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Structural Lessons From the
Mutant Proinsulin Syndrome
Balamurugan Dhayalan, Deepak Chatterjee , Yen-Shan Chen and Michael A. Weiss*

Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States

Insight into folding mechanisms of proinsulin has been provided by analysis of dominant
diabetes-associated mutations in the human insulin gene (INS). Such mutations cause
pancreatic b-cell dysfunction due to toxic misfolding of a mutant proinsulin and
impairment in trans of wild-type insulin secretion. Anticipated by the “Akita” mouse (a
classical model of monogenic diabetes mellitus; DM), this syndrome illustrates the
paradigm endoreticulum (ER) stress leading to intracellular proteotoxicity. Diverse
clinical mutations directly or indirectly perturb native disulfide pairing leading to protein
misfolding and aberrant aggregation. Although most introduce or remove a cysteine (Cys;
leading in either case to an unpaired thiol group), non-Cys-related mutations identify key
determinants of folding efficiency. Studies of such mutations suggest that the hormone’s
evolution has been constrained not only by structure-function relationships, but also by
the susceptibility of its single-chain precursor to impaired foldability. An intriguing
hypothesis posits that INS overexpression in response to peripheral insulin resistance
likewise leads to chronic ER stress and b-cell dysfunction in the natural history of non-
syndromic Type 2 DM. Cryptic contributions of conserved residues to folding efficiency, as
uncovered by rare genetic variants, define molecular links between biophysical principles
and the emerging paradigm of Darwinian medicine: Biosynthesis of proinsulin at the edge
of non-foldability provides a key determinant of “diabesity” as a pandemic disease
of civilization.
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INTRODUCTION

The Centennial of insulin’s discovery (1) coincides with renewed interest in cellular mechanisms of
biosynthesis. The mature hormone is the post-translational product of a single-chain precursor,
proinsulin (2, 3). Diverse dominant mutations in the human insulin gene (INS) have been identified
associated with diabetes mellitus (DM) (4–10). Such mutations impair oxidative folding of nascent
proinsulin in the endoplasmic reticulum (ER) of pancreatic b-cells (11, 12). Originally identified as a
monogenic cause of permanent neonatal-onset DM (7, 13–15), this syndrome (designated mutant
Abbreviations: DM, diabetes mellitus; ER, endoplasmic reticulum; GA, Golgi apparatus; MIDY, mutant INS-gene-induced
diabetes of youth; MODY, maturity-onset diabetes of the young, and NMR, nuclear magnetic resonance. Amino acids are
designated by standard one- and three-letter codes.
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INS-gene-induced diabetes of youth; MIDY) can also present in
childhood (16) or adolescence (17) (maturity-onset diabetes of
the young; MODY). Such variation in onset is ascribed to
mutation-specific differences in extent of perturbed folding (12,
18). The spectrum of phenotypes may also reflect polygenic
differences in how the b-cell responds to chronic ER stress
(19, 20).

MIDYpatients are heterozygous. Although onewild-type (WT)
insulin allele would ordinarily be sufficient to maintain metabolic
homeostasis, studies of the Akita mouse [a corresponding mouse
model (21–23)] first demonstrated biochemical dominance:
misfolding of the variant proinsulin impairs wild-type (WT)
biosynthesis (24, 25). Analogous biochemical interference occurs
in b-cell lines (11, 12, 18). ER stress leads to distorted organelle
architecture, impaired glucose-stimulated b-cell secretion and
eventual cell death (26, 27). Discovery of the mutant proinsulin
syndrome has stimulated renewed interest in structural
mechanisms of disulfide pairing (28–33) as a critical step in the
biosynthesis of insulin (2, 3, 34). The central importance of such
mechanisms—both in b-cells and as a general model for oxidative
protein folding—have motivated extensive cell-based and animal
studies (35–39). Together, these efforts have deepened the
biophysical understanding of classical structure-functional
Frontiers in Endocrinology | www.frontiersin.org 2
relationships in the insulin molecule (9, 10, 19, 40) in relation to
cellular mechanisms of biosynthesis (4, 10, 41, 42).

The goal of this review is to provide a structural perspective
on INS mutations in human proinsulin [for clinical background
and history of discovery, see (43)]. A starting point is provided by
a general biophysical paradigm: that key interactions in
intermediate stages of protein folding often foreshadow spatial
relationships in the native state (44–46). Accordingly and in the
reverse direction, we will regard the classical crystal structure of
insulin (47) as a framework for interpreting folding mechanisms.
Given this context, we will restrict our attention to mutations in
(or adjoining) the well-organized insulin moiety of proinsulin
(48) (Figure 1A and Table 1). Whereas traditional structure-
activity relationships (SAR) pertain to receptor binding (9),
contributions of the same residues to folding efficiency may be
inapparent once the native structure is reached. The growing
MIDY/MODY database of INS mutations (Figure 1B and
Table S1) may be exploited to decipher this hidden layer of
meaning. As a seeming paradox in Darwinian medicine (49, 50),
the biophysical non-robustness of proinsulin biosynthesis
suggests that the hormone has evolved to the precarious edge
of foldability (40, 51, 52). We envisage that foundational
principles of protein folding, structure and stability will be
A

B

FIGURE 1 | Clinical mutations in INS gene. (A) Sequence of insulin showing positions of clinical mutations. Residues are labelled by standard single letter code (bold
white). The A chain is shown as light gray circles (upper sequence), and B chain as dark gray circles (lower sequence). Color code: neonatal- or delayed onset is
indicated by filled red or blue circles, respectively. Sites of Cys-related mutations are highlighted by gold borders (Tables 1A, B). Disulfide bridges are indicated by
filled gold circles connected by black lines. (B) Stereo view of insulin monomer (Ca-trace ribbon model; PDB entry 4INS) (47). Non-Cys-related mutations are
highlighted as in (A); side chains are shown in red as labeled (Tables 1C, D). The Ca atoms of GlyB8, GlyB20 and GlyB23 are respectively shown as red, blue and red
spheres (one-third Van der Waals radii), and sulfur atoms likewise as gold spheres. The A- and B chain ribbons are shown in light and dark gray, respectively. For
clarity, symbols are also defined at bottom.
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found to rationalize the distribution of MIDY/MODY mutations
and broad spectrum of clinical presentations.

Studies of Insulin Biosynthesis
Essential background is provided by the molecular biology of the
insulin gene (53–57). In brief, INS encodes a single-chain
precursor polypeptide, designated preproinsulin. Its signal
peptide is cleaved on ER translocation. The translocated
polypeptide (reduced proinsulin) contains a C domain between
B- and A domains (thus connecting ThrB30 to GlyA1) (58).
Folding in the ER requires specific pairing of three disulfide
bridges (cystines B7-A7, B19-A20 and A6-A11). These bridges
(gold spheres in Figure 1B) stabilize the protein and its receptor-
binding surface (31, 59–67). Heteronuclear NMR studies of
proinsulin (as an engineered monomer) have defined a folded
insulin core with flexible C domain (48) as suggested by earlier
studies (68–73). The contribution of each disulfide bridge to
structure, stability, and activity have been extensively
investigated (31, 59–61, 63–67). Together, these bridges provide
Frontiers in Endocrinology | www.frontiersin.org 3
both interior struts (cystines B19-A20 and A6-A11) and an
external staple between chains (A7-B7). Mispairing of insulin’s
cysteines (to form disulfide isomers) markedly impairs stability
and activity (74–76).

