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Alterations in glucocorticoid metabolism may contribute to the development of obesity
and insulin resistance (IR). Obesity in turn affects the androgen balance. The peripheral
metabolism of steroids is equally an important determinant of their bioavailability and
activity. The aim of this study was to evaluate steroid metabolism in obese children and to
define which enzyme alterations are associated with IR. Clinical characteristics and
anthropometric measurements were determined in 122 obese children and
adolescents (72 girls, 50 boys) aged 8 – 18 years. 26 of them (21.3%) were diagnosed
with IR (13 boys, 13 girls). Routine laboratory tests were performed and 24h urinary
steroid excretion profiles were analyzed by gas chromatography/mass spectrometry.
Positive relationship between 5a-reductase (SRD5A) activity and IR was found. According
to the androsterone to etiocholanolone (An/Et) ratio the activity of SRD5A was significantly
increased in obese children with IR, but the difference remained insignificant once the 5a-
dihydrotestosterone to testosterone (5aDHT/T) ratio was considered. Furthermore, this
relationship persisted in boys but was not observed in girls. The activity of 20a-
hydroxysteroid dehydrogenase (20aHSD) and 20b-hydroxysteroid dehydrogenase
(20bHSD) was reduced only in obese girls with IR. Conclude, in the context of obese
children and adolescents with IR, we surmise that increased SRD5A represents a
compensatory mechanism to reduce local glucocorticoid availability. This phenomenon
is probably different in the liver (restriction) and in the adipose tissue (expected increase in
activity). We show significant changes in 20aHSD and 20bHSD activity in obese girls with
IR, but it is difficult to clearly determine whether the activity of these enzymes is an
indicator of the function in their ovaries or adrenal glands.

Keywords: children, adolescents, obesity, insulin resistance, 20a-hydroxysteroid dehydrogenase, 20b-
hydroxysteroid dehydrogenase, 5a-reductase, urinary steroid metabolites
n.org October 2021 | Volume 12 | Article 7599711

https://www.frontiersin.org/articles/10.3389/fendo.2021.759971/full
https://www.frontiersin.org/articles/10.3389/fendo.2021.759971/full
https://www.frontiersin.org/articles/10.3389/fendo.2021.759971/full
https://www.frontiersin.org/articles/10.3389/fendo.2021.759971/full
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:marta_suminska@o2.pl
https://doi.org/10.3389/fendo.2021.759971
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2021.759971
https://www.frontiersin.org/journals/endocrinology
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2021.759971&domain=pdf&date_stamp=2021-10-26
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INTRODUCTION

In 1974, experts from the World Health Organization (WHO)
placed obesity on the infamous list of civilization diseases.
Unfortunately, since then, the problem of excess body mass is
still increasing among populations worldwide, including
children. According to the data from 2016 the number of
obese children (aged > 5 years) and adolescents has increased
since 1974 from 11 to 124 million nowadays, and a further 213
million are overweight (1). In Poland, the problem of excess body
mass, according to various studies (HBSC 2014/2018, COSI,
PITNUTS 2016), affects about 28% of young children, 30% of
early school-age children and on average some 20% of
adolescents up to 15 years of age.

It is well established that steroid hormones play an important
role in determining body fat distribution (2–5). Many studies
have also proved that obesity is associated with abnormalities in
the hypothalamic-pituitary-adrenal (HPA) axis including
alterations in diurnal cortisol rhythm and enhanced
susceptibility of the HPA axis for activation (4, 6–9). All of the
above-mentioned mechanisms may escalate tissue exposure to
glucocorticoids. However, circulating cortisol concentrations in
obese individuals are reported to be within the reference range
(10–14). Adipose tissue dysfunction characterized by increased
visceral fat accumulation, larger adipocyte size and more
abundant macrophage infiltration of the omental fat is
associated with insulin-resistant obesity (15). Klöting et al.
demonstrated increased macrophage infiltration into omental
compared with subcutaneous adipose tissue, which may provide
explanation why many individuals with subcutaneous obesity
seem to be spared from insulin resistance (IR) and other adverse
metabolic effects (15, 16). The molecular mechanisms
determining glucocorticoids impact on diverse adipose tissue
subsets are poorly understood. Bidirectional interaction between
endogenous glucocorticoids and fat tissue in the coexistence of
IR can be explained by elevated GLUT4 expression in the human
visceral adipose tissue. Lundgren et al. showed that omental
adipocytes, an observation display approximately 2-fold higher
glucose uptake rate compared with subcutaneous adipocytes
which was additionally supported by the increased number of
GLUT4 receptors (17). Furthermore, glucocorticoids exert a
marked suppressive action on glucose uptake and the
expression of insulin signaling proteins in omental but not in
subcutaneous adipocytes (5, 17). There is no doubt that steroids
and obesity are linked by several, not fully explained, ways.

