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Background: Cancer stem cells (CSCs) refer to cells with self-renewal capability in
tumors. CSCs play important roles in proliferation, metastasis, recurrence, and tumor
heterogeneity. This study aimed to identify immune-related gene-prognostic models
based on stemness index (mRNAsi) in lung adenocarcinoma (LUAD) and lung
squamous cell carcinoma (LUSC), respectively.

Methods: X-tile software was used to determine the best cutoff value of survival data in
LUAD and LUSC based onmRNAsi. Tumor purity and the scores of infiltrating stromal and
immune cells in lung cancer tissues were predicted with ESTIMATE R package.
Differentially expressed immune-related genes (DEIRGs) between higher- and lower-
mRNAsi subtypes were used to construct prognostic models.

Results: mRNAsi was negatively associated with StromalScore, ImmuneScore, and
ESTIMATEScore, and was positively associated with tumor purity. LUAD and LUSC
samples were divided into higher- and lower-mRNAsi groups with X-title software. The
distribution of immune cells was significantly different between higher- and lower-mRNAsi
groups in LUAD and LUSC. DEIRGs between those two groups in LUAD and LUSC were
enriched in multiple cancer- or immune-related pathways. The network between
transcriptional factors (TFs) and DEIRGs revealed potential mechanisms of DEIRGs in
LUAD and LUSC. The eight-gene-signature prognostic model (ANGPTL5, CD1B, CD1E,
CNTFR, CTSG, EDN3, IL12B, and IL2)-based high- and low-risk groups were significantly
related to overall survival (OS), tumor microenvironment (TME) immune cells, and clinical
characteristics in LUAD. The five-gene-signature prognostic model (CCL1, KLRC3,
KLRC4, CCL23, and KLRC1)-based high- and low-risk groups were significantly
related to OS, TME immune cells, and clinical characteristics in LUSC. These two
prognostic models were tested as good ones with principal components analysis (PCA)
and univariate and multivariate analyses. Tumor T stage, pathological stage, or metastasis
status were significantly correlated with DEIRGs contained in prognostic models of LUAD
and LUSC.
n.org October 2021 | Volume 12 | Article 7558051

https://www.frontiersin.org/articles/10.3389/fendo.2021.755805/full
https://www.frontiersin.org/articles/10.3389/fendo.2021.755805/full
https://www.frontiersin.org/articles/10.3389/fendo.2021.755805/full
https://www.frontiersin.org/articles/10.3389/fendo.2021.755805/full
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:yjzhan2011@gmail.com
https://doi.org/10.3389/fendo.2021.755805
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2021.755805
https://www.frontiersin.org/journals/endocrinology
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2021.755805&domain=pdf&date_stamp=2021-10-21


Li et al. Cancer Stemness and TME in Lung Cancer

Frontiers in Endocrinology | www.frontiersi
Conclusion: Cancer stemness was not only an important biological process in cancer
progression but also might affect TME immune cell infiltration in LUAD and LUSC. The
mRNAsi-related immune genes could be potential biomarkers of LUAD and LUSC.
Evaluation of integrative characterization of multiple immune-related genes and
pathways could help to understand the association between cancer stemness and
tumor microenvironment in lung cancer.
Keywords: lung cancer, cancer stemness, tumor microenvironment, immune-related gene signature,
clinical characteristics
INTRODUCTION

Non-small cell lung cancer (NSCLC) mainly included lung
adenocarcinoma (LUAD, 40%), lung squamous cell carcinoma
(LUSC, 30%), and large cell carcinoma (15%) (1). LUAD and
LUSC had different characteristics in the following aspects,
including mutation models, pathogenesis, molecular
mechanisms, treatment plans, and personalized medical
services (2). Cancer stem cells (CSCs) were a population of
cells in tumors with self-renewal and infinite proliferation
capability and could be the resource to generate heterogeneous
tumor cells (3). CSCs played an important role in tumor survival,
proliferation, epithelial-to-mesenchymal transition, invasiveness
and migration capability, metastasis, recurrence, and therapy
resistance (4). According to the theory of CSCs, CSCs had the
ability to escape from antitumor therapies; thus, CSCs could not
be killed by conventional chemotherapies, which only kill the
bulk of differentiated and differentiating cancer cells (5). In this
process, CSCs might express a variety of resistant molecules and
mediate some resistance-related pathways, including polycomb
group transcriptional repressor Bmi-1 pathway, Notch pathway,
sonic hedgehog, Wnt pathway, phosphoinositide 3-kinase
(PI3K)/AKT, tyrosine kinase receptors pathways [such as
epidermal growth factor receptor (EGFR), fibroblast growth
factor receptor (FGFR), hepatocyte growth factor receptor
(HGFR)/MET, insulin-like growth factor receptor (IGFR), and
platelet-derived growth factor (PDGF)], and transforming
growth factor b (TGFb)/SMAD pathway (6). CSCs were
commonly identified with fluorescence-activated cell sorting
plus specific antibodies binding to CSC-surface markers
(ALDH1A1, CD24, CD34, CD44, CD133, and EPCAM) (7, 8).
CSCs were found in multiple cancers, including lung cancer,
breast cancer, colorectal cancer, liver cancer, prostate cancer, and
blood tumor (9). Recent studies found that lung resident
epithelia such as variant club cells, basal cells, club cells, and
alveolar epithelial type-2 cells had facultative stem cell reparative
activities (10). Additionally, the CSC theory introduced a new
concept—mRNA expression-based stemness index (mRNAsi)
based on machine learning algorithm (11). The mRNAsi was
calculated with the transcriptomic expression profile of tumor
samples from The Cancer Genome Atlas (TCGA) according to
transcriptomic datasets of non-transformed pluripotent stem
cells and their differentiated progeny (12). CSC theory
proposed that tumor tissue contained its own cancer itself.
Therefore, CSC theory might cast new lights on the nature of
n.org 2
tumors and clinical differentiation therapy between LUAD and
LUSC, respectively.