Processing of proinsulin by prohormone convertases (PC1/3
and PC2) liberates the mature hormone (3, 77). Such conversion,
occurring in the Golgi apparatus (GA) and immature secretory
granules (78), ensures hormonal activity as proinsulin binds
more weakly than insulin to the insulin receptor (IR) (79).
Insulin and C-peptide are stored within glucose-regulated
secretory granules (80) with microcrystalline assembly of Zn2
+-stabilized hexamers (81–83). Evolution of such assembly
foreshadowed its pharmacologic exploitation in clinical
formulations (84). The marked susceptibility of the Zn2+-free
insulin monomer (the active form of the hormone) to fibrillation
complicated its manufacture and clinical use in the immediate
decades after its discovery in 1921, thus recapitulating
evolutionary constraints faced by b-cells due to the implicit
threat of toxic misfolding (34, 85). This perspective has been
reinforced by studies of a mouse model lacking the b-cell zinc
transporter (86). Although key to the stable pharmaceutical
formulation of “first-generation” rapid-acting insulin analogs
[lispro and aspart (87), otherwise exhibiting heightened
susceptibility to fibrillation (88)], in b-cells such assembly
occurs only after exit from the ER and so cannot mitigate toxic
misfolding of proinsulin variants.

Unlike native biosynthesis, chemical synthesis of insulin has
traditionally employed isolated A- and B-chain peptides (89).
The success of insulin chain combination implies that chemical
information required for folding is contained within A- and B-
chain sequences (90, 91). Hundreds of analogues have been
prepared by this protocol, facilitating pharmaceutical
innovation (87, 92). Despite the general robustness of insulin
chain combination, synthesis of certain analogues has been
confounded by low yields (30, 93–99). In selected cases such
limitations have been overcome through the use of proinsulin or
foreshortened single-chain synthetic intermediates [“mini-
proinsulins” (100–103)]. Chemical protein synthesis via native
ligation of peptide segments (104, 105) has also enabled synthetic
access to the proinsulin molecule (106). In addition to their
practical utility, such synthetic advances promise to provide
insight into structural mechanisms of disulfide pairing (31, 95,
107–109). Sites of mutation among MIDY patients in large
measure coincide with past difficulties in synthetic efforts.

Oxidative Folding Mechanisms
An historic foundation for studies of MIDY mutations in
proinsulin has been provided by basic studies of protein
folding over the past sixty years. Whereas studies of isolated
peptides motifs and model globular domains were often designed
to circumvent the complexity of disulfide pairing (28, 29, 110),
oxidative protein folding has provided an attractive opportunity
to define intermediates investigated by chemical trapping of
partial folds (111). An extensive literature pertains to such
disulfide-rich globular proteins as bovine pancreatic trypsin
inhibitor (44, 112–114), hen egg white lysozyme (115–118) and
a-lactalbumin (119–122). Insights from these model proteins
TABLE 1 | Sites of clinical mutations in proinsulina,b.

A) removal of a Cys
Cys31 [B7] Tyr
Cys43 [B19] Gly, Ser, Tyr, Ala
Cys95 [A6] Tyr, Ser
Cys96 [A7] Arg, Ser, Tyr
Cys100 [A11] Tyr
Cys109 [A20] Tyr, Phe, Arg
B) addition of a Cysc

Gly32 [B8] Cys
Phe48 [B24] Cys
Tyr50 [B26] Cys
Arg89 [Cpep+2] Cys
Gly90 [A1] Cys
Ser98 [A9] Cys
Ser101 [A12] Cys
Tyr103 [A14] Cys
Tyr108 [A19] Cys
C) neonatal non-Cys-related mutations
His29 [B5] Asp, Gln
Leu30 [B6] Pro, Gln, Val, Arg
Gly32 [B8] Ser, Arg, Val
Leu35 [B11] Pro, Gln
Leu39 [B15] Pro, Val
[B15-B16]del His
Val42 [B18] Gly
Gly47 [B23] Val
Leu105 [A16] Pro
Tyr108 [A19] Asp or Stop
D) childhood or MODY mutations
His29 [B5] Tyr
Leu30 [B6] Met
Val42 [B18] Ala
Gly44 [B20] Arg
Arg46 [B22] Gln
Gly47 [B23] Asp
Phe48 [B24] Ser
Glu93 [A4] Lys
aResidue numbers refer to preproinsulin; positions in the mature A- and B chains are given
in brackets.
bReferences are given in Table S1.
cCys insertions have also been observed in the signal sequence and C domain (see
Table S1).
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and their application to proinsulin and homologous polypeptides
underlie efforts to interpret INS mutations associated with
toxic misfolding.

Chemical-trapping studies of proinsulin and homologous
proteins have provided evidence for preferential accumulation of
one- and two-disulfide intermediates (28, 29, 123, 124). These
intermediates define a series of partial folds and corresponding
trajectories on successive free-energy landscapes [“landscape
maturation”; Figure 2A). The landscapes (maturing from
shallow to steep; left to right in Figure 2A)] are each associated
with (a) stepwise stabilization on successive disulfide pairing and
(b) a corresponding ensemble of dynamic trajectories constrained
by the bridges. Chemical-trapping studies are thus consistent with
both multiple folding trajectories on funnel-shaped landscapes
and a preferred sequence of specific disulfide intermediates (125)
in general accordance with biophysical principles (126–128).

Physiological interpretation of proinsulin refolding studies
has been limited by its aggregation near neutral pH [thereby
imposing a technical requirement for pH > 9) (29, 129)]. This
limitation has been circumvented through the use of mini-
proinsulin and IGF-I as more tractable models (28, 29, 59, 62,
108, 110, 123, 130). A structural pathway was proposed based on
spectroscopic studies of equilibrium models (31, 59–61, 63–67,
131); this scheme highlights initial formation of cystine A20-B19
within a hydrophobic cluster of conserved side chains between
the C-terminal A-chain a-helix and central B-chain a-helix (75,
76, 95). Because in the refolding of mini-proinsulin and IGF-I the
A20-B19 disulfide bridge is the first to form (as the only one-
disulfide intermediate to accumulate) (28, 29, 110), its pairing
Frontiers in Endocrinology | www.frontiersin.org 4
defines a biophysical milestone, formation of a specific folding
nucleus (31, 131, 132). The predominance of cystine A20-B19
among populated intermediates motivated design of equilibrium
models based on pairwise Ala- or Ser substitution of the other
cystines (31, 59–67). Such analogues exhibit reduced a-helix
content with native-like structure near cystine B19-A20 (31).
Mutations in the putative B19-A20-related folding nucleus
impair insulin chain combination, biosynthetic expression, and
secretion of single-chain precursors in yeast (63, 97, 132–134).

1H-NMR spectra of one- and two-disulfide analogues exhibit
progressive chemical-shift dispersion with successive disulfide
pairing. These data are in accordance with stepwise structural
stabilization in the landscape paradigm illustrated above (59,
131). Despite the predominance of A20-B19 pairing as an initial
step, folding subsequently proceeds in parallel via multiple
channels. Mini-proinsulin, for example, can rapidly form cystine
A7-B7 or slowly undergo pairing of A6-A11. Although it is not
apparent that pairing of cysteines distant in the sequence (such as
A7 and B7) should be favored relative to pairing of nearby cysteines
(A6 and A11), pairwise substitution of cystine A7-B7 (by Ser)
destabilizes insulin more markedly than does pairwise substitution
of A6-A11 (132). These findings suggest that nascent structure in
the one-disulfide [B19-A21] intermediate either more effectively
aligns CysA7 and CysB7 or more significantly impairs pairing of
CysA6 and CysA11. These on-pathway two-disulfide intermediate
may interconvert with non-native disulfide isomers as off-pathway
kinetic traps. The danger posed by such traps has been highlighted
in studies of IGF-I and its non-native disulfide isomers (28, 135).
Relative isomer stabilities (as probed in a mini-IGF model) are
A

B C

FIGURE 2 | Energy landscape paradigm. (A) Landscape maturation: successive disulfide pairing enables a sequence of folding trajectories on ever-steeper funnel-
shaped free-energy landscapes. (B) Ribbon model of insulin showing the three native disulfide bonds (yellow boxes). Coordinates were obtained from PDB entry
4INS (47). The A- and B chains are shown in light- and dark gray, respectively. (C) Stereo view of insulin with Cys substitutions highlighted in green (Table 1B).
Side chains are shown as sticks; Cys-related sulfur atom and alpha-carbons of GlyA1 and GlyB8 represented as spheres (one-third Van der Waals radii).
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specified by N-terminal residues in the B domain (136, 137).
Although the refolding of proinsulin is more stringent, related
non-native disulfide isomers (76) may readily be generated by
disulfide exchange on addition of a chemical denaturant (75).
Corresponding insulin isomers are molten globules whose
stability and cooperativity are marginal (76).

