
Frontiers in Endocrinology | www.frontiersi

Edited by:
Nehal Mohsen Elsherbiny,

Mansoura University, Egypt

Reviewed by:
Nada H. Eisa,

Mansoura University, Egypt
Eman Said,

Mansoura University, Egypt

*Correspondence:
Rujun Gong

Rujun.Gong@UToledo.edu

†These authors have contributed
equally to this work and share

first authorship

Specialty section:
This article was submitted to

Renal Endocrinology,
a section of the journal

Frontiers in Endocrinology

Received: 28 July 2021
Accepted: 14 October 2021

Published: 01 November 2021

Citation:
Shaffner J, Chen B, Malhotra DK,
Dworkin LD and Gong R (2021)

Therapeutic Targeting of SGLT2: A
New Era in the Treatment of Diabetes

and Diabetic Kidney Disease.
Front. Endocrinol. 12:749010.

doi: 10.3389/fendo.2021.749010

REVIEW
published: 01 November 2021

doi: 10.3389/fendo.2021.749010
Therapeutic Targeting of SGLT2:
A New Era in the Treatment of
Diabetes and Diabetic
Kidney Disease
James Shaffner†, Bohan Chen†, Deepak K. Malhotra , Lance D. Dworkin and Rujun Gong*

Department of Medicine, Division of Nephrology, University of Toledo College of Medicine, Toledo, OH, United States

As the prevalence of diabetic kidney disease (DKD) continues to rise, so does the need for
a novel therapeutic modality that can control and slow its progression to end-stage renal
disease. The advent of sodium-glucose cotransporter-2 (SGLT2) inhibitors has provided a
major advancement for the treatment of DKD. However, there still remains insufficient
understanding of the mechanism of action and effectiveness of this drug, and as a result,
its use has been very limited. Burgeoning evidence suggests that the SGLT2 inhibitors
possess renal protective activities that are able to lower glycemic levels, improve blood
pressure/hemodynamics, cause bodyweight loss, mitigate oxidative stress, exert anti-
inflammatory and anti-fibrotic effects, reduce urinary albumin excretion, lower uric acid
levels, diminish the activity of intrarenal renin-angiotensin-aldosterone system, and reduce
natriuretic peptide levels. SGLT2 inhibitors have been shown to be safe and beneficial for
use in patients with a GFR ≥30mL/min/1.73m2, associated with a constellation of signs of
metabolic reprogramming, including enhanced ketogenesis, which may be responsible
for the correction of metabolic reprogramming that underlies DKD. This article aims to
provide a comprehensive overview and better understanding of the SGLT2 inhibitor and
its benefits as it pertains to renal pathophysiology. It summarizes our recent
understanding on the mechanisms of action of SGLT2 inhibitors, discusses the effects
of SGLT2 inhibitors on diabetes and DKD, and presents future research directions and
therapeutic potential.
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INTRODUCTION

Glucose (C6H12O6) is a monosaccharide or “simple sugar”, meaning that it is the most basic unit of
carbohydrate and cannot be further hydrolyzed to a simpler chemical compound. It is the major
source of fuel in the human body and comes in various forms such as monosaccharides,
disaccharides and polysaccharides, such as starch. The body maintains fasting glucose levels at
around 80mg/dL in order to provide a continuous supply of glucose to tissues that are unable to
synthesize glucose on their own, such as brain and red blood cells. In order to provide the body with
a continuous source of glucose during the fasting state, it is stored in the form of glycogen with the
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most abundant stores located in the liver and skeletal muscle. It is
also synthesized endogenously in the liver and kidney from non-
carbohydrate sources by gluconeogenesis. These precursors
include lactate, glycerol, alanine, and glutamine. The kidney
primarily uses lactate, glutamine, and glycerol with lactate
being the largest source of substrate for gluconeogenesis in the
kidney (1, 2).

