplantation
BAT transplantation could activate the recipient’s BAT function;
thus, there are metabolic differences between the DHEA+Sham
and DHEA+BAT groups. In order to identify the active
metabolites of the recipient’s BAT, a series of multivariate
variable pattern recognition analyses were carried out using LC-
MS. Firstly, PCA was established to determine the separation
tendency between the DHEA+Sham and DHEA+BAT groups
(Supplementary Figure S1). A two-component PCA model was
obtained with the following parameters: R2X = 0.506, Q2 = 0.284
(positive mode) and R2X = 0.517, Q2 = 0.364 (negative mode). To
further specify the metabolic variations associated with PCOS, a
supervised PLS-DA model was established with two predictive
components (positive mode: R2X = 0.424, R2Y = 0.925, Q2 =
0.312; negative mode: R2X = 0.467, R2Y = 0.925, Q2 = 0.607). As
shown in Figure 4A, a clear separation was obtained in the
scores plot, with all the DHEA+Sham in the left half and DHEA+
BAT in the right half. To further validate the established model,
a 200-time permutation test was performed for the PLS-DA
model. The Y-axis intercept for Q2 was below 0 [Q2 intercept
(0, −0.0521) (positive mode) and (0, −0.166) (negative mode)]
(Figure 4B). These results validate the current supervised
model. The PLS-DA results demonstrated significant metabolic
differences between the DHEA+Sham and DHEA+BAT groups.
Moreover, significant biochemical changes were induced by
BAT transplantation.

Enrichment Analysis on
Differential Metabolites
A total of 321 metabolites were identified in this study. Further
metabolomics analysis identified a total of 22 differential
metabolites (Table 1), including 9 upregulated and 13
downregulated metabolites, when comparing the DHEA+BAT
group with the DHEA+Sham group. The differential metabolites
with VIP > 1 and p < 0.05 were clustered and shown as a heatmap
between the DHEA+Sham and DHEA+BAT groups (Figure 5A).
The results were visualized in a volcano plot of all metabolites, as
shown in Figure 5B. KEGG pathway enrichment analysis of the
differential metabolites showed their connection with the
adipocytokine signaling pathway, insulin resistance, etc.
(Figure 5C). Important analysis of the metabolic pathways in
the bubble diagram showed that the differential metabolites were
associated with amino acid metabolism, glycerophospholipid
metabolism, and pyruvate metabolism (Figure 5D).

Downstream Analysis of the Differential
Metabolites by Ingenuity Pathway Analysis
The differential metabolites were roughly categorized into 12
distinct classes, mainly including glycerophosphoinositols,
glycerophosphocholines, and sphingolipids (Figure 6A). IPA
of the differential metabolites revealed several related signaling
pathways, such as the PI3K/AKT, MAPK, and Wnt signaling
pathways, which have been proven to be closely associated with
PCOS (25–27) (Figure 6B). These altered metabolites might
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explain the positive effect of BAT transplantation on PCOS
model rats.

Identification of Nine Differential
Metabolites After BAT Transplantation
The relative differences among the metabolite classes revealed
significant changes in the abundance of metabolites.
Glycerophosphoinositols, sphingolipids, aldehydes, and
amino acids were decreased (Figures 7A, B, D, E), while
glycerophosphocholines and peptides were increased in the
DHEA+BAT group (Figures 7C, F).
Frontiers in Endocrinology | www.frontiersin.org 6
The Effect of Sphingosine on the
Apoptosis of KGN Cells
To further explore the biological roles of metabolites, we randomly
chose the differential metabolite sphingosine. KGN cells were
pretreated with DHT to mimic the pathophysiological status of
PCOS. DHT has been confirmed to be capable of inducing rodent
models to exhibit similar reproductive and metabolic features to
PCOS patients (28) and has been used in KGN cells at a dosage of
25 nM to imitate the physiological characteristics of PCOS (29).
Our results showed that sphingosine significantly increased the
apoptosis of DHT-treated KGN cells (Figure 8).
A

B

FIGURE 2 | Brown adipose tissue (BAT) transplantation improved the reproductive phenotype of polycystic ovary syndrome (PCOS) model rats. (A) Disordered
estrous cycles were observed in the DHEA+Sham group, while BAT transplantation rescued the abnormal estrous cycles. (B) Representative results of ovarian H&E
staining of the control (Ctrl) group, DHEA+Sham group, and DHEA+BAT group. Ovarian histology revealed that cystic follicles (arrow) and a few corpora lutea
(asterisk) appeared in the DHEA+Sham group compared with the Ctrl group, while BAT transplantation reversed the phenotype caused by dehydroepiandrosterone
(DHEA). H&E, hematoxylin–eosin; D, diestrus; E, estrus; M, metestrus; P, proestrus; UCP1, uncoupling protein 1.
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DISCUSSION