Non-native disulfide isomers of proinsulin and related
polypeptides have also been observed in transfection studies of
mammalian cells (27, 30, 138–140). These studies have exploited
electrophoretic mobility differences between native and non-
native disulfide isomers in non-denaturing gels [as demonstrated
by Arvan, Liu and colleagues (138)]. Less compact structures of
non-native states are presumably associated with slower
mobilities. Formation of non-native proinsulin isomers has
thus been observed on transfection of expression constructs in
a variety of mammalian cell lines. Although non-native
proinsulin isomers are generally not secreted, mutations can
enhance mispairing in the ER (139, 140). Extent of cellular
misfolding does not correlate with in vitro thermodynamic
stability, suggesting that the ER machinery does not evaluate
free energies of unfolding (DGu) as a criterion of quality-control.

Studies of proinsulin variants containing N-terminal
substitutions or deletions suggest that contributions of specific
side chains to foldability may not be apparent in the native state
(141).The substituted side chainsmayperturb the relative stabilities
or kinetic accessibility of disulfide intermediates, for example,
disproportionately to effects on the native state, once achieved.
Such residues may also contribute to interactions of the nascent
polypeptide with ER chaperones and its oxidativemachinery (142).
Indeed, the ER of b-cells may contain a lineage-specific set of
chaperones and foldases required for proinsulin biosynthesis.
Defining such a b-cell-specific “ER proteome” defines a key
frontier of current research. Cell-type-specific differences in ER
proteomes are likely to underlie the inefficient folding and secretion
of proinsulin in the majority of human cell lines (143).

Foreshortened “mini-proinsulins” (144) can misfold in yeast to
form a metastable disulfide isomer as the predominant secretion
product. Such quantitative misfolding indicates that the ER folding
machinery of a eukaryotic cell can selectively direct folding into a
non-ground-state conformation. Characterizing this alternative
pairing scheme and assessing its structural resemblance to the
native fold would be of broad interest. Because the aberrant
protein is not degraded prior to ER trafficking (i.e., it passes ER
quality-control checkpoints), such analogues provide models of
“stealth”misfolding, in turn leading to secretion of a protein caught
in a kinetic trap. As described in the following two sections, clinical
mutations in proinsulin conversely exemplify “non-stealth”
misfolding leading to activation of the unfolded protein response
(UPR) (145–150).
MONOGENIC DIABETES AND
THE INS GENE

The majority of INS mutations cause permanent neonatal-onset
DM (Figure 1 and Table S1) (14). Because impaired b-cell
function develops prior to maturation of the immune system, the
Frontiers in Endocrinology | www.frontiersin.org 5
patients present with auto-antigen-negative DM. Similar
phenotypes may be caused by mutations in other genes (151),
most frequently a heterozygous activating mutation in the b-cell
voltage-gated potassium channel (either KCNJ11 or ABCC8,
respectively encoding its Kir6.2 and Sur1 subunits) (152, 153).
The resulting diabetic phenotype in this genetic background may
be transient or permanent. It is important to recognize this
subset of neonates or toddlers as in favorable cases they can
successfully be treated with oral agents that inhibit the channel
(sulfonylureas) rather than by insulin injections (151).

Dominant INSmutations are the secondmost common genetic
cause of permanent neonatal DM (7, 13, 14, 16). Such mutations
occur ineachregionofpreproinsulin: its signal peptide,B-,C-andA
domains (Table S1) (9, 10). The majority result in the addition or
removal of a cysteine, leading in either case to an odd number of
potential pairing sites (Figure 1A). Mutations have been found at
each of insulin’s six canonical cysteines, generally associated with
neonatal onset (Figure 2B, Table 1A). An additional cysteine may
be introduced at various positions in the insulinmoiety (Figure 2C
and Table 1B). The resulting odd number of thiol groups leads in
general to misfolding and aggregation (11, 12, 18). Even in this
context structure maymatter, as it is possible that some sites of Cys
introduction leadmore readily to aberrant intra- or intermolecular
disulfide pairing than others, depending on the conformational
properties of oxidative folding intermediates and their interactions
surfaces. Such biophysical variability would be expected to be
associated with differences in ER stress and hence age of DM onset.

Among human MIDY mutations is the same “Akita”
substitution (CysA7!Tyr) as in the Ins2 gene of the Mody4
mouse (21–23); this dominant murine substitution has thus been
characterized as a model of the human syndrome (25–27). The
variant murine proinsulin in vitro undergoes partial unfolding
with increased aggregation (154). Analogous perturbations were
found in human insulin- and proinsulin analogues lacking
cystine A7-B7 (66, 132). Heterozygous expression of related
Ins2 allele CysA6!Ser in the mouse also causes DM (155).

Identification of identical human and murine mutations at
position A7 suggests that the mechanisms of neonatal DM have
shared pathogenetic features independent of species (21–23, 25–
27). Although b-cell degeneration in the Akita mouse remains
incompletely understood, early defects have been observed in the
folding and trafficking of both wild-type and variant proinsulins.
These defects are associated with elevated markers of ER stress,
electron-dense deposits in abnormal ER andGA, andmitochondria
swelling—together leading to a progressive decline in b-cell mass
(25–27). Evidence for the clinical relevance of these findings has
been obtained by the construction of innovative fluorescent
proinsulin fusion proteins and their use in cell lines and
transgenic mice to detect subcellular localization and aggregation
(35–38).

Deciphering Determinants of Foldability
The Akita variant is representative of a mutant proinsulin with
an odd number of cysteines. However, a distinct subset of MIDY-
or MODY-associated mutations does not involve cysteine
(Table 1C). Although widely scattered in the sequence, these
mutations occur more often in the B domain than in the A
September 2021 | Volume 12 | Article 754693

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Dhayalan et al. Toxic Misfolding of Proinsulin Variants
domain—and not at all in the C domain. Because the variant
proinsulins retain the six canonical cysteines and yet pair
inefficiently, such mutations are of special biophysical interest.
A structural overview is provided in Figures 3–5 as described
in turn.

Structural relationships in insulin were examined using the
monomer derived from a representative wild-type T6 zinc insulin
hexamer [PDB entry 4INS (47)]. NMR studies have shown that the
Frontiers in Endocrinology | www.frontiersin.org 6
conformationof an engineered insulinmonomer in solution closely
resembles the T-state protomer in a zinc insulin hexamer as
characterized by X-ray crystallography (60, 157–159). Short- and
medium-rangeNOEs are consistentwith spatial relationships in the
T state (159). Although positions of C-terminal B-chain residues
(B25-B30) are generally less well defined than in crystallographic
dimers and hexamers, classical attachment of B24-B28 b-strand to
thea-helical core ismaintained in solution. The freemonomer thus
A

B

FIGURE 3 | Structural sites of neonatal-onset mutations. (A) Spatial environments of residues B5, B6, and B11; (B) spatial environments of residues B15, B18 and
A19. In each panel the highlighted side chain is shown in red; in each pair of images, stick models are shown in upper panels whereas electrostatic surfaces
(calculated in absence of indicated side chain) are shown in the lower panels. In stick models, side chains belonging to the A- and B chains are respectively shown in
light and dark gray; Cys-related sulfur atoms (gold) and aliphatic methyl groups (red) are represented as spheres (one-third Van der Waals radii). Coordinates were
obtained from PDB entry 4INS (47).
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does not exhibit a major change in B-chain conformation [hinge
openingof theB20-B23b-turn (160)]. The present analysis has thus
focused on spatial relationships in T-state monomers (as extracted
from crystal structures) because of their higher resolution (relative
to NMR ensembles) and likely pertinence to proinsulin (48).