A critical step in the utilization of glucose is its transport
across cell membranes. There are two major classes of glucose
transport proteins: the glucose transporters (GLUTs) and
sodium-dependent glucose transporters (SGLTs). GLUTs are
members of the solute carrier family 2A (SLC2A) gene family
and utilize facilitated diffusion to transport glucose across the cell
membrane. There are currently 14 GLUT genes identified in the
human body and are located in fetal tissues, erythrocytes, blood-
brain barrier, neurons, adipose tissue, striated muscle, testes,
small intestine epithelium, liver cells, pancreatic beta cells, and
renal tubular cells (3). In particular, GLUT2 allows glucose to be
transported across the basolateral membrane of the kidney and
mutations of this protein are responsible for Fanconi-Bickel
Syndrome, a rare type of glycogen storage disease characterized
by the accumulation of glycogen in the liver and kidney (4).
SGLTs are cotransporter proteins of the SLC5A gene family
which bind both sodium and glucose for cotransport across the
cell membrane, utilizing the sodium electrochemical gradient
maintained by the Na+/K+ ATPase. There are currently 6 SGLT
isoforms identified as SGLT1, SGLT2, SGLT3, SGLT4, SGLT5,
and SGLT6 (Table 1). SGLT1 was the first identified and the
most extensively studied SGLT and is located primarily in the
intestine and the S3 segment of the proximal convoluted tubule
(PCT) where it reabsorbs 10-20% of the glucose that escapes
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uptake by SGLT2. SGLT3 is expressed in the enteric neurons and
is believed to be a glucose sensor (5, 6). The study of the SGLT
family of transporters is ongoing and there are still many
unanswered questions that remain elusive. This review will
focus on the SGLT2 and cover the latest research and
development as it pertains to renal pathobiology.
PATHOBIOLOGY OF SGLT2

The SGLT2 is a member of the SLC5A gene family, part of the
Sodium Solute Symporter (SSS) superfamily of proteins and
capable of transporting glucose. The SGLT2 transport protein
(SLC5A2) is the transporter responsible for 80-90% of glucose
reabsorption located and abundantly expressed on the brush
border membrane of the S1-S2 segments of the early proximal
convoluted tubule of the kidney (7). Additionally, there are
reports suggesting that SGLT2 is also expressed in the liver,
pancreas, heart, thyroid, and muscle (8, 9). Vallon et al. were the
first to report the immunolocation of SGLT2 in the mouse
kidney (10). Using immunohistochemical analysis with an
SGLT2 specific antibody, they demonstrated that the transport
protein was localized to the apical brush border membrane of the
early proximal tubule in wild-type (WT) mice where it was
responsible for reabsorption of all the filtered glucose. The
specificity of the immunohistochemical staining was confirmed
by comparing WT to transgenic SGLT2 null mice (SGLT2-/-)
(10). This distribution of SGLT2 was subsequently replicated in
human kidneys by immunohistochemistry, though no
physiological studies on isolated tubules from human kidneys
have been performed (11).
TABLE 1 | Expression of different SGLT isoforms in various mammalian organ systems and their selective inhibitors.

Transporter SGLT1 SGLT2 SGLT3 SGLT4 SGLT5 SGLT6

Gene name SLC5A1 SLC5A2 SLC5A4 SLC5A9 SLC5A10 SLC5A11
Tissue distribution ■ Intestine

