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Neuropsychiatric disorders (NPDs) are a huge burden to the patient, their family, and
society. NPDs have been greatly associated with cardio-metabolic comorbidities such as
obesity, type-2 diabetes mellitus, dysglycaemia, insulin resistance, dyslipidemia,
atherosclerosis, and other cardiovascular disorders. Antipsychotics, which are frontline
drugs in the treatment of schizophrenia and off-label use in other NPDs, also add to this
burden by causing severe metabolic perturbations. Despite decades of research, the
mechanism deciphering the link between neuropsychiatric and metabolic disorders is still
unclear. In recent years, transient receptor potential Ankyrin 1 (TRPA1) channel has
emerged as a potential therapeutic target for modulators. TRPA1 agonists/antagonists
have shown efficacy in both neuropsychiatric disorders and appetite regulation and thus
provide a crucial link between both. TRPA1 channels are activated by compounds such
as cinnamaldehyde, allyl isothiocyanate, allicin and methyl syringate, which are present
naturally in food items such as cinnamon, wasabi, mustard, garlic, etc. As these are
present in many daily food items, it could also improve patient compliance and reduce the
patients’ monetary burden. In this review, we have tried to present evidence of the
possible involvement of TRPA1 channels in neuropsychiatric and metabolic disorders and
a possible hint towards using TRPA1 modulators to target appetite, lipid metabolism,
glucose and insulin homeostasis and inflammation associated with NPDs.
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INTRODUCTION

Neuropsychiatric disorders (NPDs) such as depression,
dementia, psychosis, and bipolar disorder prompt an
unhealthy lifestyle (such as cigarette smoking, alcohol
consumption, altered eating habits and physical inactivity),
leading to obesity. Schizophrenic patients have shown a higher
prevalence of obesity than the general population (1). Obesity
and NPDs are linked to each other bidirectionally. On one hand,
obesity makes a person more vulnerable to anxiety and
depression-like behavior and on the other hand presence of
any of the NPDs further enhances the risk of obesity in non-
obese patients (2–4).

Association of NPDs with diabetes, obesity or insulin
resistance has been an area of interest of researchers for a long
time, and the very first reports of metabolic disorders associated
with psychiatric disorders trace back to nearly four centuries ago
in the 1600s by Thomas Willis (5). He suggested that diabetes is
mainly precipitated in people undergoing mental stress such as
grief, sorrow and sadness. Further reports assert the notion that
insanity and diabetes are frequently co-expressed in patients/
families (6). The predominance rates for type 2 diabetes mellitus
and insulin irregularities are roughly sevenfold higher in
Huntington’s disease patients when compared to healthy
controls (7). Also, clinical explorations in intrinsic
neurodegenerative disorders advocate that over 20% of those
influenced will end up having metabolic comorbidities such as
insulin resistance/obesity (8). Type 2 diabetes mellitus (T2DM) is
a self-determining risk factor for dementia, with the diabetic
population being twofold more susceptible to dementia (9). A
study reported that about 45% of patients with mental health
disorders are comorbid with obesity and metabolic
syndrome (10).