So called adrenal androgens, are in fact precursors of the more
potent androgens, released from the adrenal cortex in a parallel
way to glucocorticoids. Both, adrenal androgens and
glucocorticoids are substrates for the same enzymes, however,
the effect of their action may be opposite – androgen activation,
but loss of glucocorticoid power.

11b-hydroxysteroid dehydrogenases (11bHSD) are enzymes
implicated in steroid hormone balance. 11b-hydroxysteroid
dehydrogenase type 1 (11bHSD1) predominantly acts as a
reductase by recovering cortisol from inactive cortisone and
has been localized in the liver, adipose tissue and central
nervous system. Tissue-specific expression of 11bHSD1 can
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enhance local cellular availability of glucocorticoids. 11b-
hydroxysteroid dehydrogenase type 2 (11bHSD2) is an enzyme
expressed in the epithelial tissues such as kidney, colon, salivary
and sweat glands. Its action leads to the oxidation of cortisol to
cortisone and prevents excess activation of the mineralocorticoid
receptors by cortisol (18, 19).

5a-reductase (SRD5A) is an enzyme widely known for
converting testosterone into 5a-dihydrotestosterone (5aDHT),
however, it can also exert an effect on other steroids, including
several androgen precursors and cortisol (20). SRD5A presents
under three isoforms. 5a-reductase type 1 (SRD5A1) is
responsible for conversion of androstenedione to androsterone.
It occurs mainly in the skin and to a lower extent in the prostate
gland. 5a-reductase type 2 (SRD5A2) is involved in the
activation of testosterone to the most potent 5aDHT as
mentioned above. This enzyme is expressed in the testes,
prostate and genital skin. Additionally, both isoenzymes, type 1
and type 2 are found in the liver. The role of 5a-reductase type 3
(SRD5A3) remains unclear, although it appears ubiquitously
expressed in human tissues (21). 5a-reductase often co-occurs
in duet with 5b-reductase: both enzymes represent a convergence
in evolution: they share similar biological functions, but do not
have a common ancestor (22).

The 3b-hydroxysteroid dehydrogenase (3bHSD) is a key
enzyme in the synthesis of all active steroid hormones, such as
glucocorticoids, mineralocorticoids, progesterone, androgens
and estrogens (23, 24). No less important function is the
hepatic degradation of the androstenone (25). 3bHSD controls
critical steroid hormone-related reactions in the adrenal cortex,
gonads, placenta, liver, and other peripheral target tissues (24,
26, 27).

Details of the activities of 20a-hydroxysteroid dehydrogenase
(20aHSD) and 20b-hydroxysteroid dehydrogenase (20bHSD)
remain unclear. The cortols are metabolites of tetrahydrocortisol
(THF) and a-tetrahydrocortisol (aTHF) after degradation by
20aHSD or 20bHSD, while the cortolones are metabolites of
tetrahydrocortisone (THE) after the action of the same enzymes
respectively. The multispecificity of enzymes, especially 20bHSD,
appears to imply different physiological roles in various species
and alternative effects on steroids metabolism (28–32).

11b-hydroxylase is a steroid enzyme found in the zona
glomerulosa and zona fasciculata of the adrenal cortex. There
are two isozymes encoded by the CYP11B1 and CYP11B2 genes
on human chromosome 8q. The first is involved in the
biosynthesis of adrenal corticosteroids, mainly for the
conversion of 11-deoxycortisol into cortisol. It is regulated by
ACTH (33). Dysfunction of this enzyme is associated with
congenital adrenal hyperplasia (34–36). The second isoform is
expressed at low levels in the normal adrenal zona glomerulosa,
but at higher levels in aldosterone-secreting tumors (33).

17b-hydroxysteroid dehydrogenase (17bHSD) controls the
last step in the formation of all androgens and estrogens. It is
involved in both: the activation and inactivation of this
hormones. Fourteen isoforms of this enzymes have been
identified, encoded by HSD17B1 to HSD17B14 genes. Human
adipose tissue is capable of active androgen synthesis catalyzed
by selected 17bHSD isoforms (37, 38). The intraabdominal
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Sumińska et al. Steroid Metabolism in Children With Obesity and IR
adipose tissue may be substantially androgenic, increasingly so
with growing obesity, particularly central obesity.