■ Kidney

■ Trachea

■ Heart

■ Brain

■ Testis

■ Prostate

■ Kidney

■ Pancreas

■ Liver

■ Thyroid

■ Muscle

■ Heart

■ Intestine

■ Testis

■ Uterus

■ Lung

■ Brain

■ Thyroid

■ Intestine

■ Kidney

■ Liver

■ Brain

■ Trachea

■ Lung

■ Uterus

■ Pancreas

■ Kidney Cortex ■ Intestine

■ Kidney Cortex

■ Brain

■ Spinal Cord

Endogenous substrates ■ D-glucose

■ D-galactose

■ Glucose ■ D-glucose ■ D-mannose

■ D-glucose

■ D-glucose

■ Galactose

■ D-chiro-inositol

■ D-glucose

Inhibitors ■ Phlorizin

■ KGA 2727

■ LX4211

■ GSK-1614235

■ Phlorizin

■ Dapagliflozin

■ Canagliflozin

■ Empagliflozin

■ Ipragliflozin

■ Luseogliflozin

■ Tofogliflozin

■ Ertugliflozin

■ Remogliflozin

■ Sotagliflozin

■ Phlorizin ■ Phlorizin ■ Phlorizin

■ Gliflozins

■ Glucose

■ Canagliflozin

■ Dapagliflozin

■ Phlorizin

■ Cpd B
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Although the atomic structure of human SGLT (hSGLT) has
not yet been established, the structure of a bacterial homolog
Vibrio parahaemolyticis (vSGLT) with 32% amino acid identity
to hSGLT1 has been solved and refined to 2.7 A (8, 12). The first
structure of vSGLT was solved in collaboration with Abramson
and his team (12). The functional properties show that vSGLT
has much in common with hSGLT1, but there are differences in
sugar selectivity and Na+-to-sugar transport stoichiometry which
more resembles SGLT2 (1:1 rather than the 2:1 for SGLT1).
Relative to human SGLT1, there is between 50-70% identity and
67-84% similarity in the sequences for SGLT2 (8). The amino
acid sequence of SGLT2 is believed to resemble a 14-
transmembrane helix model, but this has yet to be validated.

The SGLT2 is a high-capacity and low-affinity co-transporter
located at the apical brush border of the PCT extending from the
S1 to S2 segments. Located at the basolateral membrane of the
PCT is the Na+/K+ ATPase pump which creates the intracellular
Na+ electrochemical gradient needed for the operation of the
SGLT2 to drive the transport of Na+ and glucose into the cells.
Glucose moves against its electrochemical gradient following
sodium transportation along its gradient in 1:1 stoichiometry.
The intracellular glucose is then diffused to the interstitium
through GLUTs located on the basolateral membrane of the
PCT cells.

In the fasting (postabsorptive) state in healthy individuals, the
kidney contributes around 20-25% of the glucose released into
the circulation by gluconeogenesis (15–55 g/day), with the liver
responsible for the remainder via both glycogenolysis and
gluconeogenesis (13). Renal gluconeogenesis occurs primarily
in the PCT cells located in the renal cortex and is regulated by
insulin and catecholamines. Insulin decreases renal
gluconeogenesis and its substrates lactate, glutamine, and
g lycero l , whereas ca techo lamines s t imula te rena l
gluconeogenesis and its substrates, reduce renal glucose uptake,
and decrease insulin release (2, 14–16). In type 2 diabetes
mellitus (T2DM), gluconeogenesis is increased in both kidney
and liver with increases up to 300% and 30% respectively.

In the postprandial state, gluconeogenesis increases renal
glucose release more than twofold accounting for ~60% of the
endogenous glucose release during the 4-6 hours period
following meals. The mechanism is unknown but thought to
allow for repletion of hepatic glycogen stores by permitting
suppression of hepatic glucose release (13). In T2DM this
glucose release is estimated to be ~30% higher when compared
to healthy individuals. As a result, insulin resistance increases
and suppression of renal glucose release decreases, which in turn
causes an upregulation of GLUTs (1).
TARGETING OF SGLT2 IN DIABETES

The first SGLT2 inhibitor, phlorizin, was isolated from the root
bark of the apple tree in 1835 and was originally used as an
antipyretic. It was 50 years later that its glycosuric effects were
observed and research began to discover its mechanism of action.
Phlorizin was subsequently found to be a potent but non-selective
Frontiers in Endocrinology | www.frontiersin.org 3
inhibitor of many isoforms of SGLT. However, due to its poor
bioavailability (15%), low SGLT2 selectivity, and gastrointestinal
side effects from SGLT1 blockade, phlorizin failed to progress to
use in humans (7). Nevertheless, its beneficial effects for the use in
diabetic patients sparked the research and development of
structurally similar compounds with more selectivity towards
SGLT2 and it remains the model from which all SGLT
inhibitors have been developed. With advances in research, the
SGLT2 inhibitors have become more selective towards the SGLT2
than SGLT1. The SGLT2 inhibitors currently approved by the
FDA in the United States include dapagliflozin, canagliflozin,
empagliflozin, and tofogliflozin (Figure 1).
TARGETING OF SGLT2 IN DKD AND
OTHER DIABETIC COMPLICATIONS

In addition to diabetes management, SGLT2 inhibitors have
shown promise in the areas of chronic kidney disease (CKD),
and are able to reduce uric acid levels, attenuate oxidative stress,
exert anti-inflammatory actions, improve fibrosis, decrease blood
pressure, decrease body weight, and mitigate hyperlipidemia,
cardiovascular disease, and even some cancers, such as early-
stage lung adenocarcinoma (17) and pancreatic and prostate
cancer cells (18), which are saturated with SGLT2 receptors.