Similarly, patients suffering from attention deficit
hyperactivity disorder, regardless of their age, are vulnerable to
obesity and likewise, this disorder is more prevalent in obese
teenagers (11). Patients with bipolar disorder are the ones who
have the highest incidences of obesity and other metabolic
disturbances (12). Adding to this, antipsychotics (APs), which
are used to treat schizophrenia and bipolar disorder, are also
responsible for diabetes and metabolic syndrome precipitation.
Another recent clinical study stated that out of the total
participants for each disorder, nearly 47.5% with bipolar
disorder, 38.4% with anxiety and 39% with major depression
had metabolic syndrome (13). APs, mainly the atypical ones,
which are being used enormously during the past two decades,
are one of the major causes of metabolic perturbations. AP-
induced metabolic alterations (AIMA), including appetite
dysregulation, obesity, dyslipidemia, T2DM, insulin resistance,
and cardiovascular diseases lead to decreased life expectancy and
poor patient compliance (14, 15). It was reported that about 30%
of diabetes/insulin resistance cases are due to AP use in the
psychiatric population (16). APs have an affinity towards
multiple neurotransmitter-receptors (mainly serotonergic,
histaminergic, dopaminergic and cholinergic receptors),
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leading to a wide variety of desirable and undesirable effects
(17). There is humongous literature available affirming that
atypical APs, upregulate the appetite-inducing peptides
[neuropeptide Y (NPY), agouti-related peptide (AgRP),
orexins, ghrelin and melanin-concentrating hormone (MCH)]
while downregulating the anorexigenic peptides [pro-
opiomelanocortin (POMC), cocaine- and amphetamine-
regulated transcript (CART), a-melanocyte-stimulating
hormone (a-MSH), pancreatic polypeptide, peptide YY,
glucagon-like peptide-1 (GLP-1), insulin, cholecystokinin
(CCK), and glucose-dependent insulinotropic peptide (GIP)].
Altered appetite regulation disturbs the energy balance,
apparently causing obesity and metabolic syndrome (18, 19).

Despite the availability of diverse pharmacological treatment
options to control obesity and maintain energy homeostasis,
there is a pressing need to find other pharmacological/non-
pharmacological treatment options with fewer side effects.
Numerous receptor pathways, hormones, peptides and
neurotransmitters are linked to regulating food intake and
energy homeostasis, which could have a potential uncovered
role in controlling metabolic syndrome. One such receptor
system is the Transient Receptor Potential (TRP) system.
There are various subtypes of TRP channels that play a pivotal
role in food reward, energy intake and expenditure, metabolism
of glucose and fats, several vital biological functions and they are
primarily involved in the influx of cations such as Na+ and Ca2+.

TRP channel family comprises about 30 different subtypes of
plasma membrane ion channels which are broadly divided into
two groups: Group 1 consisting of TRPV (Vanilloid), TRPC
(Canonical), TRPM (Melastatin), TRPN (No mechanoreceptor
potential) and TRPA (Ankyrin) while Group 2 consists of TRPP
(Polycystic) and TRPML (Mucolipin). These different subtypes
are involved in function as well as respond to a wide variety of
stimuli such as hot and cold sensitivity, itch, respiration, pain,
mechanical or chemical stimulation, oxidative stress, or light.
TRPV channels have already shown a potential role in
controlling appetite, energy balance and lipid homeostasis in
normal physiology (20) and AIMA (21, 22). TRP channels, by
modulating cellular Ca2+ levels are involved in the etiology of
NPDs such as anxiety, fear and bipolar disorder. For example: -
Riccio et al. reported that TRPC5 had an important responsibility
in fear induction and attenuates to conditioned fear under certain
conditions. They also concluded that deletion of TRPC4 was
responsible an anxiolytic-like behavioral phenotype and normal
expression of the TRPC4 subunit in brain circuits might be
required for behavioral responses in anxiety-inducing stimuli
(23). TRPM2 was also found to be involved in bipolar disorder
pathogenesis (24). An important subtype of the TRP channel
receptor, i.e. TRPA, has also evolved to show potential in
NPD pathophysiology and food reward modulation along
with various metabolic functions. TRPA1 channels are involved
in both metabolic regulation (25) as well as neuropsychiatric
complications. In this review, we try to discuss the potential
of TRPA1 channels in controlling food intake and energy
homeostasis and ultimately NPDs.
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TRPA1 CHANNELS IN BRAIN