The peripheral metabolism of steroids is a considerable
determinant of their availability and may be responsible for
altered activity of those hormones. The aim of this study was to
evaluate steroid metabolism in obese children and to investigate
which enzymatic alterations can be associated with IR in
this population.
RESEARCH DESIGN AND METHODS

The study comprised 122 patients (70 girls, 52 boys) aged
between 5 and 18 years (mean 12.0 +/- 3.5) suffering from
childhood obesity (Table 1). Obesity was defined as BMI
values above the 97th percentile of the BMI reference curve
based on percentile scales developed for the population of Polish
children and adolescents. The group was further stratified
according to the presence or absence of IR. Individuals with
obesity secondary to an underlying endocrine disorder or genetic
syndromes, as well as those under current medication were
excluded from the study. All patients underwent routine
clinical assessment including general physical examination,
basic anthropometric measurements and pubertal stage
evaluation based upon Tanner scale. The examination was
followed by blood sampling after overnight fast and 24h urine
collection according to standard protocol. The study was
conducted in line with the Declaration of Helsinki and
approved by the Bioethical Committee at Poznan University of
Medical Sciences. Informed consent was obtained from the
participants aged at least 16 years old and, in case of minors,
from their legal representatives.

Biochemical Analyses
All biochemical measurements were performed in laboratory of
the university reference hospital. Glucose, insulin levels and
lipids profile were assessed after overnight fast (Table 1).
Standard colorimetric method was used for determination of
Frontiers in Endocrinology | www.frontiersin.org 3
plasma glucose level (Clinical Chemistry Analyzer AU680,
Beckman Coulter). Serum insulin was measured by the
chemiluminescence method (Alinity i, Abbott). Insulin
resistance was evaluated based upon fasting plasma glucose
(FPG) and insulin (FPI) with homeostasis model assessment
for IR index (HOMA-IR) (39, 40). For our study IR was defined
as HOMA-IR > 97th percentile together with concomitant FPI >
15 mU/mL (41–44).

Quantification of Urinary
Steroid Metabolites
24-hour urine collections were performed at home to avoid extra
stress connected with hospitalization. To ensure compliance
children and parents were primed in the collection procedure
and also received written instructions.

Samples were stored at -20˚C until analyzed by the in-house
adapted gas chromatography-mass spectrometry (GC-MS)
method as previously described (45–47). All measurements
were performed in the same laboratory in the Centre for
Innovative Research in Medical and Natural Sciences at the
University of Rzeszow, Poland. A list of measured urinary
steroid metabolites is presented in Table 2.

All steroids standards including medroxyprogesterone,
cholesteryl butyrate and stigmasterol were obtained from
Steraloids (Newport RI, USA), the Sep-Pak C18 column from
Waters (Milford, MA, USA), the Lipidex 5000 from Perkin Elmer
(Waltham MA, USA), while b-glucuronidase/arylsulfatase liquid
enzyme, the powdered sulfatase type H-1 enzyme from Helix
pomatia, the derivative agents methoxyamine hydrochloride and
trimethylsilylimidazole (TMSI), pyridine, sodium acetate and acetic
acid were provided by Sigma - Aldrich (Darmstadt, Germany).

In brief, the method comprises a pre-extraction of a urine
sample on a Sep-Pak C18 cartridge with the recovery standard
medroxyprogesterone, enzymatic hydrolysis with sulfatase and
b-glucuronidase/arylsulfatase, and subsequent extraction of the
free steroids again on a Sep-Pak C18 column, derivatization with
methoxyamine hydro-chloride 2% in pyridine at 60˚C for 3
hours and next with TMSI at 100˚C for 16 hours after adding the
TABLE 1 | Clinical phenotype of the non-insulin resistant (non-IR) and insulin resistant (IR) groups.

Non – IR (n = 96) IR (n = 26) p value

Sex (male/female) 39/57 13/13 0.464
Tanner 1/2/3/4/5 (%) 32/15/11/13/29 30/17/17/17/17 0.620

Mean + SD Median (IQR) Mean + SD Median (IQR)

Age (years) 12.2 ± 3.6 13 (9-15) 11.4 ± 3.4 12 (9-14) 0.242
Duration of obesity (years) 6.6 ± 3.6 5 (4-9) 7.6 ± 3.5 7 (5-9) 0.122
BMI (kg/m2) 28.6 ± 5.4 28.0 (25.0-31.2) 33.4 ± 7.4 32.1 (27.1-37.4) 0.002
Z-score BMI 2.1 ± 0.4 2.1 (1.9-2.4) 2.5 ± 0.4 2.5 (2.2-2.7) <0.001
WHR 1.0 ± 0.8 0.9 (0.8-0.9) 0.9 ± 0.0 0.9 (0.9-1.0) 0.285
CHOL (mg/dl) 175.5 ± 31.4 169.0 (157.0-196.0) 179.4 ± 31.3 176.0 (157.0-204.0) 0.719
LDL (mg/dl) 107.2 ± 27.5 102.5 (90.7-120.2) 108.1 ± 24.8 104.0 (94.0-127.0) 0.977
HDL (mg/dl) 45.8 ± 8.7 45.0 (40.0-51.2) 43.6 ± 10.4 43.0 (35.0-52.0) 0.331
TG (mg/dl) 109.7 ± 57.3 96.0 (72.5-128.0) 138.8 ± 83.4 107.0 (87.0-171.0) 0.117
Fasting glucose (mg/dl) 87.7 ± 9.1 87.0 (83.0-91.0) 92.5 ± 6.7 93.0 (88.5-97.5) 0.005
Fasting insulin (mU/ml) 11.2 ± 4.3 10.0 (7.8-13.9) 25.8 ± 6.7 23.9 (22.1-27.6) <0.001
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two internal standards Stigmasterol and Cholesteryl butyrate.
Eventually, the sample is purified on a Lipidex 5000 column.