Regulation of Body Fluid Homeostasis by
SGLT2 Inhibitors
The glycosuric effect of SGLT2 inhibitors induces a sustained
diuretic and natriuretic effect that activates compensatory
mechanisms to increase fluid and food intake to stabilize body
fluid volume. A study performed by Masuda et al. (19) revealed
in Goto-Kakizaki rat models of T2DM that ipragliflozin induced
sustained glucosuria, diuresis, and natriuresis, with
compensatory increases in fluid intake and vasopressin-
induced solute-free water reabsorption in proportion to the
reduced fluid balance to maintain body fluid volume.
Meanwhile, ipragliflozin increased renal cell membrane
expression of SGLT2, aquaporin 2, and vasopressin V2
receptors. It is believed that the osmotic diuretic effect of
glucose enhances water loss and causes a small increase in
serum sodium concentrations which triggers vasopressin
release (19). In addition, atrial natriuretic peptide (ANP) and
brain natriuretic peptide (BNP) are proteins released by cardiac
atria and ventricle, respectively, with hormonal properties that
trigger a urinary natriuresis resulting in a reduction of volume
which plays an important role in cardio-renal homeostasis. The
elevated plasma level of ANP and BNP can be a marker of renal
dysfunction as it occurs in CKD. SGLT2 inhibitors have been
repeatedly shown by several studies to improve ANP secretion in
patients with newly diagnosed T2DM, delay elevation of BNP in
older patients with T2DM, and improve renal function due to
reduction of BNP levels (20–22). In consistency, a preplanned
subanalysis of a trial in which 120 patients with heart failure and
reduced ejection fraction were randomly assigned to receive
empagliflozin or placebo for 12 weeks demonstrated that
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empagliflozin reduced estimated extracellular volume, estimated
plasma volume, and measured GFR after 12 weeks, inferring that
a substantial reduction in fluid volumes might be an important
mechanism underlying the cardiorenal benefits of SGLT2
inhibitors (23).

Renal and Cardiovascular Benefits of
SGLT2 Inhibitors in Diabetes
Albuminuria is one of the commonly used clinical indicators of
diabetic nephropathy (DN) and is an independent and
modifiable risk factor for cardiovascular events, kidney injury
and mortality. In addition to blood pressure and glycemic
control, the current clinical management of DKD is largely
confined to the use of blockades of the renin-angiotensin-
aldosterone system (RAAS), which is of limited utility with
unsatisfying therapeutic efficacy (24). The advent of SGLT2
inhibitors has provided a novel and promising choice of
treatment for diabetes and DKD. In the CANVAS trial, among
patients with T2DM at a high risk for cardiovascular events,
canagliflozin treatment was associated with a lower risk of
cardiovascular events and reduced the rate of renal decline and
heart failure hospitalizations compared to those who received
placebo alone but, interestingly, increased the risk of amputation,
primarily of the toe and/or metatarsal. The data from this study
suggested that SGLT2 inhibitors are likely to exert a protective
effect on cardiovascular and renal systems in diabetic patients
across a wide range of albuminuria, with greater benefits in those
with macroalbuminuria. There are several speculated
mechanisms to explain the renoprotective action observed with
SGLT2 inhibitors. First, SGLT2 inhibitors have been shown to
induce an acute decrease in estimated glomerular filtration rate
(eGFR) ensued by long-term preservation of kidney function,
which may denote the mitigation of intraglomerular
hypertension and glomerular hyperfiltration (25). Second,
some have suggested that there could be changes in vascular
Frontiers in Endocrinology | www.frontiersin.org 4
endothelial function which may explain the improvement. And
third, pre-clinical animal studies support that SGLT2 inhibitors
improve kidney tissue oxygenation and exert anti-inflammatory
and anti-fibrotic effects (26, 27).