TRPA1 are the most comprehensively studied TRPA channels
among the seven TRPA subfamilies. It contains 14 N-terminal
ankyrin repeats and mainly functions as a temperature sensor,
i.e. responds to hot/cold temperatures; however, its sensitivity
varies in different species. It also responds to pain, itch and is
activated by various common chemicals present in food,
cosmetics and environmental pollutants (26–28). TRPA1
channels are localized in diverse parts of the brain, such as
nociceptive primary afferent sensory neurons present in the
trigeminal ganglia (29), hippocampus, cortex, supraoptic
nucleus of the brain stem and layers of rodent somatosensory
cortex neurons (30). TRPA1 activation in the hippocampal
astrocytes leads to an increase in extracellular GABA along
with activation of cannabinoid receptors. This increase in
GABA hauls down the efficacy of inhibitory synapses between
the interneurons. TRPA1 channels are also highly expressed in
the endothelium and cerebral arteries, and their activation helps
in protection against stroke or hypoxic damage (31). TRPA1
channels are closely related to TRPV1 channels in localization
and functions. 97% of TRPA1-expressing sensory neurons
express TRPV1 channels, whereas 30% of TRPV1-expressing
neurons express TRPA1 (32) and this co-expression could form
the molecular basis of nociception in chronic abnormal pain
induced by inflammation.
TRPA1 CHANNELS AND NPDs

Studies have revealed the involvement of TRPA1 channel
modulation in the pathogenesis or treatment of various NPDs
such as Alzheimer’s, depression, anxiety (33, 34). TRPA1-
channel function inhibition has been shown to lessen the
behaviora l dysfunct ion, Ab plaque deposit ion and
neuroinflammation in APP/PS1 Tg mice brain (35). TRPA1
channels also play a crucial role in synapse efficacy by
modulating resting Ca2+ in astrocytes (36). Activation of
astrocytic TRPA1 channels increases the Ca2+ hyperactivity in
the hippocampus similar to Ab oligomers, and TRPA1 channel
inhibition is protective against Ab-induced early synaptic
dysregulation (37). Quantitative structure-activity relationship
(QSAR) and molecular docking studies have recently reported
that the use of TRPA1 inhibitors could be an important
treatment strategy for multiple sclerosis (38). Supporting this, a
study in TRPA1-/- mice showed that TRPA1 deficiency is
defensive in cuprizone-induced demyelination (39). TRPA1
channel ligands also modulate its binding to the s1R receptor
to modulate the cannabinoid pathway in the brain (40). Likewise,
ligands such as AM630 and AM251, which are cannabinoid
receptor antagonists, tend to activate TRPA1 by promoting the
accumulation of Ca2+ in the trigeminal neurons. This
modulation protected the animals against capsaicin-induced
hyperalgesia in wild type mice but not in TRPA1-/- mice,
therefore, confirming the role of TRPA1 channels in capsaicin-
induced thermal hyperalgesia (41). Further, a study showing
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higher mRNA expression of TRPA1 in the posterior
hypothalamus of normotensive as well as hypertensive rats
suggested its role in hypertension pathology (42). Imperative
pathways involved in the inflammatory response, i.e.
Prostaglandin E2 (PGE2) and bradykinin (BK) signaling, also
activate TRPA1 channels via PKCϵ cascade. Furthermore,
mGluR5 signaling results in thermal and mechanical
hyperalgesia due to sensitization of both TRPA1 and TRPV1
channels (43).

TRPA1 channels have also been recounted as an underlying
cause of cortical spreading depression (CSD), which further acts
as a base of migraine pain. Activation of TRPA1 channels
triggers migraine, while its desensitization helps in reducing
migraine pain (44, 45). A study in TRPA1 deficient mice by
Nassini et al. (2012) reported that umbellulone (a TRPA1
agonist) caused nocioceptive behavior after stimulation of
trigeminal nerve terminals in wild-type mice, but not in
TRPA1 deficient mice (46). Jiang et al. (2018) have reported
that umbellulone, aids CSD propagation to a longer distance in
mice cortical brain slices. Further, TRPA1 antagonists such as
HC-030031 and A-967079 suppressed CSD by increasing the
CSD latency. They also reported that allyl isothiocyanate (AITC)
application reversed the suppression of CSD by HC-030031.
However, no significant reversal was seen in the case of A-967079
(47). Another study, done by the same group aimed to explore
the probable mechanism of TRPA1 involvement in depression,
revealed that intracerebroventricular (ICV) perfusion of TRPA1
antibody in rats led to inhibition of CSD. It was further co-
related to a lower level of oxidative stress as evidenced by reduced
malondialdehyde levels in the cortex. Further investigations
revealed that reactive oxygen species (ROS) also lead to the
expedition of CSD in mouse cortical brain slices while ROS
inhibitor, tempol, significantly extended the latency of CSD.
Umbellulone, on the other hand, reversed the CSD suppression
produced by ROS inhibitor and both ROS and TRPA1 activation
overturned the decreased cortical susceptibility to CSD by the
anti-CGRP (calcitonin gene-related peptide) antibody, indicating
that ROS/TRPA1/CGRP signaling regulates cortical
susceptibility to CSD leading to migraine (48).