N-terminal segment. In NMR-derived structures of insulin as
a Zn2+-free monomer (60, 157, 158), residues B1-B6 are
extended (asterisk in Figure 1B); B7-B10 comprise a b-turn
adjoining the central a-helix. Similar features occur in the
crystallographic T-state protomers within Zn2+ hexamers (47,
161). The N-terminal five residues favor A7-B7 disulfide pairing
in vitro (136, 137) and to overall efficiency of proinsulin folding
in cell lines (141). These residues are dispensable for receptor
binding (162). Although PheB1 has not been identified to date as
a site of clinical mutation, studies of des-B1 analogues
nonetheless suggest that its loose T-state-specific packing
Frontiers in Endocrinology | www.frontiersin.org 7
against a nonpolar A-chain surface (principally the otherwise
exposed side chain of LeuA13) contributes to disulfide
specification (12). Sites of clinical mutation (HisB5, LeuB6 and
GlyB8; broadly conserved among vertebrate insulins) have been
well characterized (30, 96, 98, 99).

i. Position B5. In the native state HisB5 packs within an inter-
chain crevice, making one or more hydrogen bonds to
carbonyl oxygens in the A chain (Figure 3A, left). Clinical
mutations are Asp, Gln and Tyr (Table 1C); in mammalian
cell culture substitution of HisB5 by Asp blocks the folding
and secretion of human proinsulin (30). Although some
substitutions impair chain combination (30), ArgB5 (found
in non-mammalian insulins) is well tolerated. We imagine
that HisB5 and ArgB5 form analogous inter-chain hydrogen
bonds in the course of disulfide pairing; this hypothesis is in
A B

DC

FIGURE 4 | Conformations and structural environments of conserved glycines at positions B8 and B23. (A) Main-chain dihedral angles phi (j) and psi (y) in a
peptide. (B) Ramachandran plot of crystallographic insulin T state (PDB entry 4INS; j/y angles generated using PyMOL and plotted using GraphPad Prism
software). Residues B8 and B23 are as labeled (red). In canonical T state GlyB8 and GlyB23 lie within b-turns with positive j–angles, thereby residing on the right side
of Ramachandran plane in regions unfavorable or “forbidden” for L-amino acids. In R state GlyB8 residues in a-helix and so on the left side of Ramachandran plot
(not shown). (C) Canonical environment of GlyB8 in the T-state b-turn; key nearby side chains are shown. (D) Canonical environment of GlyB23 in B20-B23 b-turn,
shared by T- and R states. Residue B23 is near the side chain of AsnA21, and the positive B23 j angle enables formation of an inter-chain hydrogen bond (A21 side-
chain carboxamide NH … O=C B23). Nearby side chains are shown. a-Carbon traces of the A- and B chains are shown in light- and dark gray, respectively.
Coordinates were obtained from PDB entry 4INS (47).
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accordance with the respective crystal structures of WT and
ArgB5-insulin (99). AlaB5-insulin (as an engineered
monomer) exhibits decreased stability (30), presumably
due to the absence of these hydrogen bonds and to a cavity
penalty (163, 164). Its solution structure is nonetheless
similar to the parent HisB5 monomer (30), suggesting that
critical perturbations in an oxidative folding intermediate
can be inapparent in the native state, once reached.

ii. Position B6. LeuB6 inserts into a deep inter-chain cavity
bounded by the invariant side chains of LeuB11, LeuB15 and
LeuA16 (Figure 3A, middle). Neonatal-onset mutations are
Arg, Gln, Pro and Val (Table 1C). Each variant would be
expected to be destabilizing in this environment: Arg and
Gln via insertion of charged or polar functions into a
nonpolar cavity, Pro and Val via introduction of packing
defects. Substitution of the branched and nonpolar side
chain of LeuB6 by the linear non-polar side chain Met by
contrast leads to MODY (Table 1D). Delay in clinical onset
presumably follows the structural biology: we envision that
MetB6 can be accommodated within the B6-related cavity but
with less optimal packing interactions.

iii. Position B8. Special structural principles pertain to position
B8. Neonatal-onset mutations are Arg, Ser and Val (Table 1C;
also Cys in Table 1B). In an insulin or proinsulin monomer in
solution (48, 60) GlyB8 exhibits a positive f dihedral angle [as
in the crystallographic T state (47)] and so occupies a position
in the Ramachandran plane ordinarily forbidden to L-amino
acids (Figures 4A, B). In a protein-folding intermediate an L-
amino-acid side chain at B8 would presumably change the
orientation of CysB7 and so impair its pairing with CysA7

(Figure 4C) (98). The side chain itself would be expected to
project into solvent.

Kent, Weiss and colleagues described synthetic studies of
human proinsulin variants containing L-Ala or D-Ala at B8
(109). Such protein diastereomers exhibited L-specific
impairment of specific disulfide pairing; D-AlaB8 was well
tolerated, presumably due to its enforcement of a positive f
angle favorable to [B7-A7] pairing. These findings corroborated
prior studies of mini-proinsulin analogues (134, 165) and insulin
chain combination (96). In the latter stereospecific B-chain
libraries were exploited to demonstrate that L-substitution at
B8 generally impair chain combination whereas yield was
generally enhanced by D-substitutions (96). Together, these
studies rationalize the invariance of GlyB8 among vertebrate
insulins and insulin-related polypeptides and the diversity of
clinical mutations at this site. Interestingly, SerB8-insulin (but not
AlaB8-insulin) exhibits substantial biological activity despite its
reduced foldability (109). Indeed, its solution structure retain
native-like features. Decreased thermodynamic stability was
nonetheless observed, presumably due to an unfavorable local
main-chain conformation on the right side of the Ramachandran
plot (166).

Central a-helix. Nascent a-helical structure in the B chain has
been observed in one- and two-disulfide analogues containing
the key [A20-B19] disulfide bridge (31, 59, 63, 66, 67, 132).
Frontiers in Endocrinology | www.frontiersin.org 8
Neonatal-onset mutations have been identified at positions B11,
B15 and B18 (Table 1C) as described in turn.

(i, ii) Helicogenic residues B11 and B15. LeuB11 and LeuB15

each contribute to segmental a-helical propensity (167, 168) and
to the nascent clustering of nonpolar residues (31, 131). We
imagine that mutations at these sites (Pro or Gln at B11, Pro or
Val at B15; Table 1C) would impede nascent a-helix formation
and in turn initial [B19-A20] disulfide pairing. In the mature
structure the B11 side chain is buried within a cavity abutting the
nonpolar inner surface of the A chain (Figure 3A, right) whereas
the B15 side chain packs within a shallower neighboring inter-
chain crevice delimited by CysB19 and PheB24 (Figure 3B, left).
Should native disulfide pairing be achieved, we would expect that
that mutations ProB11 and ProB15 would profoundly perturb
native structure, stability and self-assembly. GlnB11 and ValB15

would also be destabilizing, but likely less so than Pro. GlnB11

would fit within the B11-related cavity, but its carboxamide
group would impose an electrostatic penalty; the smaller, b-
branched side chain of ValB15 would be predicted to attenuate
segmental a-helical propensity (167, 168) and impose a cavity
penalty (163).

The importance of LeuB11 and LeuB15 to folding efficiency was
first demonstrated in a model organism. Ala substitutions at these
positions (although compatible with a-helix) were found to
hinder secretion of mini-proinsulin in S. cerevisiae (134). Insulin
chain combination was likewise impaired by interchange of LeuB11

and ValB12, presumably due to perturbed long-range packing (93).
Native spacing between CysB7 and CysB19—and hence length of
the central B-chain a-helix—are also likely to influence the
efficiency of disulfide pairing as a complex MIDY mutation
combines a point mutation with deletion with an adjacent
residue: LeuB15-TyrB16 are replaced by His (43), leaving an even
number of residues between the B-chain cysteines.