The development of tumor immunotherapy promoted the
applications of immune checkpoint inhibitors in NSCLC, such as
anti-PD-1/PD-L1 immune checkpoint therapy (13). Currently,
eight kinds of PD-1/PD-L1 checkpoint inhibitors were approved
worldwide, including six kinds of PD-1 checkpoint inhibitors
[Merck Keytruda, Bristol-Myers Squibb Opdivo, Pfizer/Merck
Bavencio, Sanofi/regenerative Libtayo, Jun Tolpalimab
(Treplimab), and Cinnabi/Lilidabo Shu® (Tyvyt, Sintelimab)]
and two kinds of PD-L1 checkpoint inhibitors (Roche Tecentriq
and AstraZeneca Imfinzi) (14). With the renaissance of
anticancer immunotherapy and the occurrence of CSC escape
from antitumor therapies, it might be essential to further explore
the interplay between tumor immune microenvironment (TME)
and CSCs to discover novel cancer approaches to treat drug
resistance and immune escape of CSCs (15). Recent studies
found that mRNAsi was closely related to TME and that
higher mRNAsi was identified in many tumors with a lower-
expressed PD-L1 and a reduced leukocyte fraction (11).
Immunotherapy strategy largely depended on the infiltrated
immune cells and upregulated PD-L1. However, those cancers
with higher mRNAsi might be less susceptible to immune
checkpoint blockade therapies, which suggested a potential
mechanism of immune evasion (16). TME contained various
cell types such as monocytes, natural killer (NK) cells,
macrophages, eosinophils, dendritic and mast cells, and
neutrophils (17). The relationships between these cell types
and CSCs were assessed in tumors; for example, stem-cell
markers (Nanog, Lgr5, CD44v6, and ALDH1A1) were highly
associated with immune cell counts, which revealed that that
cancer stemness and immune state should be considered as a
whole (18). Additionally, some cytokine signals were also
important for CSCs; for example, IL33 could mediate stem cell
genes to stimulate cell sphere formation and increase tumor
resistance to chemoradiotherapy, and IL33 activated OCT3/4,
NOTCH3, and NANOG and enhanced transcription factor (TF)
c-Jun that binds to the promoters of hub stem-cell-related genes
(19). Moreover, CSCs had immunomodulatory capabilities and
communicated with TME through producing immune system
inhibitory factors. Thus, CSCs could interact with immune
checkpoint molecules, such as Tim3, CD47, CTLA4, PDL-1,
and LAG3, to protect cancer cells from immune clearance (20).
Therefore, it was necessary to study the correlation between
stemness (mRNAsi) and immunity (the fraction of immune cell
October 2021 | Volume 12 | Article 755805
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populations, activation state of immune cells, or alterations of
immune-related genes and pathways).

This study aimed to identify prognostic immune-related gene
model related to stem cell characteristics based on mRNAsi in
LUAD and LUSC, respectively. The immune cell types were
profiled with CIBERSORT in lung cancers, which provided
insights into the relationships between mRNAsi and infiltrating
immune system cells and between mRNAsi and immune-related
genes. Moreover, the constructed network between TFs and
stemness-related differently expressed immune-related genes
(DEIRGs) revealed the potential mechanisms of stemness-
related DEIRGs in LUAD and LUSC, respectively. The overall
experimental flow chart was showed for this study (Figure 1),
and this method would also be easy to transit for other
cancer studies.
MATERIALS AND METHODS

Data Processing
The TCGA RNA-seq data were obtained from tissue of origin
from solid biopsy of lung cancer patients. Level 3 RNA-seq data
and corresponding clinical characteristics were downloaded
from TCGA website (https://portal.gdc.cancer.gov/). The gene
expression missing value (expression = 0) more than 20% was
excluded with the pretreatment. The immune-related genes
(IRGs) were selected from ImmPort database (https://www.
immport.org/shared/home). The corresponding mRNAsi
values were downloaded from supplementary materials of one
published article (https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC5902191/); more specifically, the study used an innovative
one-class logistic regression machine learning algorithm (OCLR)
to extract transcriptomic and epigenetic feature sets that were
Frontiers in Endocrinology | www.frontiersin.org 3
derived from non-transformed pluripotent stem cells and their
differentiated progeny. The OCLR machine-learning algorithm
was used to calculate mRNAsi values. The mRNAsi range was
from 0 to 1, and the closer mRNAsi was to 1, the stronger was the
characteristics of stem cells. Any sample that was missing
mRNAsi was excluded. The mRNAsi, overall survival data, and
expressions of immune-related genes in LUAD and LUSC are
listed in Supplementary Tables S1, S2.

The X-tile software (version 3.6.1) was used to determine the
best cutoff value of mRNAsi in the survival data from LUAD and
LUSC, respectively (21). The principle of X-tile software was to
group different mRNAsi values into truncation values for
statistical analysis, and the result with the smallest p-value (p <
0.05) was considered as the best truncation value to divide
mRNAsi into two groups (higher and lower mRNAsi groups);
in other words, X-title software divided samples into higher and
lower mRNAsi groups.

Proportions of Immune Cells in LUAD and
LUSC Based on CIBERSORT Method
To quantify the relative percentage of immune cells in lung
cancer samples, LM22 gene signature and CIBERSORT
algorithm were used for highly sensitive and specific
discrimination of 22 human immune cell phenotypes. Gene
expression profiles were prepared with standard annotation
files, and data were uploaded to CIBERSORT web portal
(http://cibersort.stanford.edu/), with the algorithm based on
the LM22 signature and 1,000 permutations (Supplementary
Tables S3, S4).

Estimation of Tumor Purity and Infiltrating
Cells in LUAD and LUSC
Tumor purity and the presence of infiltrating stromal and
immune cells in tumor tissues were predicted with ESTIMATE
FIGURE 1 | Flow chart for identification of mRNAsi-related immune signatures in LUAD and LUSC.
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https://portal.gdc.cancer.gov/
https://www.immport.org/shared/home
https://www.immport.org/shared/home
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5902191/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5902191/
http://cibersort.stanford.edu/
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Li et al. Cancer Stemness and TME in Lung Cancer
R package that estimated stromal and immune cells in malignant
tumor tissues based on gene expression data (Supplementary
Tables S5, S6), which generated three scores, including (i)
ImmuneScore representing the infiltration of immune cells in
tumor tissue, (ii) StromalScore capturing the presence of stroma
in tumor tissue, and (iii) ESTIMATEScore inferring tumor
purity. Pearson correlation coefficient was used to test the
correlation levels between these scores and mRNAsi. The
distribution of immune cells was analyzed between higher and
lower mRNAsi groups in LUAD and LUSC, respectively.

Identification of DEIRGs Between Higher
and Lower mRNAsi Groups
The limma package (http://bioinf.wehi.edu.au/limma/) was used
for DEIRG analysis, and p < 0.05, false discovery rate (FDR) filter
<0.05, and log (fold change) filter >0.58 were set as the threshold
to select DEIRGs in LUAD or LUSC between higher and lower
mRNAsi groups (Supplementary Tables S7, S8). The correlation
levels between DEIRGs were analyzed with Corrplot R package
(https://www.rdocumentation.org/packages/corrplot/versions/0.
2-0/topics/corrplot).

Functional and Pathway Enrichment
Analyses of DEIRGs
All DEIRGs were analyzed with Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway and Gene Ontology (GO) enrichment
analyses, including biological processes (BPs), molecular functions
(MFs), and cellular components (CCs). The clusterProfiler R
package (http://bioconductor.org/packages/release/bioc/html/
clusterProfiler.html) was used for gene-annotation enrichment
analysis of DEIRGs between higher and lower mRNAsi groups,
including statistically significant GO terms (Supplementary Tables
S9, S10) and KEGG pathways (Supplementary Tables S11, S12),
with p < 0.05 and false discovery rate (FDR) <0.05. The p-value of
enrichment analysis was calculated based on 10,000 permutations,
and FDR value was calculated with Benjamini–Hochberg multiple
testing correction procedures. All DEIRGs were mapped in protein–
protein interaction (PPI) network in the STRING database (https://
string-db.org/) (Supplementary Tables S13, S14).