GC-MS was performed with a Shimadzu 2010 Plus gas
chromatograph (Kyoto, Japan) interfaced with a single-
quadrupole Shimadzu QP-2010 Ultra mass spectrometer. Data
were acquired at 70 eV, the ion source temperature was 230°C
and the interface temperature was 250°C. The samples (2 µl)
were injected using Shimadzu AOC-20i au-to-injector in spitless
mode at 260°C and separated through a ZB-1ms (15 m × 0.25
mm I.D., 0.25 µm film thickness - Pheanomenex, Torrance,
USA) cross-linked dimethylpolysiloxane capillary column.

The injection was performed at 50°C which was held for 3
minutes, raised to 210°C at 30°C/min, next to 265°C at 2°C/min
and finally increased to 320°C using a 20°C/min ramping program
over a 48-min period. Helium was used as the carrier gas in linear
velocity flow control mode. The flow of gas through the column
was 1.2 ml/min. The eluting steroids were detected by selected ion
monitoring (SIM). The specific ions used for the determination of
each steroid are listed in Table 2. The instrument was calibrated by
analyzing standard mixtures containing known amounts of
the reference steroids and internal standards. The area of the
obtained peaks was measured in SIM mode and a six-level
calibration curve was set for each analyte. Recoveries were
checked with medroxyprogesterone and corrections were made
for the losses occurring during sample preparation. Table 1 from
Supplementary Material provides method-validation information
for all quantified steroids. For all measured steroids, specific peaks
in the chromato-grams had to be at least three times higher as the
noise above the baseline to be count-ed as valid measurements
(signal-to-noise-ratio 3). Urine samples of the same healthy
volunteer were measured in all series and the results were
compared with the standard values derived from 10 former
measurements of this volunteer. For quality control, quantitative
results had to be within ± 30% of the individual reference intervals.
Frontiers in Endocrinology | www.frontiersin.org 4
Proportion of Urinary Corticosteroid
Metabolites
In order to evaluate enzyme activity, we applied proportions of the
excreted steroid metabolites (32, 48, 49). The ratios of cortisol (F)
to cortisone (E) as well as tetrahydrometabolites of cortisol [THF
+5aTHF] to this of cortisone [THE] reflect 11bHSD1 activity. The
activities of 5a- and 5b-reductases, located mainly in the liver, can
be inferred from the ratio of 5a-dihydrotestosterone (5aDHT) to
testosterone (T) and androsterone (An) to etiocholanolone (Et).
By analogy, we hypothesize that the 11ß-hydroxyandrosterone
(11b-OH-An) to 11ß-hydroxyetiocholanolone (11b-OH-Et) ratio
will reflect the 5a-reductase activity and – indirectly – the
androgen metabolism after their second crossing through the
adrenal cortex. Only 5a-reductase can be evaluated with
the androgen ratios, while 5b-reductase predominates for
cortisol and cortisone in cooperation with 3aHSD. The activity
of the 5b-reductase+3aHSD complex was assessed using the ratios
[a-cortol (aC)+b-cortol (bC)+THF]/F and [a-cortolone
(aCl)+b-cortolone (bCl)+THE]/E. The activity of 20aHSD was
assessed by the ratio of [aC+aCl]/[THF+5aTHF+THE] and the
activity of 20bHSD by the [bC+bCl]/[THF+5aTHF+THE] ratio.
The proportions of 11b-OH-An/An and 11b-OH-Et/Et were used
to determine the activity of 11b-hydroxylase. The last enzyme we
evaluated was 17bHSD, the activities of which we assessed using a
ratio of androstenetriol (AET) to 16a-hydroxydehydro-
androsterone (16a-OH-DHA).

Statistical Analyses
The ratios of the 24h urinary excretion of steroid metabolites
were compared using the Statistica 13.3 (StatSoft Inc, Tulsa, OK,
USA). Most of the variables did not follow normal distribution
hence Mann-Whitney U test was used for comparisons between
patients with and without IR. The level of statistical significance
was accepted as p-value < 0.05.
TABLE 2 | List of steroid compounds measured in urines.