In another study, a group reviewed the data from the EMPA-
REGOUTCOME trial to assess the differential outcomes in kidney
function by examining the slopes of eGFR changes. The study had
originally shown that empagliflozin reduced the rate of
cardiovascular events and slowed the progression of kidney
disease among patients with T2DM and high cardiovascular
risk. A review of this data showed that empagliflozin is able to
significantly retard eGFR decline over about 3 years of treatment,
including in patients at an increased risk for progressive renal
impairment. Furthermore, the slope patterns of empagliflozin
therapy revealed an action on intrarenal hemodynamics with an
initial transient decline in eGFR ensued by sustained long-term
preservation of renal function, reminiscent of the effects achieved
with angiotensin-converting enzyme inhibitors or angiotensin II
receptor blockers. After discontinuation of empagliflozin
treatment, the slopes of eGFR changes demonstrated a quick
upward shift toward the baseline, inferring a swift loss of the
renal hemodynamic effect (28). The renal benefits associated with
empagliflozin are thought to be attributable to the recovery of the
tubuloglomerular feedback, resulting in a correction of
intraglomerular hypertension and glomerular hyperfiltration (29).

The CREDENCE randomized trial had shown that among
patients with T2DM and DN characterized by albuminuria and
no more than a mild reduction in GFR, canagliflozin at the dose
of 100 mg/d reduced the risk of end-stage kidney disease,
doubling of serum creatinine from baseline, and death from
renal or cardiovascular disease when compared to placebo. The
renoprotective effects observed with this study are likely due to
improved blood pressure control secondary to decreased sodium
reabsorption in the PCT, thereby causing increased sodium
delivery to the macula densa in the distal renal tubule and
FIGURE 1 | The 2-D view of chemical structure of various SGLT2 inhibitors, including phlorizin, dapagliflozin, empagliflozin, canagliflozin, tofogliflozin.
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inducing afferent vasoconstriction by tubuloglomerular
feedback, leading to lowered glomerular hyperfiltration (30).

In a secondary analysis of the CREDENCE trial, canagliflozin
consistently and safely prevented renal and cardiovascular events in
participants with substantial albuminuria across eGFR categories of
30 to <45, 45 to <60, and 60 to <90 ml/min per 1.73 m2. These
benefits were attained on the background of universal use of
renin-angiotensin system (RAS) blockades. Canagliflozin therapy
also led to an acute drop in eGFR followed by a decrease in
albuminuria at week 3 that was significant in every eGFR
subgroup, although the drop was least in those with screening
eGFR of 30 to <45 ml/min per 1.73 m2. Furthermore, canagliflozin
led to a slower eGFR decline in every eGFR category compared with
placebo, with no evidence that the benefit differed among eGFR
subgroups. The findings raise important questions on whether these
agents would benefit kidney disease outcomes in nondiabetic
settings (31).

Effect of SGLT2 Inhibitors on Systemic
and Intrarenal RAAS
A study published in 2019 by Schork et al. investigated the effects of
SGLT2 inhibitors, including empagliflozin and dapagliflozin, on
body composition, fluid status, and the RAS in patients with
T2DM. They found that reduction in body weight and epicardial
fat was associated with a reduction in adipose tissue mass and
transient loss of extracellular fluid, which was accompanied by a
transient upregulation of the systemic RAS without activation of the
intrarenal RAS. This bodyweight reduction can be explained by a
combination of calorie deficit (due to glycosuria) and increased
glycosuria resulting in increased lipid utilization and decreased
triglyceride levels from gluconeogenesis induced by increased
glucagon release from the pancreatic alpha-cells. Furthermore,
SGLT2 inhibitors induced an osmotic diuretic effect due to
increased glucosuria and natriuresis, but they did not observe an
ongoingfluid loss.As a consequenceof thediuretic effects, therewas a
reduction in arterial blood pressure after 3-6 months of treatment.
SGLT2 inhibitors have also been observed to improve vascular
stiffness, resulting in increased elasticity and more efficient blood
pressure regulation (30). Furthermore, the initiation of SGLT2
inhibitors was shown to induce a short-term elevated natriuresis
followed by a compensatory increase in sodium reuptake through
tubular transporters and transient systemic activationof theRAAS in
patients with T2DM (32). Interestingly, the intrarenal RAASwas not
activated. In this study, despite pre-existing treatment with RAAS
inhibitors, nearly all patients experienced an increase in renin and
aldosterone activity after 30 days with normalization after 6 months
of treatment. It is still unclearhowandwhySGLT2 inhibitors activate
the systemicRASbutnot the intrarenalRASduring the early stages of
treatment in T2DM. Volume loss and/or sodium depletion likely
explains the systemic RAAS activation, although there may be other
contributors involved that are not yet accounted for. As far as the
intrarenal RAAS not being activated, it is speculated that
angiotensinogen may be involved as it is expressed in the proximal
tubules, and treatment with SGLT2 inhibitors appear to affect
intrarenal angiotensinogen production possibly due to changes in
glucose levels which have been shown to decrease angiotensinogen
Frontiers in Endocrinology | www.frontiersin.org 5
production in the early PCT (33). However, this is all actively being
researched as there are no clear answers at present.