Construction of TF-DEIRG Networks
TFs or sequence-specific DNA-binding factors were a cluster of
proteins that could control the rate of transcription from DNA to
mRNA, which was obtained from Cistrome Cancer database
(http://cistrome.org/db/). TF gene expressions from TCGA
database were matched with Cistrome Cancer database
(Supplementary Tables S15, S16). TF-DEIRG network was
visually presented with Cytoscape software based on
correlation coefficient filter >0.4 and p-value filter < 0.05
(Supplementary Tables S17, S18).

Lasso Regression Construction and
Verification for LUAD
Cox proportional hazard regression model was used for overall
survival (OS) analysis to evaluate impact of continuous variables
(DEIRGs) on survival. Cox proportional hazard regression was
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performed with surv iva l R package (ht tps : / /www.
rdocumentation.org/packages/survival/versions/3.2-3) to select
OS-related DEIRGs with p<0.05 (Supplementary Table 19).
Furthermore, OS-related DEIRGs were used for least absolute
shrinkage and selection operator (lasso) regression. Lasso
regression was a regression method that performed both
variable selection and regularization to enhance the prediction
accuracy and interpretability of the statistical model it produced.
The best subset selection and the connections between lasso
coefficient estimates were identified to construct the prognostic
model. Lung cancer samples were divided into two groups
(Supplementary Table S20) according to the median value of
risk scores (high- and low-risk score groups). The Kaplan–Meier
method was used to evaluate the availability of prognostic model
between high- and low-risk score groups. Principal component
analysis (PCA) was performed to measure classifications with
risk sore. The distribution of immune cells was analyzed between
high- and low-risk score groups in LUAD patients. The clinical
data were obtained from TCGA database, including gender
(male and female), age (aged ≤65 and >65), anatomic
subdivision (R-lower, R-middle, R-upper, L-lower, L-middle,
and L-upper), follow-up outcome (partial and complete
remissions/responses, progressive and stable diseases), number
pack years smoked (packs from 0.15 to 240), pathological T
(tumor size, including T1, T2, T3,T4, and TX), pathological
M (tumor metastasis, including M0, M1, and MX), pathological
N (tumor lymph node metastasis, including N0, N1, N2, and
NX), pathological stage (stages I, II, III, and IV), cancer status
(tumor or tumor free), radiation therapy (no or yes), targeted
molecular therapy (yes or no), and status (alive or dead)
(Supplementary Table S21). Clinic correlation between high-
and low-risk score groups was analyzed with pheatmap R
package (http://bioconductor.org/packages/3.8/bioc/html/
heatmaps.html). In addition, clinical characteristics (including
gender, age at initial diagnosis, follow-up, anatomic subdivision,
number pack years smoked, pathological stage, pathological T,
pathological N, pathological M, cancer status, radiation therapy,
and targeted molecular therapy) associated with OS were
analyzed in LUAD patients with univariate and multivariate
Cox regression models.

Multivariate Cox Regression
Analysis of LUSC
Multivariate Cox regression analysis was performed to calculate
the regression coefficient for each DEIRG with statistical
significance p < 0.05 to construct prognostic model, with
survival R package (http://bioconductor.org/packages/devel/
bioc/vignettes/survtype/inst/doc/survtype.html) to select OS-
related DEIRGs (Supplementary Table S22). LUSC samples
were divided into high- and low-risk score groups
(Supplementary Table S23) according to the median value of
risk scores. The Kaplan–Meier method was used to evaluate the
availability of prognostic model between high- and low-risk
score groups. PCA was performed to measure classifications
with risk sore. The distribution of immune cells was analyzed
between high- and low-risk score groups in LUSC patients.
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Clinic correlation between high- and low-risk score groups was
analyzed with pheatmap R package. In addition, clinical
characteristics (including age at initial diagnosis, anatomic
subdivision, follow-up, gender, number pack years smoked,
pathological M, pathological N, pathological T, pathological
stage, cancer status, radiation therapy, and targeted molecular
therapy) associated with OS (Supplementary Table S24) were
analyzed with univariate and multivariate Cox regression models
in LUSC patients.

Correlation Between Gene Expressions in
Prognostic Model and Clinical
Characteristics
The correlation between gene expressions in prognostic model
and clinical characteristics was performed with Beeswarm R
package (https://www.rdocumentation.org/packages/beeswarm/
versions/0.2.3/topics/beeswarm).The scatter plot showed
DEIRG expressions for the TNM degree (pathological T,
pathological N, and pathological M) and pathological stages of
LUAD and LUSC cases, respectively (p < 0.05).

Statistical Analysis
For between-group comparison, each p-value was calculated
with unpaired Student t-test for normally distributed variables,
and with Mann–Whitney U-test (namely, the Wilcoxon rank-
sum test) for non-normally distributed variables, and statistical
significance was set as p < 0.05. FDR and Benjamini–Hochberg
for multiple testing was used for DEIRG, GO, and KEGG
analyses. The Kaplan–Meier method was used to generate
survival curves, and the log-rank (Mantel-Cox) test was used
to evaluate statistical significance (p < 0.05). The hazard ratio was
calculated for univariate and/or multivariate Cox proportional
hazard regression models (p < 0.05).
RESULTS