In this study, we verified that BAT transplantation successfully
rescued the metabolic symptoms of PCOS model rats and
ameliorated the DHEA-induced ovarian dysfunction and
abnormal metabolism. Our study indicated that BAT
transplantation might have a protective effect on the
Frontiers in Endocrinology | www.frontiersin.org 7
metabolome remodeling of the recipient’s BAT in PCOS
rats. In addition, the differential metabolites were identified
by LC-MS, mainly including glycerophosphoinositols,
glycerophosphocholines, sphingolipids, and amino acids. The
IPA demonstrated that the metabolites were associated with the
PI3K/AKT, MAPK, and Wnt signaling pathways, which play
important roles in the pathogenesis of PCOS. Furthermore, we
A B

D

C

FIGURE 3 | Brown adipose tissue (BAT) transplantation partially corrected the metabolic abnormality of polycystic ovary syndrome (PCOS) model rats.
(A) Comparison of the mean weight among the control (Ctrl) group, the DHEA/DHEA+Sham group, and the DHEA+BAT group. (B, C) Results of the GTT (B) and
ITT (C) showed that insulin resistance was rescued by BAT transplantation in PCOS model rats. (D) UCP1 expression was reduced in the DHEA+Sham group and
was enhanced in the DHEA+BAT group. GTT, glucose tolerance test; ITT, insulin tolerance test; UCP1, uncoupling protein 1. Data were analyzed using one-way
ANOVA with post-hoc Scheffe test. *p < 0.05, **p < 0.01, ***p < 0.001, n.s., no significance.
A

B

FIGURE 4 | Score plot of the PLS-DA model. (A) Score plot of the PLS-DA model in the positive and the negative mode. (B) Permutation test of the PLS-DA model
in the positive and the negative mode. Green dots indicate R2 and blue dots indicate Q2. PLS-DA, partial least squares discriminant analysis.
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found that one of the metabolites, sphingosine, could enhance
the apoptosis of DHT-induced KGN cells, suggesting that altered
metabolites in the recipient’s BAT could affect the function of
granulosa cells. Our study provides new insights into the
therapeutic potential bioactive metabolites in PCOS treatment.

In our study, multiple cystic follicles with thinner granulosa
cell layer were observed in the DHEA group, which may be
related to the increased apoptosis of granulosa cells (30).
However, the level of AMH was higher in the DHEA group
compared with that in the Ctrl group. As a matter of fact, AMH is
known to be mainly produced by the granulosa cells of pre-antral
and antral follicles. Since increased numbers of small follicles in
the pre-antral and antral stages are observed in PCOS patients,
the level of AMH in PCOS patients is higher than that in women
with normal ovaries. Furthermore, individual granulosa cells
produce more AMH in PCOS by calculating the ratio of AMH
to antral follicle counts (31, 32). Consistently, in this study,
multiple cystic follicles were observed in the DHEA group, which
may produce more AMH by individual granulosa cells similar to
that in PCOS patients. In addition, it is likely that the apoptotic
granulosa cells belong to bigger follicles and that the smaller
follicles are preserved, which further result in more AMH
production in the DHEA group.

Although an impaired glucose regulation was observed in the
DHEA group, the body weight was also decreased unexpectedly
in our study. According to existing research, some studies
indicated that DHEA can increase the body weight, while other
studies showed that the DHEA group could have a tendency to
lose weight as well (33, 34). We speculated that it may be related
to the following aspects: 1) a low dose of DHEA could prevent
the development of obesity (35–37); 2) DHEA can reduce the
food intake of rodents (38); 3) experimental procedures such as
injection therapy or vaginal smears invisibly increase the amount
Frontiers in Endocrinology | www.frontiersin.org 8
of exercise. In addition, PCOS patients include the lean and
obese types, both of which are accompanied by impaired glucose
tolerance or insulin resistance. Although our PCOS model did
not show obesity, we observed impaired glucose regulation,
estrous cycle disturbance, and multiple cystic follicles, which
met the modeling standards of PCOS. However, this may be a
limitation of our study, and the underlying mechanism still needs
further exploration.

Several studies have revealed the reduced activity of BAT in
women with PCOS (39). BAT transplantation, a promising
therapeutic strategy, has been used to prolong the ovarian life
span in animal models (40). Besides, BAT transplantation was
applied for the treatment of metabolic diseases such as obesity
and cardiovascular disease (41, 42). Our results showed that BAT
transplantation could ameliorate the reproductive and metabolic
phenotype by the improving the metabolic function of the
recipient’s BAT in PCOS rats. BAT can act as an endocrine
organ to affect whole-body metabolism and release adipokines
that improve glucose metabolism (43). These indicate that BAT
transplantation may recover the ovarian function and metabolic
disorder by secreting bioactive adipokines in PCOS rats.