(iii) Non-helicogenic residue B18. ValB18 packs near cystine
[B19-A20] in a solvent-exposed inter-chain crevice. This
environment is polar on one side (due to GluA17) and non-
polar on other sides (due to the cystine, AlaB14, LeuA13 and
LeuA16). Although the b-branched side chain of Val is not in
principle favorable within an a-helix (167, 168), its mutation to
Gly (also of low helical propensity; Table 1C) would enhance
main-chain flexibility and introduce an inter-chain packing
defect; each perturbation could reduce efficiency of [B19-A20]
disulfide pairing. In the native state 1H-2H exchange studies in
D2O have established that the main-chain amide proton of
ValB18 is the most highly protected site in insulin (159).
Extending this to variant on-pathway folding intermediates, we
propose that enhanced segmental conformational fluctuations
and decreased thermodynamic stability could each contribute to
impaired biosynthesis.

B20-B23 b-Turn. The B chain contains a U-turn between its
central a-helix and C-terminal b-strand (B24-B28). This super-
secondary motif requires a solvent-exposed b-turn (Gly-Glu-
Arg-Gly tetrapeptide motif). Like GlyB8 (above), the flanking
glycines each exhibit positive f angles associated with a specific
pattern of hydrogen bonds within the turn (47). Discussed more
fully in the following section (MODY), mutation of GlyB23 to Val
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is associated with neonatal-onset DM (Table 1C). Cell-based and
biophysical studies of this mutation have demonstrated
profound perturbations (97). Qualitative NMR studies suggest
that the b-branched side chain leads to transmitted perturbations
in the position or conformation of the following B24-B27
segment (12).

A-chain mutations. Studies of peptide models have suggested
that initial pairing of cystine [B19-A20] is coupled to nascent a-
helical conformations of the A16-A19 segment, coincident with
nonlocal hydrophobic collapse of LeuA16 and TyrA19 within a
folding nucleus (31, 131). Indeed, substitutions at these sites were
found to impair the yield of insulin chain combination (94, 95,
156). In accordance with the above mechanism and such
synthetic experience, recent clinical studies have uncovered
neonatal-onset MIDY mutations ProA16 and AspA19 (Table 1C).

The structural environments of a-helical residues A16 and A19
are distinctive. Whereas TyrA19 projects from a non-polar crevice
(lined in part by cystine [B19-A20]) to expose its para-hydroxyl
group (Figure 3B, right), the side chain of LeuA16 is inaccessible to
solvent (Figure 5). AspA19 would place a negative chargewithin the
non-polar confines of the core. ProA16 would perturb segmental
main-chain conformation and (when modelled in a native-like
framework) introduce both side-chain steric clash and a
destabilizing cavity. The essential contribution of LeuA16 to
protein-folding intermediates has been demonstrated through
studies of ValA16-proinsulin and ValA16-insulin (156). Although
this substitution is compatible with a native-like crystal structure
(essentially identical toWT insulin), ValA16 markedly impairs both
insulin chain combination and cellular folding of the variant
proinsulin (156). Because ValA16-insulin also exhibits high
biological activity (156), the evolutionary invariance of Leu at this
position presumably reflects its cryptic yet key contribution to
folding efficiency.

MIDY mutations have not been identified in the N-terminal
A-domain a-helix (residues A1-A8). Their absence may simply
reflect incomplete sampling of patients to date; however, it is also
possible that non-cysteine residues in this segment are tangential
in the mechanism of disulfide pairing. Indeed, successful
combination of variant A chains containing Gly at positions
A1-A2, A1-A4 or A1-A4 (in each case with WT B chain S-
sulfonate) provided evidence that an N-terminal A-chain a-
helical conformation is not required for native disulfide pairing
(95). Such dispensability is in accord with a putative structural
pathway in which segmental folding of this a-helix is a late event.
FROM MIDY TO MODY

INS mutations may also be associated with onset of DM in
childhood or adolescence (Table 1D) (169–171); diagnoses may
be carried as auto-antibody-negative presumed Type 1 DM or
Type 2 DM. Substitution of ValB18 (Figure 3B, center) by Ala
(172) was identified as a MODY allele (DM onset <25 years of
age, autoantigen negative) in a three-generation Italian pedigree
(three siblings, the parent and presumed grandfather) (172).
Unlike MIDY patients with neonatal onset, birth weights were
Frontiers in Endocrinology | www.frontiersin.org 9
normal. The Ala mutation at position B18 would be expected to
enhance segmental a-helical propensity (167, 168), but introduce
a destabilizing cavity (163, 164) adjacent to the critical [B19-A20]
disulfide bridge. Unlike the perturbations introduced by GlyB18

(above), these effects would offset to yield, rationalizing a mild
net impairment of initial disulfide pairing.

Four additional MODY mutations occur within the B20-B23
b-turn and its aromatic anchor at B24: GlyB20!Arg,
ArgB22!Gln, GlyB23!Asp and PheB24!Ser (Figure 6).
Although the mechanism by which GlnB22 causes MODY is
not apparent, L-amino-acid substitutions of GlyB20 or GlyB23

would be expected to alter their respective f dihedral angles. It
has previously been reported that Ala substitutions impair the
expression of mini-proinsulin in S. cerevisiae and impede chain
combination, whereas efficient disulfide pairing in vitro can be
rescued by D-Ala substitutions (97). That B23 mutations may
cause either neonatal onset (ValB23) or delayed onset (AspB23)
suggests that details of side-chain chemistry influence
folding efficiency.

SerB24 (originally designated insulin Los Angeles) is associated
with variable genetic penetrance with hyperinsulinemia. The latter
finding indicates that SerB24-proinsulin can in fact fold in the b-cell
ER, undergo proper trafficking and processing to mature SerB24-
insulin (173). In cell culture the variant proinsulin nonetheless
induces ER stress, albeit at a level belowMIDYvariants (12). In vivo
mutational inductionofmild ormoderateER stress canpresumably
cause (depending on other genetic risk alleles and environmental
factors) slow but progressive loss of b-cell mass (174, 175) as in the
Akita mouse (24, 176).

The final MODY-associated mutation occurs on the surface
of the A domain: GluA4!Lys (Table 1D and Figure 7A). That
this substitution should perturb the folding of proinsulin seems
surprising given (a) the absence of structural constraints at this
position in insulin and (b) the broad tolerance of insulin chain
combination to substitutions within the N-terminal A-chain a-
helix (95). We speculate that LysA4 introduces a subtle
perturbation in proinsulin through electrostatic repulsion of
the dibasic element at the CA junction (red box in Figure 7B).
In particular, nascent a-helical structure in the A1-A8 segment
may be stabilized by a salt bridge between “ArgA0” (i.e., the final
residue of the C domain [position 89 of preproinsulin];
Figure 7A) and WT GluA4 (Figure 7C). Such an interaction,
together with GlyA1, could in essence provide a favorable N-Cap
(177), which could overcome the adverse helical propensities of
the three b-branched residues in this segment (IleA2, ValA3 and
ThrA8). This contribution would not pertain to insulin chain
combination due to the absence of ArgA0 (an analogous C-
capping salt bridge from GluA4 to the A1 a-amino group would
be blocked by its deprotonation at the reaction pH of 10.5).
DIVERSITY OF INS-RELATED
DISEASE MECHANISMS