Inhibitory Effect of SGLT2 Inhibitors on
Renal Oxidative Stress in DKD
Oxidative stress is highly associated with the pathophysiology of
CKD and DN. Oxidative stress develops when the production of
free radicals overcomes the capacity of the anti-oxidant defense
system, resulting in damage to various biological elements. It is
posited that oxidative stress induces renal injury through
modulation of transcription factors, induction of inflammatory
responses, enhancement of advanced glycation end product
(AGE) and the receptor for advanced glycation end product
(RAGE) production, upregulation of protein kinase C (PKC),
and by direct modification of intracellular molecules (34).
Dapagliflozin has been shown to slow DN progression by
diminishing the production of free radical progenitors (35).
Ipragliflozin has been shown to normalize glucose metabolism
and re-adjust the oxidative balance in the kidneys of diabetic
animals (36). In diabetic rats, phlorizin prevented oxidative stress
by promotion of catalase and glutathione peroxidase activity and
reduced nitrogen free radicals (37). Moreover, empagliflozin has
been shown to partly suppress oxidative stress in DN via
suppression of the AGE-RAGE axis (38).

Anti-Inflammatory Effect of SGLT2
Inhibitors in DKD
CKD is accompanied by the progression of higher circulating levels
of inflammatory mediators and fibrogenesis. DN has been
associated with the upregulation of myriad inflammatory
cytokines including IL-1, IL-6, IL-18, TNF-a, ICAM, VCAM, and
MCP-1 (39). SGLT2 inhibitors are able to reduce serum leptin and
IL-6 levels and increase adiponectin concentrations, resulting in
improved adipose tissue function and decreased tissue
inflammation (30). In vitro, in cultured human proximal tubular
cells exposed to high ambient glucose, empagliflozin was able to
mitigate the expression of inflammatory/fibrotic markers including
IL-6 and collagen IV, consistent with an anti-inflammatory and
anti-fibrotic activity (40). Diabetic animals treated with
dapagliflozin were also shown to have a dose-dependent
reduction in renal inflammation and fibrosis (41). Uric acid is
closely associated with inflammatory biomarkers and is per se a
damage-associated molecular pattern (DAMP), that is able to
activate the NLRP3 inflammasome and cause inflammation. An
elevated plasma uric acid level can independently predict the
development of CKD and has been associated with the
progression towards renal failure (42). SGLT2 inhibitors cause
increase urinary excretion of uric acid by altering its tubular
transport along the apical membrane of the collecting ducts.
Canagliflozin, dapagliflozin, and empagliflozin have all been
associated with increased urinary excretion of uric acid (43–47).