TRPA1 channel inhibition by ICV (30 nmol in 2 mL) as well
as oral administration of HC-030031 (100 mg/kg) also produces
antidepressant and anxiolytic-like actions in mice as evidenced
by reduced immobility time in the forced swim test and increased
open arms exploration in the elevated plus-maze test. These
effects were reversed by TRPA1 agonist cinnamaldehyde
pretreatment; however, it was ineffective as per se. Likewise,
TRPA1-/- mice also possess antidepressant-like and anxiolytic
phenotypes when tested for immobility and anxiety in a forced
swim test and an elevated plus-maze test. TRPA1 antagonism, as
well as gene deletion, didn’t show any effect on locomotor
activity (34). TRPA1 channels are also involved in innate fear
responses aroused by their predator’s odor (such as snake skin)
in mice. TRPA1 inactivation reduced innate defensive behavior
evoked by snake skin and TRPA1–expressing trigeminal neurons
plays a key part in 2-methyl butyrate-evoked innate freezing
behavior. TRPA1-/- mice do not show 2-methyl butyrate-evoked
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innate freezing responses. The study also concluded that innate
fear/defensive behaviors, evoked by predator odor are regulated
by TRPA1-mediated nociception (49).

Literature supports the possible involvement of TRP channels
in schizophrenia (50); therefore, further studies investigating the
role of specific subtypes of TRP channels in schizophrenia linked
to obesity and metabolic disorder could help find potential
candidates to tackle the problem.
TRPA1 CHANNELS IN METABOLIC
DISORDERS

TRPA1 in Obesity, Glucose and
Insulin Homeostasis
Peripherally, TRPA1 channels are distributed in various organs
such as gastrointestinal tract (GIT), pancreas, myenteric plexus,
duodenal epithelial cells, bladder, keratinocytes, dorsal root
ganglion and are therefore thought to facilitate secretory
function. Supporting this statement, many studies have shown
TRPA1 channels to be involved in various gastric and metabolic
processes such as ghrelin release, changes in blood glucose levels,
appetite control, GLP-1 regulation, gastric emptying and others
(51–54). Elevated GLP-1 has been reported after AITC treatment
in the GLUTag cells in a response similar to as shown by
polyunsaturated fatty acids (PUFAs) (53).