Trivial name Abbreviation Systematic name M RT QIon Ref. Ion

Cortisol F 4-pregnen-11b, 17, 21-triol-3, 20-dione 362.5 29.2 606 488
Cortisone E 4-pregnen-17, 21-diol-3, 11, 20-trione 360.5 27.2 532 515
Tetrahydrocortisol THF 5b-pregnan-3a, 11b, 17, 21-tetrol-20-one 366.5 23.3 653 472
5a-Tetrahydrocortisol 5aTHF 5a-pregnan-3a, 11b, 17, 21-tetrol-20-one 366.5 23.6 653 551
Tetrahydrocortisone THE 5b-pregnan-3a, 17, 21-triol-11, 20-dione 364.5 21.9 579 488
Androsterone An 5a-androstan-3a-ol-17-one 290.4 13.5 270 360
Etiocholanolone Et 5b-androstan-3a-ol-17-one 290.4 13.7 270 360
5a-Dihydrotestosterone 5aDHT 5a-androstan-17b-ol-3-one 290.4 15.2 391 360
Testosterone Testosterone 4-androsten-17b-ol-3-one 288.4 15.6 389 268
Androstenetriol AET 5-androsten-3b, 16a, 17b-triol 306.4 19.3 432 522
16a-Hydroxy-DHA 16a-OH-DHA 5-androsten-3b, 16a-diol-17-one 304.4 17.1 266 446
11ß-Hydroxyandrosterone 11b-OH-An 5a-androstan-3a, 11b-diol-17-one 306.4 16.4 268 448
11ß-Hydroxyetiocholanolone 11b-OH-Et 5b-androstan-3a, 11b-diol-17-one 306.4 16.7 268 448
a-Cortol aC 5b-pregnan-3a, 11b, 17, 20a, 21-pentol 368.5 25.7 343 563
ß-Cortol ßC 5b-pregnan-3a, 11b, 17, 20b, 21-pentol 368.5 24.7 343 551
a-Cortolone aCl 5b-pregnan-3a, 17, 20a, 21-tetrol-11-one 366.5 24.0 449 523
ß-Cortolone ßCl 5b-pregnan-3a, 17, 20b, 21-tetrol-11-one 366.5 24.8 449 253
Stigmasterol (IS) SS 5, 22-cholestadien-24b-ethyl-3b-ol 412.7 28.3 394 353
Cholesterol N-butyrate (IS) CB 5-cholesten-3b-ol n-butyrate 456.8 31.9 368 360
Medroxyprogesteron (IS) MP 4-pregnen-6a-methyl-17-ol-3, 20-dione 344.5 21.8 443 –
Octob
er 2021 | Volu
me 12 | Articl
M, molar mass [g/mol]; RT, Retention time [min]; QIon, quantifier ion [m/z]; Ref. Ion, Reference Ion [m/z]. OH, hydroxy; DH, dihydro; TH, tetrahydro.
e 759971

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles
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RESULTS

Of 122 obese children and adolescents 26 (21.3%) were
diagnosed with IR (13 boys, 13 girls). Clinical phenotype of
non-IR and IR participants is displayed in Table 1. The mean
age, duration of obesity andWHR were not significantly different
between patients with and without IR. The BMI and Z-score BMI
were significantly higher in the IR group than in the non-IR
group. At the biochemical level, patients with IR versus those
without IR presented similar values in lipid profile but
significantly higher mean values of fasting glucose and insulin
level. No significant differences were found in steroid metabolites
excretion between obese subjects with and without IR (Table 2
from Supplementary Material).

In order to assess enzyme activities, typical metabolite ratios
were calculated and compared between IR and non-IR cohorts of
obese children (Table 3). Furthermore, gender-stratified analyses
were also performed, comprising 70 girls and 52 boys divided by
their insulin sensitivity status (Tables 4 and 5). A positive
association between SRD5A activity and IR was noticed in our
study. The activity of 5a-reductase, measured regardless of
gender, was increased in children with IR when based upon
the An/Et ratio, but statistical significance was lost when
5aDHT/T and 11b-OH-An/11b-OH-Et ratio were considered.
Similar relationship persisted in the group of obese boys, whereas
we could not confirm it in obese girls. The activity of 20aHSD,
measured by the [aC+aCl]/[THF+5aTHF+THE] ratio and the
activity of 20bHSD, measured by the [bC+bCl]/[THF+5aTHF
+THE] ratio were both reduced only in the group of girls with IR
when compared to non-IR girls, whereas the same ratios
remained similar in obese boys with and without IR. We failed
to confirm statistically significant differences in the activity of
11bHSD1, 5b-reductase/3aHSD complex, 11b-hydroxylase and
17aHSD between IR and non-IR children (data not shown),
therefore no further analyses of these enzymes were performed in
our cohort.
DISCUSSION

Childhood obesity is rapidly increasing worldwide (1). Furthermore,
insulin resistance seems far more frequent in obese children and
adolescents than previously considered (50, 51). However, most
Frontiers in Endocrinology | www.frontiersin.org 5
data about obesity, IR or other metabolic disorders in relation to
steroid imbalance are still derived from the adult populations.
Nonetheless, knowledge from adults cannot be directly transferred
into paediatric settings, as children are not mere copies of adults. As
illustrated in our study cohort, children usually present relatively
short duration of obesity, its early onset, and stages of puberty.
Objective assessment of IR in children remains difficult due to the
developmental changes, which naturally decrease insulin sensitivity
during the puberty.