Effect of SGLT2 Inhibitors on Metabolic
Reprogramming in Diabetes
In addition, recent evidence indicates that SGLT2 inhibitors may
induce metabolic reprogramming, which may be responsible for
November 2021 | Volume 12 | Article 749010
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their cardiorenal benefits in diabetes (Figure 2). In a recent study
performed by Bonner et al., the expression of SGLT2 transporters
was probed on pancreatic a cells that are responsible for glucagon
secretion. They confirmed that, in human and rodent pancreatic a-
cells, glucagon secretion markedly increased when glucose
concentrations were below physiological levels. In healthy mice,
bacterial infections treatment promoted glucagon secretion and
hepatic gluconeogenesis limiting the decrease of plasma glucose
due to glycosuria during the fasting state. In patients with T2DM,
dapagliflozin treatment increased both plasma glucagon and
endogenous glucose production, though dapagliflozin-treated
patients had lower blood glucose levels than those receiving
placebo due to glycosuria. Their results suggest that sodium-
glucose co-transport by SGTL2 is essential for the appropriate
regulation of glucagon secretion when glucose concentrations are
within the physiological range. This direct effect of SGLT2
inhibition on a cells likely offsets the glucose-lowering effects of
dapagliflozin and help explain why this medication is unlikely to
induce hypoglycemia (9).

Moreover, SGLT2 inhibitors-induced glycosuria is associated
with a constellation of signs of metabolic adaptation, including
reinforced ketogenesis and elevated b-hydroxybutyrate (b-HB)
levels (48). The metabolic state of ketosis is a physiological
response to starvation, during which, the carbohydrate stores in the
body are rapidly depleted, and the body uses fat reserves instead.
Some fat is converted by the liver to ketone bodies, providing an
alternative fuel source (49, 50). More and more studies suggest that
ketone bodiesmay convey a salutary actionon aging and anumber of
chronic diseases, like obesity, diabetes, and CKD. Mechanistically,
Frontiers in Endocrinology | www.frontiersin.org 6
in addition to serving as an alternative fuel substrate, ketone bodies
likeb-HB,which is thepredominantcomponentofketonebodies, are
potent regulators of cellular signaling pathways including mTOR,
AMPK, and HDACs and intercept multiple pathological processes,
such as metabolic reprogramming, NLRP3 inflammasome, and
pyroptosis, some of which have been implicated in kidney
diseases. Indeed, the lastest evidence demonstrates that b-HB exerts
a protective effect in glomerular podocytes against diabetes-elicited
senescence response (51), which plays a key role in diabetes-
accelerated kidney aging and degeneration (52). Thus, the
ketogenic effect of SGLT2 inhibitors seems to provide extra benefits
for patients with cardiovascular and renal complications of diabetes.
Indeed, while the glucose-lowering capacity of empagliflozin is
similar to sulfonylurea in patients with T2DM, empagliflozin
shows a greater reduction in IL-1b secretion compared to
sulfonylurea accompanied by decreased serum insulin and
increased serum b-HB (53). A recent meta-analysis demonstrated
thatSGLT2 inhibitor therapy is associatedwitha remarkabledecrease
in the risk of cardiovascular events and renal impairment (54).
Provided the protective effect of b-HB against diabetic kidney
injury, it is tempting to conceive that the renoprotective activity of
SGLT2 inhibitors may be mediated, at least in part, by b-HB.
POTENTIAL CONCERNS WITH CLINICAL
USE OF SGLT2 INHIBITORS IN DIABETES