For completeness, we note that mutations in the insulin gene
that are not associated with impaired folding can nonetheless
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be associated with adult-onset DM phenotypes of variable
penetrance (57) (Table S1). Such heterogeneity is in accord
with “Murphy’s Law of genetics”: in a complex pathway or set
of mechanisms, what can go wrong will go wrong. For
example, insulin variants Wakayama and Chicago (i.e.,
classical insulinopathies ValA3!Leu and PheB25!Leu
respectively) markedly impede receptor binding (173) in
association with mutant hyperinsulinemia (178). These
mutations directly perturb the hormone-receptor interface (160).
A complementary example is provided by diabetes-associated
Frontiers in Endocrinology | www.frontiersin.org 10
mutation HisB10!Asp, which enhances receptor binding (179).
Although AspB10 would introduce a favorable electrostatic
interaction at the hormone-receptor interface, in b-cells AspB10-
proinsulin exhibits inappropriate sorting to a constitutive granule
(180, 181). Unlike glucose-regulated secretory granules,
constitutive granules lack prohormone convertases, and so the
patients exhibit mutant hyperproinsulinemia. Yet another
syndrome is characterized by impaired prohormone processing
leading to circulation of a split proinsulin with reduced
activity (182).
A

B

C

FIGURE 5 | Structural environment of conserved position A16. (A) LeuA16 packs in core of insulin monomer: ribbon model (stereo pair) showing LeuA16 (red) in
relation to TyrA19 (blue) and internal side chains IleA2 (light gray), LeuB11 (dark gray) and LeuB15 (dark gray). A- and B-chain ribbons are shown in light- and dark gray,
respectively; disulfide bridges are shown as gold spheres. Molecular coordinates were obtained from PDB entry 4INS (47). (B) Corresponding ribbon model (same
orientation) of “non-foldable” analogue ValA16 (PDB entry 3GKY) (156). Structural similarities highlight cryptic folding defect. (C) Stereo space-filling model showing
limited exposure of internal ValA16 side chain (red) between B-chain surface (dark gray, overlying surface) and A-chain surface (light gray). The solvent-exposed A7–
B7 disulfide bridge is shown in gold (top); internal cystine side chains A6–A11 and A20–B19 are not visible.
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EVOLUTION AT THE EDGE
OF FOLDABILITY

Protein evolution is generally enjoined by overlapping biological
constraints, including biosynthesis, structure, and function
(Figure 8A). Particular residues in insulin may thus contribute
to one or more critical mechanisms, including nascent foldability
in the ER, protection from intra- or extracellular toxic
misfolding, trafficking from the ER through the GA to glucose-
regulated secretory granules, self-assembly within these granules,
disassembly of Zn2+-insulin hexamer in the portal circulation
and in turn receptor binding. The stringency of these
overlapping constraints rationalizes the limited sequence
variation among vertebrate insulins (47).

Evolutionary constraints may be coincident or opposing at a
given position. An example of a coincident constraint is the
concurrent contributions of invariant PheB24 to core packing,
dimerization and receptor binding. Opposing constraints call for
compromise. An example is provided by GlyB8, invariant as an
Frontiers in Endocrinology | www.frontiersin.org 11
achiral amino acid free to roam in the Ramachandran plane.
Systematic studies of L- or D substitutions have suggested that at
B8 kinetic determinants of foldability are at odds with
conformational requirements of receptor binding (96, 98).
Whereas a positive f dihedral angle (enforced by a D-
substitution) facilitates disulfide pairing, a D side chain
impedes receptor binding. Conversely, negative dihedral angle
(like that of an L-amino acid) impair folding efficiency but may
be compatible with receptor binding (96, 98). These opposing
requirements presumably underlie the invariance of glycine – the
only achiral amino acid – at a site of conformational change. A
switch in conformation of GlyB8 between the right side of the
Ramachandran plot and the left (respectively corresponding to
positive or negative f angles) was anticipated by the classical TR
transition among zinc insulin hexamers (187). Although such
allostery may pertain only to hexamers (99), the TR transition
exemplified the long-range transmission of conformational
change (188) —a theme central to the transmembrane
propagation of an insulin signal via receptor reorganization
A B

FIGURE 6 | Structural sites of MODY mutations. (A) Residues B20 and B22 in B-chain B20-B23 b-turn; (B) residue B24 anchoring this b-turn and adjoining B24-
B28 b-strand. In each pair of images, stick models are in upper panel and electrostatic surfaces in lower panel. The latter highlights the groove or cavity occupied by
the designated structural element; blue and red surfaces are coded by positive or negative electrostatic potential. In stick models main-chain atoms in A- or B main
chains are shown in light or dark gray, respectively. Disulfide bridges are shown as balls and sticks with sulfur atoms in gold (one-third Van der Waals radii). The side
chain of PheB24 in (B) is shown as dark blue stick (not related to electrostatic potential). Coordinates were obtained from PDB entry 4INS (47).
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(189–191). The examples posed by clinical mutations at B24 and
B8 (Table 1C) suggest that premature adoption of the hormone’s
receptor-engaged conformation within b-cells (either by
proinsulin in the ER or GA or by insulin in secretory granules)
may trigger toxic misfolding.

Recent co-crystal and cryo-EM-derived structures of insulin
bound to receptor fragments have demonstrated the function of
a protective hinge in B chain (160, 189, 190, 192). Mechanisms of
hormone-receptor recognition [for review, see (191)], extend to
IGF-I as visualized in a landmark series of homologous cryo-
EM-derived structures of respective receptor ectodomain
complexes (189, 190, 193–195). As predicted based on studies
of “anomalous” insulin analogues (157, 196, 197), detachment of
the C-terminal b-strand (residues B24-B28) enables both its own
binding in a groove between receptor elements L1 and aCT
(respectively at the N- and C-terminal ends of the IR a-subunit);
the latter element also packs against the N-terminal A-chain
a-helix.

Insulin’s B-chain hinge—opened on receptor binding—may
represent an evolutionary response to the danger of
proteotoxicity. This danger, aggravated by exposure of non-
polar surfaces, is intrinsic to the coupled folding/misfolding
landscapes wherein the true ground state is defined by b-sheet-
rich amyloid (Figure 8B). Models of insulin amyloid as
superhelices of protofilaments have been derived at low
Frontiers in Endocrinology | www.frontiersin.org 12
resolution by cryo-EM (Figure 8C). Studies of insulin fibrils by
infrared and Raman spectroscopy have demonstrated a
predominance of b-sheet (198–200) in accordance with fibril
X-ray diffraction (201–203). Despite the striking biophysical
features of fibrils as a universal thermodynamic ground state of
polypeptides (Figure 8B) (85), oligomeric intermediates in the
pathway of fibrillation pose the greater cytopathic danger
(Figure 8D) (204).

Recent evolutionary studies of insulin have highlighted the
importance of PheB24, whose conserved aromatic ring plays
multiple roles: anchoring the native B-chain b-strand,
stabilizing the a-helical core, and contributing to both self-
assembly (47) and hinge opening on receptor binding (197). In
the open state the aromatic ring binds within a classical nonpolar
pocket at the hormone-receptor interface (189, 190, 195). On
substitution of PheB24 by Gly, native function is paradoxically
retained (157). Comparative studies of “register shift” analogues
indicate that an alternative mode of receptor binding supervenes
in which PheB25 takes the place of the missing PheB24 (52);
residues B20-B24 form a flexible pentaloop rather than an
aromatic-anchored b-turn (205). This alternative binding
mode is apparently disallowed in evolution due to toxic
misfolding of GlyB24-proinsulin (as evidenced impaired folding
efficiency, induction of ER stress and impaired secretability in
transfected cell models) and possibly by the heightened
A B

C

FIGURE 7 | MIDY-related mutations at CA junction. (A) Vertebrate sequence alignment showing conserved KR dibasic site (CA junction) and acidic side chain at
residue A4. (B) Solution structure of proinsulin (line drawing) showing the folded insulin moiety and disordered C-domain (48). The dibasic RR (BC junction) and KR
sites (CA junction) are within red box. (C) Proposed stabilization of a nascent a-helix in proinsulin folding intermediate by junctional (i, i+4) salt bridge between
residues Arg and GluA4 (blue in panels A, C). The putative salt bridge was modeled as an a-helical N-Cap element (177) using PyMOL.
September 2021 | Volume 12 | Article 754693

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Dhayalan et al. Toxic Misfolding of Proinsulin Variants
susceptibility of GlyB24-insulin analogues to fibrillation (52).
Evidence for the paradoxical evolution of vertebrate insulins to
the edge of foldability has been provided by biophysical studies of
a native-like variant, TyrB24-insulin (40). Although providing the
C-terminal B-chain b-turn and b-strand with an homologous
“aromatic anchor,” TyrB24 is also disallowed due its perturbation
of biosynthesis and induction of ER stress. Indeed, of the 20
natural amino acids, only Phe at position B24 enables the
efficient biosynthesis of proinsulin (40). We speculate that such
marked sensitivity to mutation—signifying the paradoxical non-
robustness of an adaptive landscape (40)—will be found at many
or most sites associated with neonatal-onset DM (Table 1C).