High and Low mRNAsi Subtypes in
LUAD and LUSC
The lung cancer survival data and corresponding mRNAsi data
were from LUAD (n=452) and LUSC (n = 363) patients. X-tile
software was used to divide samples into high- and low-mRNAsi
subtypes, with cutoff value = 0.263 (c2 = 3.0935) in LUADs
(Figure 2A) and cutoff value = 0.203 (c2 = 5.3207) in LUSCs
(Figure 2B), respectively (LUAD: n = 39 for high mRNAsi group
and n = 413 for low mRNAsi group; LUSC: n = 173 for high
mRNAsi group and n = 190 for low mRNAsi group)
(Supplementary Tables S1, S2). The patients with high mRNAsi
showed significant poor prognosis in LUAD (p = 0.047) and LUSC
(p = 0.021) (Figures 2C, D). The mRNAsi range was from 0 to 1,
and the closer itwas to1, the stronger the characteristics of stemcells
were. The abundance of each TME cell infiltration based on RNA
expression data was calculated in LUAD and LUSC with
CIBERSORT, respectively (Supplementary Tables S3, S4),
including naïve B cells, B cells memory, plasma cells, T cells CD8,
T cells CD4memory resting, T cells CD4memory activated, T cells
follicular helper, Tregs, NK cells resting, NK cells activated,
Frontiers in Endocrinology | www.frontiersin.org 5
monocytes, macrophages M0, macrophages M1, macrophages
M2, dendritic cells resting, dendritic cells activated, mast cells
resting, mast cells activated, eosinophils, and neutrophils.
ESTIMATE R package estimated stromal and immune cells in
LUAD and LUSC tissues with ImmuneScore, StromalScore,
ESTIMATEScore, and tumor purity (Supplementary Tables S5,
S6). The positive associations were found between mRNAsi and
tumor purity (Figures 2E, F). The negative associations were found
between mRNAsi and ImmuneScore (Figures 2G, H), between
mRNAsi and StromalScore (Figures 2I, J), and between mRNAsi
and ESTIMATEScore (Figures 2K, L). Additionally, the
distribution of immune cells between high- and low-mRNAsi
subtypes were significantly different in LUAD, including B cells
memory (p = 0.002), dendritic cells resting (p = 0.005),
macrophages M0 (p = 0.025), mast cells resting (p = 0.0008),
monocytes (p = 0.039), plasma cells (p = 0.014), and T cells CD4
memory resting (p = 0.034) (Figure 3A). Among them, the
distribution of B cells memory, dendritic cells resting, mast cells
resting, monocytes, and T cells CD4 memory resting were
significantly higher in low-mRNAsi subtype (p < 0.05), and the
distribution ofmacrophagesM0 and plasma cells were significantly
higher in high-mRNAsi subtype (p < 0.05) (Figure 3A). The
distribution of immune cells between high- and low-mRNAsi
subtypes were significantly different in LUSC, including
macrophages M1 (p = 0.003), plasma cells (p = 0.014), T cells
CD4 memory resting (p = 0.023), T cells CD4 memory activated
(p = 0.038), and T cells CD8 (p = 0.035) (Figure 4A). Among them,
the distribution of macrophages M1, T cells CD4 memory resting,
T cells CD4 memory activated, and T cells CD8 were significantly
higher in low-mRNAsi subtype (p < 0.05), and the distribution of
plasma cells was significantly higher in high-mRNAsi subtype (p <
0.05) (Figure 4A).
DEIRGs Between High- and Low-mRNAsi
Subtypes in LUAD and LUSC
In total, 34 DEIRGs were identified between high- and low-mRNAsi
subtypes in LUAD (Figure 3B and Supplementary Table S7),
including 9 upregulated DEIRGs (OBP2A, CALCB, PTH2R,
PDIA2, FABP2, CGA, PMP2, LCN8, and RETNLB) and 25
downregulated DEIRGs (CMA1, CRLF2, ELANE, IL2, GLP1R,
PRTN3, EDN3, CD1B, ANGPTL5, FCN2, IL12B, CTSG, CCR9,
PCSK2, CSF2, CD1A, ANGPTL7, AZU1, CCL17, CNTFR, CD1E,
IL22RA2, HTR3A, IL1F7, and BMP7). In addition, high correlations
(correlation coefficient > 0.4, and p < 0.05) occurred between these
DEIRGs in LUAD, for example, CALCBandOBPIA (Cor= 0.52, p=
0.004),CALCBandCGA(Cor=0.51, p=0.034),CMA1andCNTFR
(Cor=0.41,p=0.028),ANGPTL7andCMA1(Cor=0.49,p=0.003),
ANGPTL7 and CNTFR (Cor = 0.44, p = 0.021), ANGPTL5 and
CMA1 (Cor = 0.48, p = 0.014), ANGPTL5 and CNTFR (Cor = 0.45,
p = 0.032), ANGPTL7 and ANGPTL5 (Cor = 0.53, p = 0.001),
ELANE and CTSG (Cor = 0.46, p = 0.014), AZU1 and CTSG (Cor =
0.43, p=0.037),CD1AandCCL17 (Cor=0.40, p=0.008), andCD1E
and IL12B (Cor = 0.48, p = 0.017) (Figure 3C).

In total, 32 DEIRGs were identified between high- and low-
mRNAsi subtypes in LUSC (Figure 4B and Supplementary
Table S8), including 8 upregulated DEIRGs (PMP2, NR2E1,
October 2021 | Volume 12 | Article 755805
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IAPP, CALCA, FGF8, GPHA2, NR5A1, and MCHR2) and 24
downregulated DEIRGs (CCL1, BPI, IL2, IL27, CCL16, KLRC4,
IL26, NCR1, FAM19A1, KLRC3, KIR2DS4, PAEP, RNASE3,
R3HDML, CRLF2, CCL3L3, ELANE, KIR2DL1, KLRC1, CMA1,
CLEC4M, CCL23, KIR2DL3, and PAK3). In addition, high
correlations (correlation coefficient > 0.4 and p < 0.05)
occurred between these DEIRGs in LUSC, for example,
KIR2DS4 and KIRIPL1 (Cor = 0.56, p = 0.013), KLRC3 and
KIRIDL3 (Cor = 0.45, p = 0.024), KLRC3 and KIRIDL1 (Cor =
0.42, p = 0.038), KLRC3 and KIRIDS4 (Cor = 0.59, p = 0.001),
CMA1 and CCL23 (Cor = 0.49, p = 0.044), CRLF2 and CMA1
(Cor = 0.40, p = 0.014), ELANE and R3HDML (Cor = 0.40, p =
0 .037) , and KIRC1 and NCR1 (Cor = 0 .59 , p =
0.004) (Figure 4C).

DEIRG-Mediated Signaling Pathways and
Their Functional Characteristics in LUAD
and LUSC
KEGG pathway analysis of DEIRGs in LUAD identified 13
significant pathways, including cytokine–cytokine receptor
Frontiers in Endocrinology | www.frontiersin.org 6
interaction, JAK-STAT signaling pathway, hematopoietic cell
lineage, neuroactive ligand–receptor interaction, renin–
angiotensin system, viral protein interaction with cytokine and
cytokine receptor, C-type lectin receptor signaling pathway,
allograft rejection, type I diabetes mellitus, intestinal immune
network for IgA production, autoimmune thyroid disease, and
tight junction (Figure 5A and Supplementary Table S9). GO
analysis of DEIRGs in LUAD identified 142 significant BPs, 9
CCs, and 28 MFs (Figure 5B and Supplementary Table S11).
Protein–protein interaction (PPI) network showed some of the
high combined scores (combined score >0.9) between those
DEIRGs in LUAD; for example, CSF2 and IL2, ELANE and
CTSG, ELANE and AZU1, PRTN3 and AZU1, ELANE
and PRTN3, AZU1 and CTSG, PRTN3 and CTSG, GLP1R and
PTH2R, CGA and PTH2R, CGA and GLP1R, CALCB and
GLP1R, CALCB and PTH2R, and CGA and CALCB
(Figure 5C and Supplementary Table S13).