TRPA1 channels, present in the rat pancreatic b-cells and rat
pancreatic beta-cell line (RINm5F), facilitate the dose-dependent
release of insulin after AITC treatment, similar to glucose
treatment. These effects of AITC were diminished in the
presence of HC-030031. The study also confirmed TRPA1-
mediated enhancement in insulin release in the presence of
tetrodotoxin (a voltage-dependent Na+ channel blocker) and
nimodipine (a voltage-dependent Ca2+ channel blocker) (55).
The antidiabetic and anti-obesity effects of TRPA1 agonists have
been well reported. Cinnamaldehyde has been used in traditional
medicine for its antidiabetic effects as it is known to enhance
glucose uptake and increase expression of glucose transporter
GLUT-1 (56), decrease glycosylated hemoglobin, serum
triglyceride and cholesterol levels, increase high-density
lipoprotein, insulin and hepatic glycogen (57). It also prevents
lipid accretion, fasting-induced hyperphagia, visceral fat
deposition and alterations in the levels of leptin and ghrelin
caused by a high-fat diet (58, 59). It reduces ghrelin secretion
in conjunction with improving insulin sensitivity (60). These
antidiabetic effects of cinnamaldehyde were also seen in patients
with T2DM receiving hypoglycemic agents. Cinnamaldehyde
supplementation was able to significantly reduce glycated
hemoglobin, mean systolic and diastolic blood pressure, fasting
plasma glucose, and body mass index over the period of 12
weeks (61). Cinnamaldehyde also improves glucose tolerance as
seen in oral glucose tolerance test after acute treatment in healthy
people (62). Collectively, this evidence suggests a strong
involvement of TRPA1 agonist cinnamaldehyde in controlling
appetite and being a promising candidate to manage diabetes and
obesity. Not just cinnamaldehyde, AITC has also shown
Frontiers in Endocrinology | www.frontiersin.org 4
prominent effects as a potential antidiabetic compound as it
helps in improving insulin resistance, improves glucose intake,
mitochondrial activity, glycosylated hemoglobin, GLUT-4
translocation to the membrane from the cytoplasm and
protects the animals from high-fat diet-induced hepatic
steatosis, body weight gain and lipid dysregulation (51). It is
important to note that TRPA1 modulators not only regulate
glucose and insulin homeostasis but also control insulin release
from the pancreatic b-cells. AITC, hydrogen peroxide, 4-
hydroxynonenal and prostaglandin J2 induced depolarization,
Ca2+ influx and further insulin release from pancreatic b- cell
lines (55) and RINm5F cells (63). This insulin release was
blocked by HC-030031 and AP-18 indicating that TRPA1
channels play an imperative role in insulin secretion from
the pancreas.

The involvement of TRPA1 in pain perception makes it a
potential therapeutic target for the treatment of other comorbid
conditions associated with diabetes. TRPA1 antagonists have
shown reduced diabetic neuropathy development in animals, but
detailed studies are still required (64, 65). Another interesting
study has reported reduced TRPA1 channel function in the DRG
neurons upon activation of AMP-activated protein kinase
(AMPK). The study revealed that metformin (an AMPK
activator) inhibits TRPA1 activity by means of diminishing the
amount of membrane-associated TRPA1. AMPK plays a
significant role in energy homeostasis, and its activation
stimulates hepatic fatty acid oxidation, inhibition of cholesterol
synthesis, increased glucose uptake, along with other regulatory
effects. But this inhibition of TRPA1 activity by AMPK activation
was seen to be a helpful factor in preventing diabetic neuropathy
as it led to the deterrence of mechanical allodynia in diabetic
mice (66).
TRPA1 in Lipid Homeostasis
TRPA1 channels are also involved in atherogenesis, a study
conducted in 2016 has shown that apoE-/- mice show higher
TRPA1 channel expression in aortas than wild type mice (67).
The study also revealed that genetic deletion of TRPA1
exacerbated the atherosclerotic lesion in apoE-/- mice, whereas
treatment with AITC reduced the atherosclerotic lesion in
apoE-/- mice but not in apoE-/-TRPA1-/- mice, suggesting its
involvement in atherosclerosis development. TRPA1 inhibition
by HC-030031 also led to lipid accumulation. Another study
conducted in HEK293 cell lines and TRPA1 null mice showed
that PUFAs activate mammalian TRPA1, and TRPA1 is needed
for PUFAs to stimulate enteroendocrine cells and sensory
neurons to elicit cholecystokinin (CCK) secretion (68).
Another study reported that TRPA1 channels get activated in
response to bradykinin, diacylglycerol and arachidonic acid,
although the mechanism is not fully illustrated yet (69).
Cinnamaldehyde in the form of cinnamon powder has also
been shown to reduce glucose, total cholesterol, triglycerides,
and LDL cholesterol levels in T2DM patients (70). Furthermore,
cinnamaldehyde treatment reduced the serum levels of
triglycerides, total cholesterol, c-LDL and elevated the c-HDL
levels in high-fat diet rats (71). This evidence suggests the
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involvement of TRPA1 in lipid homeostasis. Additionally, a
study in 3T3-L1 cells hinted towards TRPA1 activation as a
potential mechanism for the anti-lipid accumulation effect of
trans-pellitorine (72). Literature also points at the involvement of
TRPA1 channels in regulating uncoupling protein 1 (UCP1)
expression. Oleuropein aglycone present in extra virgin olive oil
was found to activate both TRPA1 and TRPV1. Also, it enhanced
the UCP1 expression in intrascapular brown adipose tissue by
stimulating noradrenaline secretion via the b2- and b3-
adrenoceptors following TRPA1 and TRPV1 activation and
reduced the visceral fat content in high fat diet-fed rats (73).