Up to this moment, SGLT2 inhibitors have been shown to be safe
and beneficial for use in patients with a GFR ≥30mL/min/1.73m2
FIGURE 2 | Schematic diagram depicting the metabolic reprogramming subsequent to therapeutic targeting of SGLT2, including enhanced ketogenesis, lipolysis
and glucagon effects. One of the major actions of SGLT2 inhibitors is to block SGLT2 in renal proximal tubular epithelial cells and thus reduce renal reabsorption of
sodium and glucose, leading to glycosuria and normalized glycemic levels in patients with diabetes. The glycosuric effect of SGLT2 inhibitors is associated with
increased renal reabsorption of ketone bodies, contributing to an elevated plasma level of ketone bodies. On the other hand, SGLT2 inhibitors-reduced glycemic
levels may augment the pancreatic release of glucagon and decrease insulin production, which together act on fat tissue and promote lipolysis. Amplified levels of
free fatty acid in blood along with reduced glycemic levels may reinforce ketogenesis in the liver, ultimately resulting in ketosis, which has been lately demonstrated to
confer a protective effect on the kidney and the cardiovascular system in both diabetic and non-diabetic kidney disease.
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with or without RAS blockade. There is strong evidence from the
clinical trials that SGLT2 inhibitors should be prioritized in patients
with T2DM and CKD with a presenting GFR of 30-40mL/min/
1.73m2. The CEDENCE trial suggested that the combined use of
SGLT2 inhibitors and RAS blockade should be well tolerated from a
hemodynamic perspective as no participants were at increased risk
of developing AKI, volume depletion, or hyperkalemia. Most
importantly, in the CREDENCE trial, participants whose eGFR
fell to <30mL/min/1.73m2 were continued on randomized
treatment until dialysis or transplantation. As a result, the FDA
now permits the continued use of canagliflozin with an eGFR
<30mL/min/1.73m2 until dialysis or transplantation in patients
already initiated on therapy (55). Another concern for the use of
SGLT2 inhibitors is its use along with a loop diuretic, as diuretic use
becomes increasingly common as kidney function declines. In
patients with unstable volume status, it is recommended that
SGLT2 inhibitors should not be initiated along with loop diuretics
or should be used along with a decreased dose of loop diuretic and
close monitoring (56).

Currently, the use of SGLT2 inhibitors is limited due to the high
cost. Along with their increasing use, there is also the concern for
serious, if not fatal, infections that have deterred most physicians
from initiating therapy. Indeed, SGLT2 inhibitors-induced
glycosuria makes the genital area more conducive to bacterial
infections, and life-threatening infection of the genitals and areas
around the genitals, such as necrotizing fasciitis of the
perineum or Fournier’s gangrene, has been reported (57). In
addition, urinary tract and vaginal yeast infections have also been
associated with the use of SGLT2 inhibitors (58). However, serious
infection associated with SGLT2 inhibitor use is rare. Thus, this
concern should not deter its use in patients without lower extremity
wounds or recurrent urinary tract infection as long as proper
monitoring is in place. We will learn more about the benefits of
SGLT2 inhibitors as upcoming and ongoing trials will provide
conclusive and definitive data on cardiovascular and renal
protection in DKD patients. These include the DAPA-CKD study
for dapagliflozin (59), the EMPA-KIDNEY study for empagliflozin
(60), the SCORED study for sotagliflozin (61), the VERTIS study
(62), and the ongoing DIAMON study (63). Some of these trials will
also enroll patients with eGFR as low as 20 ml/min per 1.73 m2,
regardless of the magnitude of albuminuria (24, 31). Of further note,
although this was not observed in any of the studies discussed here,
SGLT2 inhibitors have been suspected to increase the occurrence of
stroke and pre-renal acute kidney injury due to volume depletion,
but as long as counter-regulatory mechanisms are functioning, this
does not appear to pose any real threat (32).
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CONCLUSIONS AND PERSPECTIVES

Diabetes-associated kidney disease is a major precipitating factor
resulting in renal replacement therapy. The advent of SGLT2
inhibitors has provided a major advance for the prevention and
treatment of T2DM, CKD, and cardiovascular events. Beyond
the glycosuric effects, SGLT2 inhibitors have exhibited renal
protective properties, which are associated with improved
glycemic control, improved blood pressure/hemodynamics,
weight loss, prevention of oxidative stress, anti-inflammatory
properties, anti-fibrotic processes, reduction in albuminuria,
reduction in intrarenal RAS activation, antioxidant and anti-
inflammatory effects, reduction in plasma uric acid levels,
metabolic reprogramming and reduction in natriuretic peptide
levels. Despite concerns over the safety issues related to serious
but rare infective complications, clinical use of SGLT2 inhibitors
in patients with DKD seems to be effective, safe, and well-
tolerated, resulting in a unique renoprotective action and
cardiovascular benefits. Future research efforts are merited to
understand the exact molecular mechanism responsible for the
beneficial activity of SGLT2 inhibitors in diabetic patients, to
reveal the most suitable diabetic patients to receive SGLT2
inhibitor treatment, and to test the potential of SGLT2
inhibitors in improving non-diabetic CKD in men.
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