KEGG pathway analysis of DEIRGs in LUSC identified six
significant pathways, including antigen processing and
presentation, cytokine–cytokine receptor interaction, natural killer
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FIGURE 2 | Correlation analysis between ESTIMATE scores and mRNAsi. (A) The samples were divided into two groups with X-tile in LUAD (x = mRNAsi × 100
and y = number of patients). (B) The samples were divided into two groups with X-tile in LUSC (x = mRNAsi × 100 and y = number of patients). (C) Kaplan–Meier
survival curves show that the low-mRNAsi group had a better OS rate than the high mRNAsi group in LUAD. (D) Kaplan–Meier survival curves show that the low
mRNAsi group had a better OS rate than the high mRNAsi group in LUSC. (E) The correlation between tumor purity and mRNAsi in LUAD. (F) The correlation
between tumor purity and mRNAsi in LUSC. (G) The correlation between immunescore and mRNAsi in LUAD. (H) The correlation between immunescore and
mRNAsi in LUSC. (I) The correlation between stromalscore and mRNAsi in LUAD. (J) The correlation between stromalscore and mRNAsi in LUSC. (K) The
correlation between ESTIMATEscore and mRNAsi in LUAD. (L) The correlation between ESTIMATEscore and mRNAsi in LUSC.
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cell-mediated cytotoxicity, graft-versus-host disease, viral protein
interaction with cytokine and cytokine receptor, and chemokine
signaling pathway (Figure 6A and Supplementary Table S10). GO
analysis of DEIRGs in LUSC identified 81 significant BPs, 5 CCs,
and 12 MFs (Figure 6B and Supplementary Table S12). PPI
network showed some of the high combined scores (combined
Frontiers in Endocrinology | www.frontiersin.org 7
score > 0.9) between those DEIRGs in LUSC, for example, CALCA
and IAPP, ELANE and BPI, ELANE and RNASE3, KLRC1 and
KIR2DL1, KLRC1 and KIR2DL3, CCL16 and CCL1, RNASE3 and
BPI, KLRC1 and KLRC4, CALCA and GPHA2, KIR2DL3
and KIR2DL1, CCL16 and MCHR2, MCHR2 and CCL1, and
GPHA2 and IAPP (Figure 6C and Supplementary Table S14).
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FIGURE 3 | Identification of DEIRGs between higher- and lower-mRNAsi groups in LUAD. (A) The distribution of immune cells between higher- and lower-mRNAsi
groups. (B) DEIRGs between higher- and lower-mRNAsi groups. (C) The correlation between DEIRGs. *p < 0.05, **p < 0.01, ***p < 0.001.
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Potential TF-DEIRG Regulatory Networks
in LUAD and LUSC
To explore the potential upstream regulatory mechanism of
DEIRGs, RNA-sequencing data of TFs were selected from
TCGA database based on Cistrome DB in LUAD and LUSC
(Supplementary Tables S15, S16), respectively. Subsequently,
correlation analysis was carried out between TFs and DEIRGs,
and only significant correlations with p < 0.05 and correlation
coefficient > 0.4 were selected as results, which were shown for
LUAD (Figure 5D and Supplementary Table S17) and LUSC
(Figure 6D and Supplementary Table S18). In LUAD, 26 TFs
Frontiers in Endocrinology | www.frontiersin.org 8
were identified as potential upstream regulatory mechanisms of
DEIRGs, including ASCL1, BACH2, BRCA1, CEBPA, CENPA,
CIITA, E2F1, ETV1, EZH2, FOXM1, FOXP3, GATA6, IKZF1,
IRF4, MYBL2, MYH11, NCAPG, PPARG, RBP2, RXRG,
SCML2, SOX17, SPIB, STAT4, TAL1, and TCF21. In LUSC,
29 TFs were identified as potential upstream regulatory
mechanisms of DEIRGs, including BATF, CIITA, EOMES,
EPAS1, ESR1, ETS1, FLI1, FOXA2, FOXP3, GATA6, HNF1B,
HNF4A, IKZF1, IRF1, IRF4, MEF2C, MITF, NFE2, NR5A2,
RBP2, RUNX1T1, SOX17, SPIB, STAT4, TAL1, TCF21, TCF7,
and VDR.
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FIGURE 4 | Identification of DEIRGs between higher- and lower-mRNAsi groups in LUSC. (A) The distribution of immune cells between higher- and lower-mRNAsi
groups. (B) DEIRGs between higher- and lower-mRNAsi groups. (C) The correlation between DEIRGs. *p < 0.05, **p < 0.01, ***p < 0.001.
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Construction of Prognostic
Model for LUAD
DEIRGs in LUAD were used for COX regression analysis to select
OS-related DEIRGs for lasso regression analysis, and 11 DEIRGs
were significantly related to OS, including ANGPTL5, ANGPTL7,
CCL17,CD1A,CD1B,CD1E,CNTFR,CTSG,EDN3, IL12B, and IL2
(Supplementary Table S19). Among these OS-related DEIRGs, the
eight-immune-related gene-signature model (ANGPTL5, CD1B,
CD1E, CNTFR, CTSG, EDN3, IL12B, and IL2) was established
with lasso regression to improve the predictive accuracy for OS in
LUAD, when log (lambda) was between −4 and −5 (Figures 7A, B).
Based on this eight-immune-related gene-signature model, LUAD
tissue samples were divided into high- and low-risk score groups
according to the mean value of risk scores (Supplementary Table
S20). Additionally, OS showed statistical significance between high-
and low-risk score groups (Figures 7C, D). All LUAD samples were
Frontiers in Endocrinology | www.frontiersin.org 9
well-divided into two groups (high- and low-risk groups) according
to risk scoresbasedonPCAverification (Figure7E).Thedistribution
of immune cells was significantly different between high- and low-
risk score groups in LUAD, including B cells naive, B cells memory,
dendritic cells resting, macrophages M0, monocytes, mast cells
resting, neutrophils, plasma cells, and NK cells activated
(Figure 7F). The heatmap showed that the high-risk group had a
significant association with clinical features, including follow-up,
number of pack years smoked, pathologicalT, pathological stage, and
cancer status (Figure 7G and SupplementaryTable S21). The eight-
immune-related gene signaturewas consistentwith single-factorCox
regression analysis of gene. The univariate Cox regression analysis
revealed that follow-up, pathological N, pathological T, pathological
stage, cancer status, radiation therapy, and risk score were
significantly correlated with OS (Figure 7H). The multivariate Cox
regression analysis revealed that cancer status [hazard ratio (HR) =
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FIGURE 5 | Function enrichment analysis of DEIRGs and TF-DEIRG network in LUAD. (A) KEGG pathway analysis of DEIRGs. (B) GO analysis of DEIRGs. The bar
plots and bubble plots show the top terms of biological processes (BPs), cellular components (CCs), and molecular functions (MFs). (C) PPI network of DEIRGs.
(D) TF-DEIRG network in LUAD. The blue circle refers to the TFs, the red circle refers to the upregulated DEIRGs, and the green circle refers to the downregulated
DEIRGs. The red line is the positive correlation between TFs and DEIRGs. The green line is the negative correlation between TFs and DEIRGs.
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12.783, 95%CI (5.860–27.855), p < 0.001] and risk score [HR=7.946,
95%CI (2.205–28.627), p = 0.002] possibly acted as an independent
risk factor in LUAD (Figure 7I).