TRPA1 in Adipokine and
Cytokine Regulation
Other than their involvement in lipid and insulin homeostasis,
studies involving TRPA1 agonists suggest that TRPA1 channels
are also involved in adipokine-cytokine (adiponectin, leptin,
TNF- a and IL-6) regulation. Adiponectin is essential for fatty
acid breakdown and is an anti-inflammatory adipokine, which is
decreased in T2DM (74) and obese patients (75). In other words,
adiponectin levels are inversely proportional to insulin
resistance. Cinnamaldehyde treatment increases adiponectin
levels while also maintaining lipid homeostasis in rats (76) as
well as adipocytes (77). Leptin, another major hormone involved
in controlling appetite, releases from the adipocytes. It directly
binds to its receptors and mediates energy expenditure, reduces
food intake, affects insulin signaling and growth hormone. Leptin
receptors are present peripherally on adipocytes and centrally in
the hypothalamus and hippocampus. Several evidences of
dysfunction in leptin signaling have been identified in diabetes,
obesity, and metabolic disorders (78, 79). Hyperphagia and
weight gain are typical characteristics of leptin deficiency;
however, leptin levels are seen to be increased in some cases of
obesity and diabetes owing to leptin resistance. Interference in
leptin signaling in the form of leptin resistance has also been seen
with antipsychotic drugs such as olanzapine used to treat
psychosis and other neuropsychiatric disorders (80).
Cinnamaldehyde decreases the elevated leptin levels in high-fat
diet-fed mice (58, 81). Further, inflammation is an essential
factor in the pathogenesis of insulin resistance. Studies have
demonstrated interlinking between inflammation and insulin
resistance as well as obesity as one leading to another and vice
versa. Obesity and insulin resistance are involved in producing
low-grade inflammation in the adipose tissue, leading to systemic
and local insulin resistance (82). Cytokines such as TNF-a, IL-6
and IL-1b are responsible for producing insulin resistance by
reducing insulin secretion from the pancreatic b-cells and
reducing the insulin utilizing ability of cells (83–86).
Cinnamaldehyde decreases the mRNA expression of TNF-a in
adipose tissue in mice (87) and has also shown anti-
inflammatory properties in response to LPS-induced
inflammation in mice by decreasing TNF-a, IL-1b and
interferon-gamma (IFN-g) levels in mice (88). AITC as well
possesses anti-inflammatory potential as demonstrated by
reduced mRNA expression of TNF-a, IL-1b and enhanced
gene expression of the anti-inflammatory, antioxidant heme
Frontiers in Endocrinology | www.frontiersin.org 5
oxygenase-1 (HO-1) in vivo as well as in vitro (89). However,
none of these studies has directly co-related these effects with
TRPA1 channel activation, but as they all involve specific TRPA1
agonists, future studies are envisaged indicating direct relation.
TRPA1 CHANNELS IN APPETITE
REGULATION