Because, to our knowledge, clinical mutations that selectively
perturb insulin’s hexameric structure and storage in secretory
granules have not been described, this review has not focused on
these processes. Any such perturbations would be downstream
from the major sites of perturbation in the MIDY syndrome:
misfolding in the ER and impaired trafficking through the GA. It
is possible, however, that processes in the secretory granule are
affectedbySerB24 andAspB10 inconcertwithotherperturbations. (i)
PheB24!Ser. The invariant aromatic ring of PheB24 packs at the
dimer interface. Its substitution by SerB24 impairs self-assembly (as
monitored by gel-filtration) and leads to accelerated disassembly of
the R6 hexamer once formed (40). Receptor binding and biological
activity are low. (ii) HisB10!Asp. The conserved imidazole ring of
Frontiers in Endocrinology | www.frontiersin.org 13
HisB10 coordinates the axial zinc ions at the trimer interface of
insulin hexamers (47). Genetic variant AspB10 causes a diabetes
syndrome characterized by baseline mutant proinsulinemia due to
constitutive secretion (180) as the mutation perturbs specific
trafficking to glucose-regulated secretory granules (34, 57). The
corresponding substitution in insulin blocks both zinc binding and
trimer formation in vitro (206, 207). AspB10-insulin exhibits
increased affinity for both IR and IGF-1R with prolonged
residence times in association with augmented mitogenic
signaling (179, 208–211).
AN EVOLUTIONARY HYPOTHESIS

Given the ancestral history of metazoan insulin-like proteins over
the past 540 million years and its broad radiation among diverse
body plans (212–214), why might vertebrate proinsulins be
susceptible to misfolding and lacking in mutational robustness? A
possible answer is given by the history of the INS gene as traced by
the late D.F. Steiner and coworkers (215–218). This seminal study
characterized an insulin-like gene encoding an insulin-like protein
(ILP) in an extant protochordate (amphioxus; Branchiostoma
californiensis) (Figure 9A). The predicted polypeptide precursor
pro-ILP contains a C-terminal peptide resembling the D and E
domains of vertebrate IGFs, suggesting an intermediate form
A B

D

C

FIGURE 8 | Evolutionary constraints and insulin fibrillation. (A) Venn diagram showing intersection of multiple constraints: function, foldability, misfolding, and
assembly (183). (B) Energy landscape of protein folding (purple) and coupled landscape of aggregation (pink) (184). Cytotoxic oligomers may form as off-pathway
intermediates en route to amyloid. (C) Models of protofilament packing based on low-resolution cryo-EM images. The image is reproduced from the reference (185),
Copyright (2002) National Academy of Sciences. (D) General scheme of insulin fibrillation via a partially unfolded monomeric intermediate (parallelogram at center)
(186). The native state (triangle) is protected by classic self-assembly (far left). Disassembly leads to an equilibrium between native and partially folded monomers. The
receptor-bound conformation of insulin (top) may also participate in this equilibrium. This partial fold may unfold completely (bottom) as an off-pathway event or
aggregate to form an amyloidogenic nucleus en route to a proto-filament (right).
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linking the ancestral proto-insulin gene withmodern IGF genes. In
accordance with this perspective, ILP is the only INS-like gene in
amphioxus; its genome also contains a single gene encoding a
putative insulin-IGF receptor (216) and a single gene encoding a
putative IGF-binding protein (IGFBP) (220, 221).

ILP was thus proposed to combine the functions of insulin,
IGF-I and IGF-II prior to the duplication the proto-insulin gene
and specialization of distinct factors (215). Evolutionary changes
in intron-exon structures are shown in greater detail in
Supplemental Figure S1A. In this scheme conversion of a
metazoan proto-insulin gene to ILP would have been effected
by a nonsense-to-sense mutation at the end of the A-domain-
encoding sequence in the putative proto-insulin gene; conversion
of ILP to proto-lGF would have been effected by an upstream
shift in the intron donor site into the B-domain-encoding exon.
IGF-I and -II genes subsequently evolved from the posited proto-
IGF by insertion of an intron into the E-encoding domain
followed by gene duplication.

Thus, predating the divergence of insulin and IGFs as distinct
gene products, ILP retains framework residues conserved among
Frontiers in Endocrinology | www.frontiersin.org 14
vertebrate insulins and IGFs, including the six canonical
cysteines, LeuB6, LeuB11, LeuB15, ValB18, LeuA16 and TyrA19—
hotspots for MIDY mutations (Table 1C). Whereas mammalian
insulins contain LeuB17, however, residue B17 in ILP is Phe as in
IGFs. Similarly, ILP residue A8 is Tyr, resembling the
homologous Phe in IGF-I and IGF-II but unlike AlaA8 or
ThrA8 in mammalian insulins (215, 218). ILP would not be
expected to undergo insulin-like self-assembly: (a) it lacks a His
at position B10 and so would not be expected to coordinate zinc
ions; and (b) dimerization would be predicted to be impaired by
ILP residues AlaB12 and SerB26 (in place of ValB12 and TyrB26)
(183, 222). Representative vertebrate insulin B-chain sequences
and IGF-I B-domain sequences are shown in Supplemental
Figure S1B.

Given the evolutionary framework established by Steiner and
coworkers (215–217), we hypothesize that the primordial
insulin/IGF precursor protein folded as a heterodimer in
partnership with a proto-IGFBP. Such heterodimeric folding
occurs in vertebrate IGF-IGFBP systems (221, 223–226) and
appears to compensate for the ambiguous refolding properties of
A

B C

FIGURE 9 | Evolution of insulin-like genes in vertebrates. (A) Steiner and colleagues proposed that a primordial insulin-like gene in protochordates was the common
ancestor of vertebrate insulin/IGF factors (215, 217). Amphioxus ILP represents this ancestral gene (as a “living fossil”) prior to gene duplication in early agnathan
vertebrates. Further gene duplication results in distinct IGF-I and IGF-II genes found in all gnathosomes (jawed vertebrates). Independent gene duplication events
occurred during the evolution of invertebrate insulin-like peptides (not shown). See Supplemental Figure S1A for further details of exonic structure. (B) Proinsulin
folds autonomously, and the mature hormone is stabilized by native self-assembly: ribbon model of classical zinc-insulin hexamer. The A- and B chains are shown in
light- and dark gray, respectively; the two overlying axial zinc ions are shown as red spheres (enlarged for emphasis at twice Van der Waals radii), each coordinated
by three HisB10 side chains (sticks). (C) IGF-I and IGF-II fold together with specific IGF binding proteins: ribbon model of illustrative IGFBP-IGF complex. We
hypothesize that heterodimeric folding “rescues” the foldability of the IGFs, whose folding properties would otherwise be ambiguous. Color codes as follows: IGF
domain A (light gray), domain B (dark gray), domain C (dark blue) and domain D (light blue); IGFBP N-terminal domain (dark green) and C- terminal domain (light
green). Molecular coordinates were respectively obtained from PDB entries 1MSO (zinc insulin hexamer) (186) and 2DSP (IGF-1/IGFBP-4 complex) (219).
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IGFs in vitro (28, 29, 123, 130). We envisage that in
heterodimeric folding requirements of foldability are relaxed in
each partner (when considered in isolation). Crystal structures of
human IGF-I/IGFBP complexes [illustrated in a representative
case in Figure 9C (219)] exhibit extensive engagement of IGF
surfaces adjoining disulfide bridges and sites of MIDYmutations.
This model predicts that the foldability of pro-IGF variants in
mammalian cells would be more robust to MIDY-like mutations
than is proinsulin—but only in cells co-expressing one or
more IGFBPs.