Construction of Prognostic
Model for LUSC
DEIRGs in LUSC were used for multivariate COX regression
analysis to select OS-related DEIRGs to construct prognostic
model, and the five-immune-related gene-signature model (CCL1,
KLRC3, KLRC4, CCL23, and KLRC1) was established with
multivariate COX regression to improve the predictive accuracy
for OS in LUSC (Supplementary Table S22). Based on this five-
immune-related gene-signature model, all LUSC samples were
divided into high- and low-risk score groups according to the
mean value of risk scores (Supplementary Table S23).
Additionally, OS showed statistical significance between high- and
low-risk score groups (Figures 8A, B). All LUSC samples were
Frontiers in Endocrinology | www.frontiersin.org 10
divided into high- and low-risk groups according to risk score based
on PCA verification (Figure 8C). The distribution of immune cells
was significantly different between high- and low-risk groups,
including naive B cells, B cells memory, and NK cells activated
(Figure 8D). The heatmap showed that high-risk group had a
significant association with clinical features, including pathological
N and pathological stage (Figure 8E and Supplementary Table
S24). The five-immune-related gene-signature was consistent with
single-factor Cox regression analysis of gene. The univariate Cox
regression analysis revealed that follow-up, pathological M,
pathological T, pathological stage, cancer status, and risk score
were significantly correlated with OS (Figure 8F). The multivariate
Cox regression analysis revealed that cancer status [HR = 3.753 95%
CI (1.523–9.249), p = 0.004], pathological M [HR = 1.333, 95%CI
(1.068–1.664), p = 0.011], and risk score [HR = 2.350, 95%CI
(1.487–3.714), p < 0.001] possibly acted as an independent risk
factor in LUSC (Figure 8G).
A

B

D

C

FIGURE 6 | Function enrichment analysis of DEIRGs and TF-DEIRG network in LUSC. (A) KEGG pathway analysis of DEIRGs. (B) GO analysis of DEIRGs. The bar
plots and bubble plots show the top terms of biological processes (BPs), cellular components (CCs), and molecular functions (MFs). (C) PPI network of DEIRGs.
(D) TF-DEIRG network in LUSC. The blue circle refers to the TFs, the red circle refers to the upregulated DEIRGs, and the green circle refers to the down-regulated
DEIRGs. The red line is the positive correlation between TFs and DEIRGs. The green line is the negative correlation between TFs and DEIRGs.
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Correlations Between DEIRG Expression
in Prognostic Model and Clinical Data in
LUAD and LUSC
The TNM system (including pathological T, pathological N,
pathological M, and pathological stage) was the most commonly
used cancer staging evaluation method for cancer diagnosis. In
LUAD, each DEIRG expression from prognostic model was
significantly correlated with TNM system, including ANGPTL5
and CNTFR with pathological N and pathological T; CD1B, CD1E,
Frontiers in Endocrinology | www.frontiersin.org 11
CTSG, EDN3, and IL2 with pathological stage and pathological T;
and IL12B with pathological T (Figure 9). In LUSC, only KLRC3
expression from prognostic model was significantly correlated with
pathological M in TNM system (Figure 9).
DISCUSSION

With in-depth studyofCSC theory, itwas found thatCSCshad (i) the
obvious characteristics such as self-renewal and unlimited
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FIGURE 7 | Lasso regression identified the prognostic model in LUAD. (A, B) Lasso regression complexity was controlled by lambda with glmnet R package.
(C) OS analysis between high- and low-risk score groups. (D) Risk plot between high- and low-risk score groups. (E) Principal component analysis (PCA) for risk
scores revealed two completely disjoint populations, suggesting that there existed extensive differences in the landscape of risk scores between high- and low-risk
score samples. Blue means low-risk score samples; red means high-risk score samples. (F) Boxplot showed the ratio differences of nine immune cells between high-
and low-risk score groups in LUAD, and Wilcoxon rank sum was used for the significance test. (G) The heatmap of clinical correlation between high- and low-risk
score groups in LUAD. (H) The univariate Cox regression analysis of risk factors in LUAD. (I) The multivariate Cox regression analysis of risk factors in LUAD.
*p < 0.05, **p < 0.01, and ***p <0.001.
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FIGURE 8 | The multiple linear regression identified the prognostic model in LUSC. (A) OS analysis between high- and low-risk score groups. (B) Risk plot between
high- and low-risk score groups. (C) Principal component analysis (PCA) for the risk scores. Blue means low-risk score samples; red means high-risk score samples.
(D) Boxplot showed the ratio differences of four immune cells between high- and low-risk score groups in LUSC, and Wilcoxon rank sum was used for the
significance test. (E) The heatmap of clinical correlation between high- and low-risk score groups in LUAD. (F) The univariate Cox regression analysis of risk factors in LUSC.
(G) The multivariate Cox regression analysis of risk factors in LUSC. *p < 0.05, **p < 0.01.
Frontiers in Endocrinology | www.frontiersin.org October 2021 | Volume 12 | Article 75580512

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Li et al. Cancer Stemness and TME in Lung Cancer
proliferation; (ii) pathological behaviors to participate in radio-
resistance, metastasis, relapse, and drug resistance; and (iii)
extensive clinical application in diagnosis and treatment, in lung
cancers (22, 23). One study separated CSCs with single-cell assay of
human LUAD cancer cells (A549), with CD44+/CD24−/phenotype
characteristics, special stemness-related gene expression, and
Hoechst 33342 dye efflux assay, and the secondary protein
structure of CSCs changed when compared to non-stem cancer
cells (24). It clearly demonstrated that CSCs might be prognostic
biomarkers in cancer therapy (24). Multidrug resistance and
epithelial–mesenchymal transition (EMT) were closely associated
with the existence of CSCs, which offered promise in developing
reliable CSCmarkers of NSCLC-associatedmultidrug resistance and
EMT. Some studies began to focus on specific stemness-related
pathways such as Wnt/b-catenin pathway and revealed the
mechanism of malignant phenotype (25). A CSC-targeted therapy
with good biocompatibility and targeting capabilitywas developed to
disrupt the growth and survival of CSCs, which might provide an
effectiveapproach toprevent the relapsecausedbyCSCs (26).Astudy
Frontiers in Endocrinology | www.frontiersin.org 13
on CSC might provide valuable clues to solve the poor prognosis of
lung cancer. Some lung cancer CSCs might be retained, but not
eliminated, under the traditional therapies. The interaction between
TME and CSCs might provide new clues to treat CSCs in a cancer
(27). Especially in TME, the relationship between lung CSCs and
tumor-infiltrating lymphocytes was very marginally considered.
High ALDH expression was a key biomarker for CSCs.
Immunohistochemistry revealed statistically positive correlations
between ALDH+ and CD8+ and between ALDH+ and CD3+ cells
populations. CSCs existed in different lymphocyte distribution,
which might contribute to precision medicine management of
different kinds of lymphocytes (28). CSCs also showed obvious
properties to shape TME and help themselves to escape recognition
from the immune system and become immunosuppressive (29). In
turn, tumor-infiltrating immune cells also affected the status of tumor
cells. For example, inflammatory factors [TGF-b combined with
tumor necrosis factor alpha (TNF-a)] could induce tumor cells to
turn CSCs with high expression of CD133, CD44, Bmi1, and Oct4
(30). CD4+ CD25+ Tregs were well-known to reduce antitumor
FIGURE 9 | Correlations between DEIRG expressions in prognostic model and clinical data in LUAD and LUSC.
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immunity, and Tregs increased side population of mouse breast
cancer cells, promoted sphere formation, and upregulated stemness-
related genes. It revealed a certain interaction between Tregs and
CSCs,which suggested that targeting the crosstalk betweenTregs and
CSCs was a promising strategy (31). Thus, better understanding of
individualized immune signature and tumor immunology of CSCs
might be one of the most effective treatments under the background
of immunotherapy strategy (32).