As early as 1974, Savage et al. found significantly higher
excretion of 17OH-corticosteroid derivatives and cortisol
metabolites in obese children compared to their norm-weight
coevals (52). Similar observation was described a few years later
by Juricskay and Molnár, who showed increased elimination of
cortisol metabolites, pregnenediol and pregnanolone together
with increased excretion of adrenal androgens in obese children
(53, 54). In the following years, studies were primarily focused on
hyperactivity of the HPA axis in children with obesity and
metabolic syndrome (55, 56). On the other hand, Vitkin et al.
observed a general decrease in the excretion of gluco- and
mineralocorticoid metabolites, along with an increase in
androgen metabolites and enhanced activity of 17,20-lyase, 17-
hydroxylase, 11bHSD1 and a decrease in the activity of 21-
hydroxylase in children with obesity (57). At the same time,
reports of lack of any correlation between blood cortisol values
and body weight emerged - according to Knuttson, individual
differences in cortisol concentration represent normal
homeostasis rather than pathological phenomenon (11, 13).
Another aspect i.e. the relationship between adrenal steroids or
androgens and IR in children and adolescents, is even less
understood. Adam et al. demonstrated that cortisol may
contribute to reduced insulin sensitivity at an early age in
Latino children and adolescents (3). In line, serum cortisol was
moderately increased in obese children with IR, while weight
reduction led to a decrease both in cortisol and IR (58). A
recently published study revealed specific steroid metabolomic
signature of IR in obese children (with no distinction of gender)
characterized by enhanced secretion of steroids from all three
adrenocortical pathways (49). This finding may suggest the
hypothalamo-pituitary activation and secondary enhancement
of early steps of adrenal steroidogenesis.

In our study, we characterized glucocorticoid metabolism and
excretion in a cohort of young obese individuals with and without
TABLE 3 | Ratios of steroid metabolites (indicative of enzyme activity): comparison between obese children and adolescents with and without insulin resistance (IR).

Non – IR (n = 96) IR (n = 26) p value

Mean + SD Median (IQR) Mean + SD Median (IQR)

SRD5A activity
Androsterone/Etiocholanolone 1.84 ± 0.86 1.67 (0.37-4.75) 2.50 ± 1.11 2.39 (0.81-4.93) 0.023
5a-DHT/Testosterone 0.98 ± 1.01 0.63 (0.32-1.22) 0.96 ± 0.78 0.84 (0.42-1.17) 0.600
11b-OH-An/11b-OH-Et 5.65 ± 5.35 3.69 (0.48-24.74) 8.88 ± 13.45 4.55 (0.90-51.74) 0.496
20a-HSD activity
[aC+aCl]/[THF+aTHF+THE] 0.35 ± 0.12 0.32 (0.13-0.76) 0.35 ± 0.19 0.30 (0.08-1.02) 0.502
20b-HSD activity
[bC+bCl]/[THF+aTHF+THE] 0.19 ± 0.10 0.17 (0.02-0.68) 0.17 ± 0.09 0.13 (0.08-0.49) 0.126
October 2021 | Volume 12 | Article
Statistically significant differences were bolded.
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IR, also in terms of their gender. Slightly more than 1/5 of the
studied group were children and adolescents with IR, which
corresponds to commonly observed proportion in general
practice. Considering potential differences in individual
reactivity to insulin, we were rather interested in activity of
particular enzymes than in differences of the concentration of
excreted metabolites, which additionally may be affected by the
kidney function.

Recent decades have focused on the role of 11bHSD1 in the
pathogenesis of obesity and IR through locally increased cortisol
levels (59). We were unable to demonstrate difference in activity
of 11bHSD1 which is repeatedly mentioned in many studies in
obese people with or without additional metabolic disorders (59–
66). However, most of these analyses were conducted in adult
populations, and compared obese with lean subjects.

As mentioned above, three isotypes of SRD5A are known.
The methods used in this study do not allow to clearly
distinguish between the enzymes, but we made an attempt to
determine organ specificity (liver versus adrenal glands). Clinical
data support the hypothesis that insulin acutely enhances ACTH
effects on glucocorticoid pathways by stimulation of SRD5A
activity and reduced level of the active glucocorticoid - cortisol in
different organs (67). In our study we have results from the
androgenic part of the steroid panel, not from glucocorticoid
metabolism. Nonetheless, it is worth emphasizing that both
Frontiers in Endocrinology | www.frontiersin.org 6
pathways remain under control of ACTH and there is close
relationship between them.