TRPA1 in Peripheral Appetite-Regulating
Hormones
The existence of TRPA1 channels in the enterochromaffin cells in
the small intestine (specifically duodenum and jejunum) and cells
expressing CCK and serotonin indicates its crucial role in
controlling appetite as these both are major regulators of hunger
in the GIT (90). Asserting this statement, a study in STC-1 cells
showed increased CCK release upon AITC (91), naringenin (92)
and hesperetin treatment (93) via stimulation of TRPA1 channels.
This release was reduced upon ruthenium red or HC-030031
treatment. Additionally, this enhanced release was absent in the
presence of L-type calcium channel blocker, which means that it is
interwoven with intracellular calcium levels (91). Similarly, it was
observed that inhibition of TRPA1 channels by HC-030031
suppresses aldehyde-induced CCK secretion in STC-1 cells (94).
Cinnamaldehyde treatment decreased ghrelin secretion and
gastric emptying rate in mice and also helped in reducing body
weight in high-fat diet-induced obesity in mice (95). It also helped
in normalizing the blood glucose levels as observed in the oral
glucose tolerance test. It also increased the levels of acyl-CoA
synthetase 4, an enzyme aiding in b-oxidation of fatty acids.
However, recently there have been contradicting studies that
have shown TRPA1 agonism to be responsible for enhanced
contractions in the lower GIT and thus increases GIT motility
(96). TRPA1 agonists have also been shown to play a role in
adipogenesis. Oral cinnamaldehyde treatment helped in reducing
mesenteric adipose tissue while upregulating expression of
different GLUTs and carnitine palmitoyltransferase 1A
(responsible for fatty acid oxidation) in the white adipose
tissue (52).

In addition to the presence in the small intestine, TRPA1
channels are also present in the colon. Their presence in the
colon was confirmed by in-s i tu hybridizat ion and
immunohistochemistry in the surface epithelium of the colon
in rats. As described earlier, activation of TRPA1 channels
induces PGE2 activation leading to anion secretion in the
epithelium of the colon. It was reported that TRPA1 activation
impedes spontaneous contractions and transit by directly
stimulating myenteric neurons. Therefore, TRPA1 may also
play a role in washing out harmful compounds and preserving
gut microbiota, thus helping relieve constipation (97). Also,
TRPA1 activators such as carvacryl acetate are known to
decrease intestinal mucositis in mice (98). A healthy gut is
essential in conserving normal appetite and metabolic
functions; these protective effects of TRPA1 channels also serve
as an added advantage.
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TRPA1 channels play a significant role in taste perception.
As we know, TRPA1 channels are co-expressed with TRPV1
channels in trigeminal nerves, which are present in hefty volumes
in the taste cells along with vagus and glossopharyngeal nerve
(99). Because these channels are activated by many chemicals
such as allicin (garlic), isothiocyanates (wasabi, horseradish),
curcumin (turmeric), eugenol (clove), thymol, cinnamaldehyde;
activation of these channels by these food components helps
in taste perception (28). The food substances that are irritable
in taste are mostly felt because of TRPA1 channel activation
(100). TRPA1 channel agonists cinnamaldehyde, methyl
syringate and AITC, showed abridged food consumption by
delaying gastric emptying (101). On the other hand, these
effects were seen to be absent in animals treated with TRPA1
antagonist HC-030031 or ruthenium red. Food intake regulation
measured by the levels of plasma PYY and GLP-1 also
demonstrated elevated plasma PYY by cinnamaldehyde and
methyl syringate but not in the presence of HC-030031 and
ruthenium red, indicating reduced food intake by the agonists.
In a very recent study, it was observed that co-treatment with
dietary TRPA1 agonist, allicin rich garlic juice was able to
reverse increased food intake, body weight, impaired glucose
homeostasis, elevated PYY, ghrelin and decreased GLP-1, CCK
produced by high fat-diet (102).

Another major event serving a critical part in appetite
regulation is GI inflammation. As TRPA1 channels are present
on capsaicin-sensitive sensory neurons, they have also shown
involvement in inflammatory bowel disease (IBD) along with
TRPV1 channels. Patients suffering from ulcerative colitis and
Crohn’s disease have shown upregulation in the expression of
TRPA1 and TRPV1 mRNA, although results for TRPV1 are
contradictory (103). TRPA1 antagonists, as well as knockdown,
supposedly help in decreasing colitis severity and reversing
visceromotor response in mice (104), but studies have also
suggested the opposite (105). Lastly, TRPA1 channels are also
involved in olfaction. The sense of smell is essential for
stimulation of appetite and further release of gastric hormones
for digestion of food. TRPA1 channels mediate nociception
conjured by pungent substances. TRPA1 knockout mice are
unable to sense foul odors and thus fail to avoid the chamber
filled with formalin, acrolein or AITC whereas the wild type
animals show avoidance behavior (106).