This study analyzed the associations between cancer stemness
and TME in lung cancer, which identified DEIRGs between high-
and low-mRNAsi subtypes in LUAD and LUSC, respectively. The
literature reported that some DEIRGs played an important role in
stemness processes. Interleukin-27 (IL27) encoded one of subunits
of a heterodimeric cytokine complex (33). The IL27–IL12B complex
drove rapid expansion of naive CD4(+) T cells and trigger
interferon gamma (IFNG) production of naive CD4(+) T cells.
IL-27 downregulated stemness-related genes, such as SONIC
HEDGEHOG in LUAD cells, and NOTCH1, SOX2, KLF4,
Nestin SNAI2/SLUG, OCT4A, SNAI1/SNAIL, and ZEB1 in
LUSC cells (33). Additionally, clinical data showed that even
immunocompromised or advanced NSCLC patients could benefit
from the treatment of IL-27 based on its ability to downregulate
stemness-related genes (33). Bonemorphogenetic protein 7 (BMP7)
encoded a member of TGF-beta family of proteins. The function of
BMP7 was to activate a dormant state in cancer cells by p38 MAPK
signaling and p21 expression to reduce stemness (34).

C–C motif chemokine ligand 1 (CCL1) belonged to chemokine
CC family and was secreted by activated T cells and displayed
chemotactic activity for monocytes. CD4+ CD25+ Tregs could
reduce antitumor immunity and had a crosstalk with CSCs. The
activated NF-kB-CCL1 signaling could recruit CD4+ CD25+ Tregs
by reducing the binding of H3K27Me3 on promoter regions of p65
and Ccl1, and recruited CD4+ CD25+ Tregs increased the
expressions of stemness-related genes (31). Heparin-binding
growth factor 8 (FGF8) encoded by this gene was a member of
the fibroblast growth factor (FGF) family. FGF family members
played crucial roles in mitogenic and cell survival activities. FGF8
was also reported to dramatically enhance stemness (35). Activated
macrophages (M2) secreted chemokines, such as chemokine ligand
17 (CCL17), whose expression was significantly associated with
clinical pathological characteristics of hepatocellular carcinoma and
with poorer overall survival rates. The stemness could be examined
by flow cytometry, sphere formation, and Western blot. When
cancer cells treated with CCL17, stemness-related markers were
highly expressed, and EMT process was enhanced (36). The
cytokine colony-stimulating factor 2 (CSF2) controlled
production, differentiation, and function of granulocytes and
macrophages. Myeloid-derived suppressor cells (MDSCs) were
one kind of immune cells leading to tumor immune escape,
which was verified with cell colony formation, tumor sphere
formation, and CSC biomarkers (NANOG and c-MYC). MDSCs
could induce CSCs and promote tumor immune evasion in different
kinds of cancers through CSF2/p-STAT3 signaling pathway. When
CSF2 was deleted in tumor cells, cell stemness could be markedly
reversed through downregulating CSF2 expression (37). Further
studies on the interactions between immune system and CSCs and
Frontiers in Endocrinology | www.frontiersin.org 14
targeting on the key point among them might be a promising
strategy in cancer therapy.

This study found that DEIRGs between high- and low-
mRNAsi subtypes in LUAD and LUSC were enriched in some
crucial signaling pathways. Some enriched signaling pathways
were reported to play an important role in stemness processes.
For example, Janus kinases/signal transducer and activator of
transcription (JAK/STAT) signaling pathway took part in
cellular processes such as proliferation, cell death, cell division,
immunity, and tumor formation, and this pathway could help
transfer communication information from extracellular chemical
signals to cell nucleus to activate gene transcription process (38). A
previous study on microRNA-related signaling pathways
contributing to stemness features of CSCs found that JAK/STAT
was one of the various targeted signaling pathways that
contributed to dysfunctions of stemness-related microRNAs
(39). This finding prompted one to further study whether
DEIRGs between high- and low-mRNAsi subtypes enriched in
JAK/STAT pathway (CNTFR, CRLF2, CSF2, IL12B, IL2, and
IL22RA2 in LUAD) affect stemness in lung cancer. The
chemokine family depended on seven-transmembrane-spanning
G-protein-coupled receptors to generate activity. The diversity of
chemokine–chemokine receptor interaction made the function of
chemokines become more complicated and plastic. Chemokines
and their receptors did not only mediate leukocyte infiltration into
TME but also multiple hallmark processes of a cancer. However,
chemokines and their receptors were not fully understood yet (40).
A study found chemokines to be implicated in contributing to
tumor heterogeneity through maintenance or promotion of stem-
like phenotype. The CXCR4 (chemokine)/CXCL12 (chemokine
receptor) interaction helped to promote tumor-initiating cells in
lung carcinomas, which was associated with resistance to
chemotherapy (41). DEIRGs between high- and low-mRNAsi
subtypes enriched in cytokine–cytokine receptor interaction
pathway (BMP7, CCL17, CCR9, CNTFR, CRLF2, CSF2, IL12B,
and IL2 in LUAD, and CCL16, CCL1, IL2, CCNA2, IL26, CCL23,
IL27, and DOLKL in LUSC) could provide potential and novel
cytokines and cytokine receptors for CSC study. Antigen
processing and presentation was a vital immune process to
trigger T-cell immune response. The recognition of fragmented
antigens in tumor cells by immune cells depended on major
histocompatibility complex (MHC) and related receptors on
immune cell surfaces (42). Studies showed that immunogenicity
of CSCs was lower than non-stemness cancer cells, and CSCs were
good at concealing their specific antigens to escape the immune
effect of immune cells (43). Therefore, it was necessary to
recognize and increase the specific antigen on the surface of
tumor stem cells to increase immune. Renin–angiotensin system
(RAS) was commonly known to regulate systemic vascular
resistance, body fluid homeostasis, and blood pressure. However,
RAS was also involved inmaintenance and differentiation of CSCs,
which showed that identification of RAS components in CSCs
could provide a novel way for therapeutic targeting with RAS
modulators in common clinical use (44). DEIRGs between high-
and low-mRNAsi subtypes enriched in RAS-related pathways
(CMA1 and CTSG in LUAD) were consistent with previous
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studies. Recently, a great improvement has been achieved from
immune checkpoint therapy; for example, immune checkpoint
therapy can kill CSCs (45). PD-L1 was one of definite checkpoints
for tumor cells to escape from immune surveillance because PD-
L1 binds PD-1 receptor to block T cell function. A study found
that PD-L1 was highly expressed in CD133+CD44+ colorectal
CSCs, and the altered PD-L1 could upregulate the expressions of
stemness-related genes to increase CSC self-renewal ability to form
tumor spheres. Thus, anti-PD-L1 monoclonal antibodies might
crucially contribute to kill CSCs. DEIRGs between high- and low-
mRNAsi subtypes enriched in antigen processing and presentation
pathway (KLRC4, KIR2DL1, KLRC3, KLRC1, KIR2DS4, and
KIR2DL3 in LUSC) could offer much more possible
mechanisms of immunological process of CSCs. Further study
on the interaction between immune-related pathways and CSCs
wouldmake potential mechanism of immunotherapymore clearer
in cancer therapy.