Increased excretion of 5a-reduced steroids was observed in
obesity, PCOS and nonalcoholic fatty liver disease (68–70), while
decreased excretion was noticed in critical illness (71). In
rodents, treatment of obese Zucker rats with insulin sensitizers,
decreases SRD5A1 expression in the liver (72). At the same time
congenital deficiency of SRD5A1 causes intrahepatic
accumulation of glucocorticoids and induces IR, hepatic
steatosis and even fibrosis (73). These data further support
close relationship between 5a-reductase activity, concentration
of glucocorticoids in the liver and metabolic disorders.

SRD5A is a key enzyme implicated in androgen metabolism.
It catalyzes the irreversible conversion of testosterone to 5aDHT
(classic pathway) in androgen-dependent target tissues (74). The
backdoor pathway is an alternative route to 5aDHT synthesis,
which circumnavigates androstenedione and testosterone
intermediates by 5a-reduction of progesterone or 17-hydroxy-
progesterone into pre-androgen metabolites (75–77). In contrast
to etiocholanolone, which originates almost exclusively from the
classic pathway, androsterone additionally may arise from the
backdoor pathway. Therefore, the An/Et ratio can be used as an
indicator for the activity of the backdoor pathway (76). Previous
reports demonstrated enhanced SRD5A activity in obese
individuals with or without other metabolic disorders, an
TABLE 5 | Ratios of steroid metabolites (indicative of enzyme activity): comparison between obese girls with and without insulin resistance (IR).

Non – IR (n = 57) IR (n = 13) p value

Mean + SD Median (IQR) Mean + SD Median (IQR)

Age (years) 12.2 ± 3.8 13 (9-15) 11.0 ± 4.0 11 (8-14) 0.248
BMI (kg/m2) 29.5 ± 6.4 28.6 (25.6-33.5) 34.0 ± 7.9 33.0 (27.0-42.3) 0.028
Z-score BMI 1.9 ± 0.6 2.0 (1.7-2.2) 2.5 ± 0.4 2.6 (2.2-2.7) <0.001
SRD5A activity
Androsterone/Etiocholanolone 1.81 ± 0.78 1.64 (0.37-3.81) 2.24 ± 1.22 2.29 (0.81-4.93) 0.402
5a-DHT/Testosterone 1.01 ± 1.10 0.65 (0.34-1.21) 1.09 ± 0.98 0.84 (0.47-1.17) 0.720
11b-OH-An/11b-OH-Et 5.93 ± 5.95 3.66 (0.48-24.74) 10.06 ± 14.02 4.55 (1.59-51.74) 0.560
20a-HSD activity
[aC+aCl]/[THF+aTHF+THE] 0.35 ± 0.10 0.32 (0.22-0.71) 0.28 ± 0.11 0.27 (0.08-0.51) 0.029
20b-HSD activity
[bC+bCl]/[THF+aTHF+THE] 0.18 ± 0.10 0.17 (0.02-0.68) 0.14 ± 0.05 0.13 (0.08-0.26) 0.021
October 2021 | Volume 12 | Article
Statistically significant differences were bolded.
TABLE 4 | Ratios of steroid metabolites (indicative of enzyme activity): comparison between obese boys with and without insulin resistance (IR).

Non – IR (n = 39) IR (n = 13) p value

Mean + SD Median (IQR) Mean + SD Median (IQR)

Age (years) 11.7 ± 3.4 13 (9-14) 11.7 ± 2.7 12 (11-14) 0.818
BMI (kg/m2) 29.8 ± 6.1 28.4 (26.0-32.1) 32.8 ± 7.2 32.0 (28.5-36.3) 0.028
Z-score BMI 2.2 ± 0.6 2.2 (1.9-2.4) 2.4 ± 0.4 2.3 (2.2-2.6) 0.134
SRD5A activity
Androsterone/Etiocholanolone 1.90 ± 0.97 1.73 (0.67-4.75) 2.76 ± 0.97 3.11 (1.46-4.17) 0.035
5a-DHT/Testosterone 0.93 ± 0.88 0.55 (0.31-1.38) 0.82 ± 0.51 0.84 (0.34-1.21) 0.867
11b-OH-An/11b-OH-Et 5.25 ± 4.45 3.81 (0.64-19.48) 7.59 ± 13.30 4.48 (0.90-49.29) 0.835
20a-HSD activity
[aC+aCl]/[THF+aTHF+THE] 0.35 ± 0.14 0.32 (0.13-0.76) 0.43 ± 0.23 0.39 (0.18-1.02) 0.368
20b-HSD activity
[bC+bCl]/[THF+aTHF+THE] 0.20 ± 0.11 0.17 (0.08-0.63) 0.20 ± 0.11 0.17 (0.09-0.49) 0.983
Statistically significant differences were bolded.
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observation which we hereby confirm as measured by urinary
An/Et ratio (48, 49, 78). Furthermore, our analysis revealed
association between SRD5A activity and IR in obese subjects,
but once this cohort was gender-stratified, we were only able to
detect this relationship in boys. Puberty was underway in a
proportion of the studied patients, which may explain the
abundance of available androgenic substrates for the enzyme.
Sexual dimorphism of the SRD5A activity was formerly
described with increased activity in males and also in women
with hyperandrogenism in the course of PCOS (32, 79–81).