Metabolomics is a large-scale study that examines the
relationship between specific metabolites and diseases. Emerging
evidence indicates that metabolites play important roles and may
act as therapeutic tools in diverse diseases (16). We conducted the
metabolomics of the recipient’s BAT with LC-MS and identified
22 differential metabolites. They were mainly classified as the
glycerophospholipid family, the sphingolipid family, the amino
acid and peptide family, and the aldehyde family. The
glycerophospholipids, such as glycerophosphoinositols and
glycerophosphocholines, are the lipid components of cell
membranes that participate in a variety of indispensable
metabolic and intracellular signaling processes (44). Our results
TABLE 1 | Dysregulated metabolites between the DHEA+Sham and DHEA+BAT groups.

Class Name VIP p-value Fold change

Sphingolipids N-palmitoyl-D-erythro-sphingosine 1.32187 0.048360335 0.701984889
Dehydes Pyruvaldehyde 1.4637 0.002293146 0.641374704
Amino acids DL-b-Leucine 1.03371 0.011904801 0.257662834

L-Glutamine 1.38227 0.006913317 0.627002081
Cholic acid Taurocholic acid 1.03748 0.004480277 7.0752304
Fatty acyls 1-Linoleoyl glycerol 1.13363 0.008396951 1.889026271
Fatty esters Icosadienoic acid 1.23869 0.00649719 3.345072531
Glycerophosphocholines Lyso-PAF C-16 1.3197 0.03773069 1.525340715

PC(P-15:0/0:0) 1.09853 0.024659805 1.587064544
Glycerophosphoethanolamines LysoPE(0:0/22:4(7Z,10Z,13Z,16Z)) 1.474 0.005592236 1.897683421
Glycerophosphoinositols PI(18:0/22:5(4Z,7Z,10Z,13Z,16Z)) 1.20277 0.003526964 0.324269691

PI(18:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) 1.45847 0.013576691 0.315352317
PS(18:0/22:5(7Z,10Z,13Z,16Z,19Z)) 1.16498 0.003497396 0.585825926

Glycerophosphates beta-Glycerophosphoricacid 1.16314 0.004377947 0.502442175
Peptides Asp Ile Lys Arg 1.03604 0.030470895 1.509817996

Cys Gln Trp Trp 1.24675 0.002413147 2.344734335
Leu Asp 1.22868 0.047455033 4.396481329
Phe Phe Arg Arg 1.29797 0.000174435 1.620741001
Tyr Lys Val Glu Ile 1.26152 0.0108703 1.614132279

Phenylsulfates 4-Ethylphenylsulfate 1.66923 0.002512745 1.917318971
TCA D-(+)-Malic acid 1.14599 0.030182727 1.516545227
Unclassified Glc-GP(18:0/20:4(5Z,8Z,11Z,14Z)) 1.33843 0.001968024 0.390099725
Nov
ember 2021 | Volume 12 |
DHEA, dehydroepiandrosterone; BAT, brown adipose tissue; VIP, variable importance in projection; TCA, trichloroacetic acid.
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A B

DC

FIGURE 5 | Differential analysis of the metabolites in brown adipose tissue (BAT) from the DHEA+Sham and DHEA+BAT groups. (A) Heatmap of the 22 metabolites
that were differentially expressed between the DHEA+Sham (n = 7) and DHEA+BAT (n = 7) groups. Blue to red equates to an increase in metabolite expression.
(B) Volcano plot of all metabolites expressed in the DHEA+Sham and DHEA+BAT groups. (C) KEGG pathway analysis of the differentially expressed metabolites.
(D) All matched pathways are displayed as circles analyzed with MetaboAnalyst 3.0. Potential target pathways were selected either by impact values from pathway
topology analysis or by negative log p-values from pathway enrichment analysis. The size of the bubble represents the number of metabolites enriched. KEGG,
Kyoto Encyclopedia of Genes and Genomes.
A B

FIGURE 6 | Classification of the differential metabolites and IPA. (A) Classification of the differential metabolites was roughly categorized into 12 distinct classes.
(B) IPA of the metabolites related to biological network, pathways, and functions. The differential metabolites were closely associated with the PI3K/AKT, MAPK, and
Wnt signaling pathways. IPA, ingenuity pathway analysis.
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showed that glycerophosphoinositols were downregulated in the
DHEA+BAT group. In addition, phosphocholines (PCs), one of
the glycerophosphocholines, were decreased in the DHEA+Sham
group compared with that in the DHEA+BAT group. Combined
with the published results of reduced PC levels in PCOS patients
(45, 46), it can be speculated that PC played an important role in
the protective effects of BAT transplantation for PCOS.
Sphingolipids are also part of the membrane lipids that are
Frontiers in Endocrinology | www.frontiersin.org 10
involved in many biological processes, such as cell proliferation,
apoptosis, and differentiation (47). Sphingosine, one type of
sphingolipid that decreased in the DHEA+BAT group, has anti-
proliferative and pro-apoptotic effects (48, 49), and it may have
exerted its function in the process of BAT transplantation.