The interaction between CSCs and immune cells and
alteration of tumor-infiltrating immune cells around CSCs
were observed in various cancers (27). This study found that
the distribution of immune cells between high- and low-mRNAsi
subtypes were significantly different, including B cells memory,
dendritic cells resting, macrophages M0, mast cells resting,
monocytes, plasma cells, T cells CD4 memory resting in
LUAD, and macrophages M1, plasma cells, T cells CD4
memory resting, T cells CD4 memory activated, and T cells
CD8 in LUSC. Some of these immune cells were reported to play
an important role in stemness processes. For example, cellular
colocalization of cathepsins B and D on CSCs and cathepsin G
on mast cells suggested that the altered distribution of mast cells
was observed in TME CSCs (46). The efficiency of dendritic cell
(DC)-based treatment targeting CSCs was tested in breast cancer
treatment. After DCs pulsed with breast CSC total RNA, total
lymphocytes were cocultured with CSC total RNA-pulsed DCs
and populations of lymphocytes and were analyzed with flow
cytometry. The results showed that cocultured productions
contained cytotoxic CD8 T lymphocytes, CD4 T lymphocytes,
NK, and NKT cells (47). Tumor-associated macrophages, one
population of key immune cells in TME, were closely associated
with the progression of NSCLC. In terms of molecular
mechanisms, macrophage-derived IL-10 activated JAK1/
STAT1/NF-kB/Notch1 signaling to enhance properties of
stemness in NSCLC. In turn, when IL-10/JAK1 signaling was
blocked, CSC-related genes might be reversed (48). Monocytes,
as the largest type of leukocyte, differentiated into dendritic cells
and macrophages. Even though they belonged to innate immune
system, monocytes also involved in the process of adaptive
immunity. Tumor-associated monocytes created a CSC niche
through juxtacrine secretion pathway to enhance CSC activities
of carcinoma cells (49). Hepatocarcinoma cells HepG2 were
cocultured with mouse splenic B cells (MSBCs). Those HepG2
cells were verified to obtain stem-cell-like characteristics, such as
high tumorigenic capacity, self-renewal, extensive proliferation,
overexpression of CSC-related genes and proteins, drug
resistance, and highly activated Notch and SHH signaling
pathways (50). CD8+ T-cells-mediated antitumor immunity
Frontiers in Endocrinology | www.frontiersin.org 15
was one of developed strategies to target CSCs. One previous
study isolated CSCs from human lung cancer cell line H460 with
special marker ALDEFLUOR, and CSC lysate-pulsed dendritic
cells was used to stimulate CD8+ T cells as a treatment strategy.
The results indicated that ALDH-high-CD8+T cells might
directly target against ALDH-high CSCs to mediate antitumor
immunity (51). This study found that the distribution of immune
cells was significantly different between high- and low-risk score
groups in LUAD and LUSC, respectively. Most of these results
were coincident with the distribution of immune cells between
high- and low-mRNAsi subtypes. Moreover, immune cells might
recognize, attack, and eliminate cancer cells, and they might also
have the ability to induce a small population of cancer cells to
acquire stem cell-like characteristics. Our results revealed that
CSC-cell-based tumor-infiltrating immune cell immunotherapy
might be clinically useful.

TFs were involved in regulating “turn on and off” genes by
binding to a specific DNA sequence. Groups of TFs had diverse
effects throughout the life of the cell and organism, such as cell
migration, division, growth, death, and organization during
embryonic development (52). To explore the underlying
correlation between DEIRGs and TFs, this study screened TF-
DEIRG regulatory networks. A total of 26 TFs in LUAD and 29
TFs in LUSC were identified as potential upstream regulatory
mechanisms of DEIRGs. Some of these identified TFs in LUAD
and LUSC were closely associated with stemness in lung cancer.
For example, forkhead box M1 (FoxM1) was involved in cell
proliferation and regulated the expression of cell cycle genes
(cyclin B1 and cyclin D1). A study found that the upregulation of
TF FoxM1 mediated the acquisition of cancer stem-like cell
characteristics in NSSLC H460 cells with analysis of stemness
markers (CD133, ALDH1, and CD44) (53). Enhancer of zeste 2
polycomb repressive complex 2 subunit (EZH2) was one of the
members of polycomb-group (PcG) family, which played roles in
maintaining the transcriptional repressive state of related genes
during cell division (54). EZH2 altered stem-like phenotypes and
progression of lung cancer via regulating the malignant gene
modifier (histone methyltransferase) (55). Nuclear receptor
NR5A2 was a regulator of stemness of pluripotent stem cells
and embryonic stem cells, which was also reported to promote
CSC properties and tumorigenesis in NSSLC by regulating
Nanog (56). Hypoxia-inducible factor-2 alpha (HIF-2a) was
involved in the induction of genes regulated by oxygen, which
was induced by decreased oxygen levels. Hypoxia was considered
to be one of the most important factors in TME. Most malignant
tumors produced a hypoxic microenvironment that was
conducive to their own development, which suppressed
immune response (57). Lung cancer stem-like cells [CD133(+)]
A549 were divided from cultured cells with serum-free culture
conditions by fluorescence-activated cell sorting. Tissue sections
from 50 NSSLC cases were used to estimate the correlation
between HIF-2a levels and lung cancer stem-like cells [CD133
(+)] with immunohistochemical analysis. HIF-2a levels were
significantly higher in CD133(+) cells compared to CD133(−)
cells, and HIF-2a caused radioresistance of CSCs (58). For this
study, the construction of TF-DEIRG regulatory networks
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provided some molecular mechanisms of CSC processes in
lung cancer.

Most CSCs are dormant and have strong drug resistance and
insensitivity to radiotherapy. The traditional chemotherapy
drugs and radiotherapy might not kill them effectively, which
results in tumor metastasis and recurrence. Due to the
development and application of immunotherapeutic drugs
such as targeting PD-1 and PD-L1, immunotherapy has
become one of the main treatment of lung cancer. As an
effective therapeutic method, cellular immune intervention can
target tumor-specific antigen and/or tumor-associated antigen
and specifically remove tumor cells or CSCs. This study analyzed
three levels of associations between mRNAsi and immunity,
including (i) the associations of immune-related scores and
mRNAsi, (ii) the associations of immune cells and mRNAsi,
and (iii) differently expressed immune-related genes (DEIRGs)
between high mRNAsi and low mRNAsi groups. Those provided
potential immune molecular markers and mechanisms for
immunotherapy in CSCs. In summary, this study focused on
the alterations of immune-related genes and immune cells
through the acquisition of stemness characteristics based on
mRNAsi in LUAD and LUSC. Usually, it takes two to tango
when ones explore the interaction between stemness and
immunity. Two different prognostic models in LUAD and
LUSC could be useful to further investigate their clinical
application in lung cancers.
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