20aHSD was initially described as a progesterone-
metabolizing enzyme of the ovary (82). It is expressed in
human endometrium and catalyzes the conversion of
progesterone to its inactive form, 20a-dihydroprogesterone.
Consequently, it appears to play a role during pregnancy and
parturition. High 20aHSD activity has been located in the mouse
adrenal cortex and liver, but the enzymatic regulation and
functional significance of this tissue-restricted expression
pattern remain elusive (83–85). In humans, its expression was
detected in liver, brain, and to much smaller extent in adrenals
and testes. Over recent years only a few reports have looked at
the activity of this enzyme in humans, mostly in obese women or
women with PCOS (86–89). Data on the activity of 20bHSD are
even less available. In some fish species 20bHSD is a key enzyme
in the production of the oocyte maturation-inducing steroid (90,
91). Vazirzadeh et al. suggest a wider metabolic role of 20bHSD
than just control of synthesis of the reproduction hormones (92).
Experiments on zebrafish show that 20bHSD represents a short
pathway to rapidly inactivate and excrete cortisol and hence
might be an important enzyme in stress response (28). No
reliable data on its activity exist in humans. In our study, we
show significant changes in 20aHSD and 20bHSD activity in
obese girls with IR compared to those with preserved insulin
sensitivity. However, it is difficult to clearly determine whether
the activity of these enzymes is an indicator of the function in the
ovaries or adrenal glands. In our observation, both enzymes
presented diminished activity in obese girls with IR only when
assessed by measurements of the ratio of cortols and cortolons to
cortisol and cortisone tetrahydro-derivatives. It seems that
20aHSD and 20bHSD dis-play preferential affinity for
substrates after 5a/5b-reduction and especially after 3aHSD
conversion. Perhaps, insulin resistance itself contributes to
enhanced activity of 3aHSD (maybe in complex action with
5b-reductase) and more substrates are available to be
metabolized by 20aHSD or 20bHSD. However, there is still
open question about plausible reasons of sex dimorphism of such
a phenomenon.

The present results are close to the previous thesis that obesity
and IR exhibit an increase in activity of SRD5A. Hence, we have
added 20aHSD and 20bHSD to disease signature and provide
evidence that girls with IR present reduced activity of those
frequently overlooked enzymes, with a function which is still not
fully understood.

Based on our study, in the context of obese children and
adolescents with IR, we hypothesize that increased SRD5A
activity (especially in boys) represents a compensatory
mechanism to reduce local glucocorticoid availability. This
Frontiers in Endocrinology | www.frontiersin.org 7
phenomenon is probably different in the liver (restriction) and
in adipose tissue (expected increase in activity), but requires
further research, especially with regard to the various
developmental stages. Increased inactivation of cortisol
through enhanced SRD5A activity leads to decreased local
glucocorticoid availability and their activation in the liver - in
the aim to protect hepatic insulin sensitivity. The statistically
irrelevant 11b-OH-An/11b-OH-Et ratio seems to exclude
significant role of the local adrenal 5a-reductase activity,
because these products were generated by CYP11B1/2. The
decrease in activity of 20aHSD and 20bHSD characteristic for
obese girls with IR remains unclear and in contrast to the results
of studies in women with PCOS (32). The advancement of
puberty as a factor influencing the activity of these enzymes,
closely related to the reproduction, cannot be ruled out. Some of
the girls were pre-pubertal or at early puberty stages, and girls
who were menstruating – were evaluated in the first phase of
their cycle, therefore they probably had low progesterone levels.
Finally, a direct effect of insulin secretion on the activity of each
of the tested enzymes cannot be excluded too.

Our observations and interpretation of the results must take
into account that in children and adolescents the hormonal
status is not as homogeneous and stable as in adults with
obesity and IR. Conclusions from the study are mainly
hypotheses, which require confirmation in further cohorts. We
are aware that our study has some limitation: the small number
of subjects in subgroups when the patients were divided
according to gender. However, it is important to look for the
mechanisms of disorders found in adults, such as obesity and IR,
at their early stages, already at the developmental age. This may
have an impact on the risk assessment of future complications in
the adulthood. Additionally, we revealed some early gender-
related differences in steroid metabolism. Indubitably, further
studies are warranted to validate our findings and con-firm
our assumptions.
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