Proinsulin by contrast folds in the ER as an autonomous
monomer, aided by chaperonins and oxidoreductases but not, to
our knowledge, by specific proinsulin-binding proteins. Native
zinc-mediated self-assembly of insulin (Figure 9B) can include
proinsulin [which can form corresponding hexamers (69)], but
such self-assembly occurs in secretory granules and not in the
zinc-poor environment of the ER. Although IGFBPs do not bind
to insulin or proinsulin, this model predicts that engineered
proinsulin-binding proteins may be designed to enhance the
foldability of WT and variant proinsulins. Although such
artificial proteins are unlikely to find therapeutic application,
they may be of interest as reagents to probe the mechanism of
proinsulin folding in vivo, including steps susceptible
to misfolding.
STRUCTURAL DETERMINANTS OF ER
QUALITY CONTROL

Arvanandcolleagueshave studied theER foldingofproinsulin inb-
cell lines using a systematic set of variants that can form only one or
two disulfide bonds; to this end, specific disulfide bridges were
removed by pairwise mutagenesis (227). These constructs differed
inbiosynthetic properties and soprovidedprobesof quality-control
determinants. Their results demonstrated that cystines A20-B19
and A7-B7 (but not cystine A6-A11) are critical to enable native
folding andER exit. Prior biophysical studies of an insulin analogue
lacking cystine A7-B7 (due to pairwise Ser substitution)
demonstrated a more marked decrease in stability and chain-
combination efficiency relative to analogous analogues lacking
A6-A11 (60, 132). Further studies on single-chain insulin
analogues (67) and IGF-1-related peptides and peptide fragments
(29, 31, 60)providedevidence for akineticpathway inwhichpairing
of cystineA20-B19provides a requiredfirst step to stabilize anative-
likemoltenmini-core (31).Native-likeNOEswere observed in such
a one-disulfide peptide model even in the absence of stable
secondary structure (31). Together, these cell-based and in vitro
studies suggest possible structural features that might be sensed by
ER quality control: as a general principle, themore destabilizing the
disulfide intermediate or isomerdestabilizing, the greater thedegree
of exposed non-polar surfaces and in turn the intervention of
detection and degradation by the quality-control machinery.

Whereas variant proinsulin polypeptides without
interdomain disulfide bridges cannot be secreted (227), non-
native disulfide isomers can accumulate and evade ER quality
control (138, 140). Early work from the Arvan laboratory
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demonstrated secretion of mispaired disulfide isomers in cells
using various single-chain insulin constructs (138, 140). Indeed,
prior studies of IGF-I revealed that its oxidative refolding in vitro
yielded two isoenergetic products (28, 123). Although these had
similar a-helical propensities and thermodynamic stabilities, 2D
1H-NMR spectra were remarkable for distinct well-dispersed
patterns of chemical shifts, indicative of different three-
dimensional structures (28). Unlike IGF-I and its disulfide
“swapped” isomer, insulin disulfide isomers are less stable and
less well-ordered than is native insulin (75, 76). The respective
N-terminal segments of proinsulin and IGF-I contribute to such
salient differences in the fidelity of disulfide specification and
relative stability (228, 229). The chain asymmetry of non-Cys-
related MIDY mutations—more in the B domain than in the A
domain (Figure 1)—is consistent with a hierarchical disulfide
pathway in which nascent structure in the B domain provides a
structural template for folding of the A domain (95).

Mutations that impair the foldability of proinsulin (or
efficiency of insulin chain combination (95) can nonetheless be
compatible with high activity (108). This lack of correlation
suggests that determinants of quality control in the ER differ
from determinants of receptor binding. A prominent example is
provided by substitution of invariant LeuA16 by Val (156). This
cavity-associated mutation (not [yet] seen among MIDY
patients) markedly impairs both cellular folding of ValA16-
proinsulin and chain combination, and yet substantial
biological activity is retained once the native state is reached
(94, 156). Similarly, folding of SerB8-proinsulin is significantly
reduced in vitro, yet IR affinity is similar to WT insulin (109). A
recent study reported that substitution of PheB24 by Tyr (also not
[yet] seen among MIDY patients) blocks cellular folding (40)
whereas the corresponding two-chain insulin analogue retains
substantial activity in a rat model of DM.
CONCLUDING REMARKS

We imagine that insulin’s conserved side chains, as exemplified
by PheB24, play different roles in the course of a complex
conformational “life cycle.” If so, this would represent a
marked compression of structural information within a short
protein sequence. The present cryo-EM revolution promises to
provide snapshots of structures through this life cycle, likely to be
extended by solid-state NMR-based models of non-native insulin
aggregates and fibrils. As we celebrate the Centennial of insulin’s
discovery in Toronto in 1921 (1, 230)—and coincidentally the
gold anniversary of its high-resolution crystal structure at Oxford
in 1971 (161)—it is remarkable to appreciate how much remains
to be discovered in relation to biosynthesis, folding, function and
evolution. Further, in a related review article, J. S. Flier and C. R.
Kahn have discussed how the discovery of insulin has defined a
milestone in the history of molecular medicine that extends
beyond the insulin molecule itself (231).

This review has focused on the structural lessons of the mutant
proinsulin syndrome (4–6). Patient-derived experiments of nature
are providing anopportunity to investigate biophysical principles at
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the intersection of cell biology and human genetics. As envisioned
by classical diffusion-collision and frameworkmodels (232), folding
of globular proteins (such as proinsulin) represent the coalescence
of discrete subdomains (233, 234). Even as funnel-like energy
landscapes make possible parallel events in folding (126), the
existence of preferred trajectories (235) is implied by disulfide
trapping studies of insulin-related polypeptides. Biophysical
studies of these trajectories and equilibrium models promise to
deepen a structural understanding of MIDY/MODY mutations.
Sites of mutation reflect mechanisms of folding or misfolding that
may not be apparent in the native state (9, 10, 19, 51). Many of the
principles discussed here were foreshadowed in pioneering efforts
toward the total chemical synthesis of insulin wherein specific
disulfide pairing posed a key challenge to chain combination (89).

Foldability is an evolved property (236), highlighting the
general threat of toxic misfolding as a hidden constraint in
protein evolution. In the genetics of proteotoxic diseases these
principles connect bench to bedside. Critical questions for
continuing investigation include: can over-expression of the
WT INS gene in response to peripheral insulin resistance
likewise tax the folding capacity of the b-cell and induce ER
stress analogous to that of the mutant proinsulin syndrome?
Might structural mechanisms of misfolding due to MIDY
mutations broadly inform a hidden landscape of toxic
aggregation awaiting WT biosynthesis? A key frontier in
molecular metabolism is thus defined by the role of the UPR
and chronic ER stress in the progression of non-canonical Type 2
DM (9, 24, 25). Molecular dissection of how b-cells respond to
the challenge of proinsulin overexpression (237) is of compelling
translational interest as a strategy to arrest the progression of
prediabetes to frank diabetes (9, 38, 238). Structural lessons of
Frontiers in Endocrinology | www.frontiersin.org 16
the mutant proinsulin syndrome may thus inform UPR-based
approaches to mitigate the growing pandemic of diabesity.
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