Using KEGG pathway analysis, we found that the differential
metabolites were mainly enriched in amino acid metabolism,
adipocytokine signaling pathway, insulin resistance pathway, and
A

B

D E F

C

FIGURE 7 | Selected differentially expressed metabolites. (A–C) The glycerophosphoinositols and sphingolipids were decreased, while glycerophosphocholines
were increased in the DHEA+BAT group. (D, E) Aldehydes and amino acids were reduced in the DHEA+BAT group compared with that in the DHEA+Sham group.
(F) Peptides were increased in the DHEA+BAT group. Data were analyzed using unpaired Student’s t-test. *p < 0.05, **p < 0.01.
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sphingolipid signaling pathway. Moreover, the metabolic pathways
showed that amino acid metabolism, glycerophospholipid
metabolism, and pyruvate metabolism were associated with BAT
transplantation in PCOS rats. In addition, we found various
pathways associated with BAT transplantation, mainly enriched
in amino acid metabolism. Some studies demonstrated that amino
acid disorder is associated with obesity, insulin resistance, and type
2 diabetes mellitus (50, 51). Recent studies have also found that
women with PCOS suffer from amino acid metabolism disorders
(52, 53). These results indicate that amino acid metabolism may
play an important role in the process of BAT transplantation in
PCOS rats. In addition, IPA revealed that the differential
metabolites were closely related with the PI3K/AKT, MAPK, and
Wnt signaling pathways. The PI3K/AKT signaling pathway is
involved in several critical regulators of granulosa cell
proliferation and differentiation (54), the dysregulation of which
may contribute to impaired follicular development. Furthermore,
abnormal PI3K/AKT signaling pathway is also closely related to
insulin resistance, abnormal follicle development, and metabolic
disorders in PCOS (25). In PCOS patients, aberrant MAPK
signaling contributes to the dysregulation of granulosa cell
proliferation, metabolic disorder, and overproduction of ovarian
androgen (55, 56). These suggest that the differential metabolites
may play roles in the process of BAT transplantation in PCOS rats.
Our study provides preliminary evidence that metabolites link the
association between BAT transplantation and PCOS.

One of the pathological features of PCOS is abnormal
follicular development. The augmented apoptosis of granulosa
cells may have a key role in the pathogenesis of PCOS (57, 58).
Sphingosine could inhibit cell growth and induce cell apoptosis
Frontiers in Endocrinology | www.frontiersin.org 11
(59). Our results demonstrated that sphingosine was increased in
the DHEA+Sham group and that BAT transplantation could
reduce its level. The KGN cell experiment showed that
sphingosine might enhance the apoptosis of KGN cells,
indicating that altered metabolites play a role in the process of
BAT transplantation in the treatment of PCOS.

In conclusion, we revealed the positive role of the recipient’s
BAT in ameliorating PCOS. The altered metabolites were closely
associated with the PI3K/AKT and MAPK signaling pathways.
In addition, we discovered that sphingosine enhanced the
apoptosis of granulosa cells in PCOS. All these results indicate
that the beneficial effects of BAT transplantation are partly
mediated by the bioactive metabolites. Herein, our study
provides a new light on the potential therapeutic strategy
for PCOS.
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Supplementary Figure 1 | PCA scores plot showed a distinct metabolome
profile of DHEA+ Sham group compared with DHEA+BAT group in the positive
mode and the negative mode. X-axis and Y-axis represented the first and second
principal components, respectively. QC, quality control; PCA, principal component
analysis.

Supplementary Figure 2 | H&E staining of the ovarian tissues. (A). Another H&E
staining of the ovarian tissues from Ctrl and DHEA+Sham groups (scale bar=1mm).
Ovarian histology revealed that cystic follicles (arrow) and few corpora lutea
(asterisk) appeared in the DHEA group compared with Ctrl group. (B). Another
representative results of ovarian H&E staining of the Ctrl group, DHEA+Sham group,
and DHEA+BAT group. Ovarian histology revealed that cystic follicles (arrow) and
few corpora lutea (asterisk) appeared in the DHEA+Sham group compared with Ctrl
group, while BAT transplantation reversed the phenotype caused by DHEA.
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