TRPA1 in the Hypothalamic Regulation
of Appetite
Not many studies have been conducted to confirm the presence
of TRPA1 channels in the hypothalamus (mainly in the
supraoptic nucleus) (39, 107), but the supporting evidence is
convincing enough to say that TRPA1 channels could exist in the
arcuate nucleus of the hypothalamus where they temper various
appetite-controlling neuropeptides to modulate hunger and food
intake. Moreover, as mentioned earlier, TRPV1 and TRPA1 are
closely related in expression and functions; several studies have
affirmed the presence of TRPV1 channels in the arcuate nucleus
(20, 80). A study using TRPA1 agonist phenethyl isothiocyanate
revealed enhanced mRNA expression of anorexigenic peptide
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POMC and reduced NPY/AgRP expression, which is orexigenic
in nature, thus plummeting food intake in mice (108).
Cinnamaldehyde supplementation also proved to enhance
mRNA expression of anorectic peptides such as POMC,
CART, and CCK in the hypothalamus of high-fat diet-fed mice
(58). Vomitoxin (deoxynivalenol), which occurs as mycotoxin in
grains such as wheat, oats, rice and barley, has been reported to
induce TRPA1 mediated calcium signaling in murine STC-1 cell
lines (109). In vivo study in mice showed a significant increase in
POMC, CART and melanocortin four receptor (MC4R) mRNA
expression in the arcuate nucleus of the hypothalamus after
vomitoxin treatment and also leads to reduced food intake
during the dark phase (110). Tominaga et al. (2016) also
reported increased expression of hypothalamic POMC, MC4R,
gastric CCK expression and TRPA1 expression in mice after
vomitoxin treatment hinting that vomitoxin exerts is anorexic
effects by increasing hypothalamic anorexic peptides via TRPA1
activation (111).

Regardless of numerous studies suggesting a positive role of
TRPA1 agonists controlling appetite and metabolism, some
studies tend to differ as well. A study in Wistar rats reported
enhanced ghrelin levels in the blood and heightened food intake
after treatment with TRPA1 agonist b-eudesmol, while TRPA1
knockout animals showed standard food intake. It also increased
histamine levels in the hypothalamic tuberomammillary nucleus
and elevates gastric vagal nerve activity (GVNA) responsible for
the absorption and digestion of nutrients. However,
pretreatment with HC-030031 eliminated the elevation in
GVNA (112).
CONCLUSION

Metabolic comorbidities like T2DM, obesity and cardiovascular
disorders have been greatly associated with NPDs, and are
responsible for reduced life expectancy and poor quality of life
in the patients. Along with the co-existence, NPDs and metabolic
disorders also share a commonality in pathophysiological
changes like appetite dysregulation, altered lipid and
carbohydrate homeostasis, heightened inflammatory responses
and altered adipokine-cytokine levels. TRPA1 channels, which
are distributed throughout the body, are emerging as potential
therapeutic targets for metabolic disorders and NPDs. TRPA1
channels have been found to play a cardinal role in NPDs (like
depression and anxiety), Alzheimer’s disease, Huntington’s
disease, multiple sclerosis, migraine, and age-related cognitive
impairment in different rodent models. Parallelly, TRPA1
channels are found to be playing a pivotal role in metabolic
alterations like diet-induced obesity, appetite dysregulation,
adiposity, inflammatory response, and regulation of peripheral
appetite-regulating peptides (like insulin, leptin and ghrelin)
release and action as depicted in Figure 1.

Taking all together, modulation of central as well as
peripheral TRPA1 channels can be a novel therapeutic strategy
to protect against metabolic adversities associated with NPDs,
out of which the major ones are weight gain and diabetes.
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Controlling appetite with natural TRPA1 modulators could help
improve patient compliance in NPDs and normal individual
health and well-being. Consequently, further studies involving
specific TRPA1 modulators need to be designed to target
metabolic syndrome involving NPDs.
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